J. Austral. Math. Soc. (Series A) 54 (1993), 20-28

ON *C^m***-BOUNDING SETS**

PETER BISTRÖM, STEN BJON and MIKAEL LINDSTRÖM

(Received 14 May 1991)

Communicated by P. G. Dodds

Abstract

Let E be a quasi-complete locally convex space and A a subset of E. It is shown that if every real-valued C^{∞} -function in the weak topology of E is bounded on A, then A is relatively weakly compact. Furthermore, if all real-valued C^{∞} -functions on E are bounded on A, then A is relatively compact in the associated semi-weak topology of E.

1991 Mathematics subject classification (Amer. Math. Soc.): 46 A 99, 58 C 25. Keywords and phrases: C^m -bounding set, relatively compact set, semi-weak topology, interchangeable double limit property.

The purpose of this paper is to examine the C^m -bounding sets $(m = 0, 1, ..., \infty)$ in a real Hausdorff locally convex space (lcs), with emphasis on their connection with relatively compact sets in various topologies. We say that a subset A of a lcs E is C^m -bounding if every $f \in C^m(E)$ is bounded on A. Here, $C^m(E)$ denotes the set of all real-valued C^m -functions on E in the sense of Lloyd [13], whose definition of differentiability coincides with that of Fréchet on Banach spaces. C^{∞} -bounding sets have recently been investigated by Kriegl and Nel in [11].

Since $E' \subset C^m(E) \subset C(E)$ for every lcs E, the class of C^m -bounding sets is somewhere between the classes of bounded and relatively compact sets. The C^0 -bounding subsets of a lcs E are relatively compact if E is quasicomplete or metrizable or, by [10], if E is realcompact. Moreover, Valdivia proves in [15] that every set, which is C^0 -bounding in the weak topology of a

^{© 1993} Australian Mathematical Society 0263-6115/93 \$A2.00 + 0.00

quasi-complete lcs, is relatively weakly compact. We obtain a generalization of this result to C^{∞} -bounding sets.

For the study of C^{∞} -bounding sets in Banach spaces it is convenient to consider the finest semi-weak topology compatible with the duality $\langle E, E' \rangle$ [4]. This locally convex topology, which we denote by E_{sw} , is strictly finer than the associated Schwartz topology and the weak topology on E. Our main theorem states that every C^{∞} -bounding set in a Banach space E is relatively compact in E_{sw} . This should be compared with a deep result due to Bourgain and Diestel [3], by which the limited sets in a Banach space not containing l_1 are relatively weakly compact. Since the C^{∞} -bounding sets form a proper subclass of the limited sets, it follows from the theory of limited sets that the C^{∞} -bounding subsets of various Banach spaces are relatively compact. However, using the associated semi-weak structure, we obtain the same results in a general way. Further, we show that the classes of C^{∞} -bounding and relatively compact sets coincide in Lindelöf as well as in quasi-complete smooth lcs.

The following concept guarantees a rich supply of functions in $C^m(E)$. A lcs E is C^m -smooth if there, for every point $a \in E$ and open subset V containing a, exists a function $f \in C^m(E)$ with f(a) > 0 and f(x) = 0 for $x \notin V$. The class of C^m -smooth spaces is closed under formation of subspaces and arbitrary products [13]. All Schwartz spaces [13] and the Banach spaces $c_0(\Gamma)$, $l_{2n}(\Gamma)$ and $L_{2n}(\mu)$ are well-known examples of C^m -smooth spaces.

PROPOSITION 1. Let E be a C^m -smooth lcs. Then every C^m -bounding subset of E is precompact and hence also relatively compact if, in addition, E is quasi-complete.

PROOF. Assume that $A \subset E$ is not precompact. Then there exist a sequence (x_n) in A and a zero-neighbourhood U in E with $x_n - x_m \notin U$ for $n \neq m$. Let V be an open set in E with $0 \in V$ and $V - V \subset U$. By the C^m -smoothness of E there is for each n a function $f_n \in C^m(E)$ such that $f_n(x_n) = n$ and $f_n(x) = 0$ for $x \notin x_n + V$. Let $f(x) = \sum_{n=1}^{\infty} f_n(x)$. By construction the sum f is locally finite and thus of class C^m . Since $f(x_n) = n$ for each n, the set A cannot be C^m -bounding.

Let E_m be the set E endowed with the weakest topology making all $f \in C^m(E)$ continuous. Then E_m is a completely regular Hausdorff topological space. Clearly $E = E_0$ and E is C^m -smooth if and only if $E = E_m$.

PROPOSITION 2. Let E be a los and suppose that there is a sequence in

[3]

 $C^{m}(E)$ which separates the points of E. Then every C^{m} -bounding subset A of E is relatively compact in E_{m} .

PROOF. Let $A \subset E$ be C^m -bounding. The set $f(A) \subset R$ is relatively compact for every $f \in C^m(E)$, thus A must be relatively compact in $R^{C^m(E)}$, by Tychonoff's theorem. Since $C^m(E)$ admits a sequence which separates the points of E, it follows from corollary 4 in [2] that E equals Hom $C^m(E)$, the set of all real-valued non-zero homomorphisms on $C^m(E)$. Now Hom $C^m(E)$ is a closed subset of $R^{C^m(E)}$ and therefore A is relatively compact in E_m .

The dual of a lcs E is $\sigma(E', E)$ -separable if and only if E' admits a sequence which separates the points of E: Let (l_n) be such a sequence and let $l \in E'$ be arbitrary. For each finite-dimensional subspace F of E, there is an l_F in the linear span of (l_n) with $l_F(x) = l(x)$ for each $x \in F$. Since the net (l_F) converges to l in $\sigma(E', E)$, we conclude that E' is $\sigma(E', E)$ -separable. The converse statement is trivial. Now, $\sigma(E, E')$ being C^{∞} -smooth, we obtain from Proposition 2 the following

COROLLARY 3. If E is a lcs with $\sigma(E', E)$ -separable dual, then every C^{∞} -bounding subset of $(E, \sigma(E, E'))$ is relatively $\sigma(E, E')$ -compact.

A subset A of a lcs E is called *limited* [12], if each equicontinuous $\sigma(E', E)$ -null sequence (l_n) in E' converges to zero uniformly on A. Every equicontinuous $\sigma(E', E)$ -null sequence (l_n) defines a linear and continuous mapping $T: E \to c_0$, $x \mapsto (l_n(x))_{n \in N}$. Hence, by [1, p. 161], A is limited, if T(A) is relatively compact in c_0 for all $T \in L(E, c_0)$. Thus, by Proposition 1, every C^{∞} -bounding set in E is limited. However, the converse does not hold in general. According to [12] all precompact sets are limited. Therefore the limited sets in $(E, \sigma(E, E'))$ are exactly the bounded ones for every lcs E. If E is a non-semi-reflexive lcs with $\sigma(E', E)$ -separable dual (e.g. l^{∞} or c_0), the corollary above ensures the existence of limited sets in lcs which are not C^{∞} -bounding.

There exist even limited non- C^{∞} -bounding sets in Banach spaces. Indeed, by Phillips' lemma [1, p. 233], a sequence (l_n) in $(l^{\infty})'$ converges uniformly to zero on the closed unit ball B_{c_0} of c_0 , if (l_n) converges to zero in $\sigma((l^{\infty})', l^{\infty})$. This means that the non-compact set $B_{c_0} \subset l^{\infty}$ is limited in l^{∞} . Assume that $B_{c_0} \subset l^{\infty}$ is also C^{∞} -bounding in l^{∞} . Since B_{c_0} is closed in $\sigma(l^{\infty}, (l^{\infty})')$, Corollary 3 implies that B_{c_0} is $\sigma(l^{\infty}, (l^{\infty})')$ -compact. But, since $\sigma(l^{\infty}, (l^{\infty})')$ and $\sigma(c_0, l_1)$ coincide on B_{c_0} , we conclude that B_{c_0} is

 $\sigma(c_0, l_1)$ -compact, which is a contradiction. Hence $B_{c_0} \subset l^{\infty}$ is a limited non- C^{∞} -bounding set in l^{∞} .

If we leave the use of Corollary 3 out of account, the proof of the next theorem has much in common with the corresponding proof in the case m = 0 as carried out in [8, p. 24]. But since the result is important and will be used in the sequel, we include a full detailed proof for the sake of completeness.

Let $\langle E, E' \rangle$ be a dual pair. We say that two sets $A \subset E$ and $M \subset E'$ have the *interchangeable double limit property*, if for every sequence (x_m) in A and every sequence (l_n) in M the double limits $\lim_m \lim_n \langle x_m, l_n \rangle$ and $\lim_n \lim_m \langle x_m, l_n \rangle$ are equal if they exist. The Eberlein-Grothendieck theorem [8, p. 15] states that a subset A of a lcs E is bounded and has the interchangeable double limit property with all equicontinuous subsets of E', if A is relatively $\sigma(E, E')$ -compact. The converse implication is true if E is quasi-complete.

THEOREM 4. Let E be a quasi-complete lcs. Then every C^{∞} -bounding subset A of $(E, \sigma(E, E'))$ is relatively $\sigma(E, E')$ -compact.

PROOF. Take an equicontinuous sequence (l_n) in E' and a sequence (x_m) in A such that the corresponding double limits exist. Let F be the $\sigma(E', E)$ -closed linear span of (l_n) . Then $F = (E/F^\circ)'$ is $\sigma(F, E/F^\circ)$ -separable and the canonical linear mapping $\pi : (E, \sigma(E, E')) \to (E/F^\circ, \sigma(E/F^\circ, F))$ is continuous. Hence $\pi(A)$ is relatively $\sigma(E/F^\circ, F)$ -compact by Corollary 3. The sequence (l_n) is equicontinuous in $F = (E/F^\circ)'$, when E/F° has the quotient topology of E. By the interchangeable double limit property for the duality $\langle E/F^\circ, F \rangle$,

$$\lim_{m} \lim_{n} \langle x_{m}, l_{n} \rangle_{E,E'} = \lim_{m} \lim_{n} \langle \pi(x_{m}), l_{n} \rangle_{E/F^{\circ},F}$$
$$= \lim_{n} \lim_{m} \langle \pi(x_{m}), l_{n} \rangle_{E/F^{\circ},F} = \lim_{n} \lim_{m} \langle x_{m}, l_{n} \rangle_{E,E'}.$$

Since E is quasi-complete, A is relatively $\sigma(E, E')$ -compact.

The theorem above extends a corresponding result of Valdivia for C^0 bounding sets to C^{∞} -bounding ones [15]. Similar results for limited sets have been obtained under much more restrictive conditions: In [3] Bourgain and Diestel show that in Banach spaces containing no copy of l_1 all limited sets are relatively weakly compact.

Since $l_1(\Gamma)$ and $\sigma(l_1(\Gamma), l^{\infty}(\Gamma))$ have the same compact sets, we notice that the C^{∞} -bounding subsets of $l_1(\Gamma)$ are relatively compact also for uncountable sets Γ .

COROLLARY 5. Let E be a Banach space. If E' admits a sequence that separates the points of E, then every C^m -bounding subset A of E is metrizable and relatively sequentially compact with respect to E_m .

PROOF. According to Theorem 4, the set \overline{A}^{σ} is compact in $\sigma(E, E')$. Since E' contains a countable set that separates the points of E, the set \overline{A}^{σ} is metrizable in $\sigma(E, E')$, by theorem 10.11 in [1]. The identity mapping $id: (\overline{A}^{E_m}, E_m) \to (\overline{A}^{E_m}, \sigma(E, E'))$ is continuous. By Proposition 2, \overline{A}^{E_m} is compact in E_m , and therefore *id* is a homeomorphism. Thus $\sigma(E, E')$ and E_m coincide on \overline{A}^{E_m} and the corollary follows.

PROPOSITION 6. Let E be a lcs such that every C^m -bounding subset of E is relatively compact in E. Then E and E_m have the same convergent sequences and compact sets.

PROOF. Since the functions in $C^m(E)$ are continuous with respect to E_m , every compact set A in E_m is C^m -bounding in E. Therefore A is compact in E. Further, let $x_n \to x$ in E_m . Then $B = \{x_n : n \in N\} \cup \{x\}$ is compact in E_m and hence also in E. The topologies of E and E_m coincide on B and consequently $x_n \to x$ in E.

REMARK. Let E be a Banach space and assume that l^{∞} and $(l^{\infty})_m$ define the same convergent sequences. Then it can easily be proved using Corollary 5 and proposition 4 in [6] that every C^m -bounding subset of E is relatively compact in E.

The semi-weak lcs are exactly those which are isomorphic to subspaces of some product c_0^{I} [4]. Every lcs E defines a semi-weak space E_{sw} which is obtained by endowing the set E with the topology of uniform convergence on the $\sigma(E', E)$ -closed absolutely convex hulls of all sets of the form $\{l_n : n \in N\}$, where (l_n) is an equicontinuous sequence in E' which converges to zero in $\sigma(E', E)$. The topology of E_{sw} is the finest semi-weak topology, which is coarser than the topology of E [4]. Note that $E' = (E_{sw})'$ and that the topology of E_{∞} is finer than E_{sw} , since E_{sw} is C^{∞} -smooth.

THEOREM 7. If E is a quasi-complete lcs, then every C^{∞} -bounding subset A of E is relatively compact in E_{sw} .

PROOF. Since A is C^{∞} -bounding in E, Theorem 4 yields that \overline{A}^{σ} is weakly compact and therefore complete in $\sigma(E, E')$. Now $E' = (E_{sw})'$ so, by theorem 3.24 in [10], the set \overline{A}^{σ} is complete in E_{sw} . Since E_{sw}

is C^{∞} -smooth, A is precompact in E_{sw} , by Proposition 1. The zeroneighbourhoods in E_{sw} are $\sigma(E, E')$ -closed, so we conclude that \overline{A}^{σ} is precompact and hence also compact in E_{sw} .

Theorem 7, our main result, lifts the relative compactness of the C^{∞} bounding sets on E from the weak topology, as in Theorem 4, to the finer semi-weak topology. In fact, the lifting works for any C^{∞} -smooth locally convex topology compatible with the duality $\langle E, E' \rangle$. The semi-weak space E_{sw} is in general strictly finer than the associated Schwartz space E_{sz} (by proposition 5.10 in [4] a Banach space E is finite-dimensional if $E_{sw} = E_{sz}$). Furthermore, using the associated semi-weak topology we obtain in a unified manner various results, proved for limited sets by different methods.

COROLLARY 8. Every C^{∞} -bounding subset of a Banach space E is relatively sequentially compact in E_{sw} .

PROOF. According to Theorem 7 we have to show that every relatively compact set A in E_{sw} is relatively sequentially compact in E_{sw} . Now the E_{sw} -closure of A is compact in E_{sw} and, by the Eberlein-Šmulian theorem, A is relatively sequentially $\sigma(E, E')$ -compact. By compactness, $\sigma(E, E')$ and E_{sw} coincide on $\overline{A}^{E_{sw}}$, and therefore A is relatively sequentially compact in E_{sw} .

Let E be a Banach space and $\mu(E', E)$ the Mackey topology on E'. The topology $\mu(E', E)_{su}$ is the topology of uniform convergence on the closed absolutely convex hulls of all sequences converging to zero in $\sigma(E, E')$.

LEMMA 9. Let E be a Banach space that contains no subspace isomorphic to l_1 . Then $\beta(E', E)$, $\mu(E', E)$ and $\mu(E', E)_{sm}$ have the same convergent sequences.

PROOF. Suppose that $l_n \to 0$ in $\mu(E', E)_{sw}$ but not in $\beta(E', E)$. Then there is an $\varepsilon > 0$ and a sequence (x_n) in B_E such that $|l_n(x_n)| > \varepsilon$ for each n. Let x be in the $\sigma(E, E')$ -closure of $\{x_n : n \in N\}$. In [9] Howard proved that a Banach space E contains no subspace isomorphic to l_1 if and only if every bounded subset of E is weakly sequentially dense in its weak closure. Therefore we can find a subsequence (y_n) of (x_n) such that $y_n \to x$ in $\sigma(E, E')$. Since $l_n \to 0$ in $\mu(E', E)_{sw}$ and thus also in $\sigma(E', E)$ there is an $n_0 \in N$ such that $\sup_{k \in N} |l_n(y_k - x)| \le \varepsilon/2$ and $|l_n(x)| \le \varepsilon/2$ for $n \ge n_0$. Now, for $n \ge n_0$, $\varepsilon < |l_n(y_n)| \le |l_n(y_n - x)| + |l_n(x)| \le \varepsilon$, which is a contradiction.

[6]

[7]

Combining Corollary 8 and Lemma 9 we arrive at the following corollary, which is valid for limited sets by Emmanuele [7].

COROLLARY 10. Let E be a Banach space that contains no subspace isomorphic to l_1 . Then every C^{∞} -bounding subset of $\beta(E', E)$ is relatively compact in $\beta(E', E)$.

LEMMA 11. Let C(T) be the Banach space of continuous functions on a compact, sequentially compact Hausdorff space T with the supremum norm topology. Then $C(T)_{sw}$ and C(T) have the same convergent sequences.

PROOF. Assume that $f_n \to 0$ in $C(T)_{sw}$ but not in C(T). Then there is an $\varepsilon > 0$ and a sequence (t_n) in T such that $|f_n(t_n)| > \varepsilon$ for each n. Since T is sequentially compact, we can find a convergent subsequence (t_{n_k}) of (t_n) which converges to $t \in T$. Now T can be considered as a subspace of $C(T)'_{co}$ and therefore $t_{n_k} \to t$ in $\sigma(C(T)', C(T))$ and $(t_{n_k} - t)$ is equicontinuous in C(T)'. Since $f_n \to 0$ in $C(T)_{sw}$, there exists an $n_0 \in N$ such that $|f_{n_k}(t_{n_k}) - f_{n_k}(t)| \le \varepsilon/2$ and $|f_{n_k}(t)| \le \varepsilon/2$ for $n \ge n_0$. As in the previous lemma we thus arrive at a contradiction.

By Diestel [5, p. 238], the next corollary also works for limited sets.

COROLLARY 12. Let E be a Banach space which is isomorphic to a subspace of C(T) with the supremum norm topology, where T is a compact, sequentially compact Hausdorff space. Then every C^{∞} -bounding subset of E is relatively compact in E.

Recall that a Banach space E is called *weakly compactly generated* (WCG), if E is the closed linear span of some weakly compact set. All separable and reflexive Banach spaces as well as the space $c_0(\Gamma)$ are WCG spaces. For a WCG space E the closed unit ball of the dual E' is $\sigma(E', E)$ -sequentially compact. Therefore the classes of C^{∞} -bounding and relatively compact sets coincide in WCG spaces.

In every infinite-dimensional Banach space E there exist bounded non- C^{∞} -bounding sets. Indeed, let B be the unit ball of E and assume that B is C^{∞} -bounding. By Theorem 4, B is relatively $\sigma(E, E')$ -compact and therefore E is reflexive. But then B is even relatively compact in E, by Corollary 12, forcing E to be finite-dimensional. It should be pointed out that this observation also could be obtained from the Josefson-Nissenzweig theorem [5]. COROLLARY 13. Let E be a quasi-complete lcs that is isomorphic to a subspace of a product $\prod_{i \in I} E_i$, where each E_i is a WCG Banach space. Then every C^{∞} -bounding subset of E is relatively compact in E.

PROOF. Let $A \subset E$ be C^{∞} -bounding. Then $pr_i(A) \subset E_i$ is C^{∞} -bounding and hence relatively compact for each $i \in I$, since E_i is WCG. Therefore A is relatively compact in $\prod_{i \in I} E_i$ and thus also in E.

A lcs is said to be *transseparable*, if it is a subspace of a topological product of separable normed spaces [14]. Since the completion of a separable normed space is separable, every C^{∞} -bounding subset of a quasi-complete transseparable lcs is relatively compact. According to [14], a lcs E is transseparable if and only if for every zero-neighbourhood U in E there is a countable subset M of E with E = M + U. Thus the class of transseparable spaces contains not only the semi-weak ones but all separable and Lindelöf locally convex spaces as well. For Lindelöf spaces, however, we can characterize the C^{∞} -bounding sets without quasi-completeness by using the interpolation result below.

PROPOSITION 14. Let E be a Lindelöf lcs. Assume that (x_n) is a sequence of distinct elements in E without cluster points. Then there exists a function $f \in C^{\infty}(E)$ such that $f(x_n) = n$ for each n.

PROOF. As the sequence (x_n) has no cluster points in E, there is a convex open neighbourhood A_n of each x_n such that $x_k \notin \overline{A_n}$ for $k \neq n$. By the same argument there exists a convex open neighbourhood B_x of every x outside the sequence (x_n) such that $\overline{B_x} \cap \{x_n : n \in N\} = \emptyset$. Since E is Lindelöf, there is a sequence (B_k) of convex open sets with $E = \bigcup_{n=1}^{\infty} A_n \cup B_n$ and $\overline{B_k} \cap \{x_n : n \in N\} = \emptyset$ for each k. Let $W_n = \bigcup_{i=1}^n A_i \cup B_i$. Hence (W_n) is an increasing open covering of E, where the closures $\overline{W_n}$ are $\sigma(E, E')$ -closed sets with $x_k \notin \overline{W_n}$ for k > n. Let f_1 be the constant function with the value 1. Since the weak topology is C^{∞} -smooth, we can find a sequence (f_n) of functions in $C^{\infty}(E)$ such that

$$f_n(\overline{W_{n-1}}) = \{0\}$$
 and $f_n(x_n) = n - 1 - \sum_{i=2}^{n-1} f_i(x_n), n = 2, 3, \dots$

Let $f(x) = \sum_{n=1}^{\infty} f_n(x)$. By construction, f is locally finite and thus a function in $C^{\infty}(E)$. Furthermore $f(x_n) = n$ for each n.

Since the compact and countably compact sets are the same in Lindelöf spaces we arrive at

COROLLARY 15. Every C^{∞} -bounding set in a Lindelöf lcs is relatively compact.

References

- [1] C. Aliprantis and O. Burkinshaw, Positive Operators (Academic Press, San Diego, 1985).
- [2] P. Biström, S. Bjon, and M. Lindström, 'Function algebras on which homomorphisms are point evaluations on sequences', *Manuscripta Math.* 73 (1991), 179-185.
- [3] J. Bourgain and J. Diestel, 'Limited operators and strict cosingularity', Math. Nachr. 119 (1984), 55-58.
- [4] J. Dazord, 'Factoring operators through c_0 ', Math. Ann. 220 (1976), 105-122.
- [5] J. Diestel, Sequences and Series in Banach spaces, Graduate Texts in Math. 97 (Springer, Berlin, 1984).
- [6] S. Dineen, 'Unbounded holomorphic functions on a Banach space', J. London Math. Soc. 4 (1972), 461-465.
- [7] G. Emmanuele, 'A dual characterization of Banach spaces not containing l₁', Bull. Acad. Polon. Sci. Sér. Sci. Math. 34 (1986), 155-159.
- [8] K. Floret, Weakly compact sets, Lecture Notes in Math. 801 (Springer, Berlin, 1980).
- [9] J. Howard, 'Weak sequential denseness in Banach spaces', Proc. Amer. Math. Soc. 99 (1987), 351-352 and 104, 334 (1988).
- [10] H. Jarchow, Locally convex spaces (Teubner, Stuttgard, 1981).
- [11] A. Kriegl and L. Nel, 'Convenient vector spaces of smooth functions', Math. Nachr. 147 (1990), 39-45.
- [12] M. Lindström and Th. Schlumprecht, 'On limitedness in locally convex spaces', Arch. Math. (Basel) 53 (1989), 65-74.
- [13] J. Lloyd, 'Smooth partitions of unity on manifolds', Trans. Amer. Math. Soc. 197 (1974), 249-259.
- [14] P. Pérez Carreras and J. Bonet, *Barrelled locally convex spaces* (North-Holland, Amsterdam, 1987).
- [15] M. Valdivia, 'Some new results on weak compactness', J. Funct. Anal. 24 (1977), 1-10.

Åbo Akademi SF-20500 Åbo Finland

28