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ABSTRACT. The reflection and transmission of ice-coupled waves under a sea-ice sheet is re-examined
in this work. Recent theory can account for inhomogeneities in ice sheets such as the sails of pressure
ridges and cracks or leads, but has only examined small numbers of features. Here the scattering
coefficients can be obtained for an ice sheet containing a region of arbitrarily varying thickness that
more closely approximates a real ice sheet and, consequently, models wave scattering more effectively.
We explore the consequences of inverting ridge keels, placing the mass above the ice sheet as a
technique by which the keel can be partially accounted for. It is found that the ridge sails themselves can
reasonably be neglected. Upward-looking submarine sonar data are used to demonstrate the use of the
model, noting that there are choices as to how to interpret such data. The model is tested to establish its
sensitivity to these choices.

INTRODUCTION
When ocean waves generated by offshore storms are incident
on an ice sheet, the wave energy is partially reflected, with
the remaining fraction being transmitted as flexural–gravity
waves. These waves are named for the two restoring forces
they experience: gravity and those associated with the flexing
of the floating ice sheet. They can propagate deep into the ice
field. It is currently a topic of some interest as to whether
waves can be used to remotely sense sea-ice thickness,
particularly in the Arctic Ocean (e.g. Nagurny and others,
1994). This information is of value to offshore industries
operating within these regions, since it can influence the
efficiency of their operations. For example, if the sea ice is
particularly thick, it can mean a much longer wait until the
ice has thawed and a ship is able to get through. The current
methods for determining the thickness of sea ice are labour-
and equipment-intensive and, while recently developed
techniques such as electromagnetic sensing are promising,
the use of ice-coupled waves is an exciting alternative.

It is often assumed by modellers that sea ice is just a thin
homogeneous veneer on the cold ocean surface, but in
reality it contains many heterogeneities, namely leads,
pressure ridges and regions with variable physical properties
(density, Poisson’s ratio, etc.). These inhomogeneities have a
significant effect on the propagation of waves and need to be
taken into account. Models that do this have been used to
simulate waves under sheets with simple distributions of
ideal inhomogeneities. But to use waves as a remote-sensing
agent we require a model capable of simulating their propa-
gation under real ice sheets. Output can then be compared to
measured waves and the ice thickness inferred. Such a model
has been developed and is described in this paper.

The model derives from Williams (2005), who employs
Green’s functions and linear wave theory to find the velocity
potential, and hence the reflection and transmission
coefficients, for waves travelling under a prescribed ice
sheet. The model is described in detail in the next section.

We present results from two groups of simulations: a
simple model of a pressure ridge, and an ice sheet
constructed from experimental data from a submarine sonar
survey. We examine the effects of changing the sampling
rate and the choice of interpolation technique on the
transmission and reflection coefficients.

FORMULATION OF THE PROBLEM
Of interest is the reflection and transmission of ice-coupled
waves travelling beneath an ice sheet with a section of
arbitrarily varying thickness, as illustrated in Figure 1.
Current theory constrains us to examining sheets with flat
undersides so that all thickness variations must be in-
corporated by mass changes above the ice sheet, and also to
cases where the ice sheets on either side of the variable
region are of the same thickness. Because the mathematics
used is reported in detail elsewhere, we include only a brief
outline of the theory in this section for completeness. Later
we describe the methods used to approximate the ice sheet.

Denoting DðxÞ ¼ Eh3ðxÞ=12ð1� �2Þ, where E and � are
the effective Young’s modulus and Poisson’s ratio (set at
6GPa and 0.3, respectively) and h(x) is the ice thickness, the
equations that will describe the ice sheet as an Euler–
Bernoulli plate and the underlying inviscid, irrotational fluid
foundation may be non-dimensionalized by scaling all
lengths by L ¼ L0 �!2=5. Here L0 ¼ ðD=�wgÞ1=4 is the familiar
characteristic length and �0 ¼ ðL0=gÞ1=2 is the characteristic
time, where �w ¼ 1025 kgm–3 is the water density and
g ¼ 9.81m s–2 is the acceleration due to gravity, and
�! ¼ !�0 is the non-dimensionalized form of the radian
frequency ! of the incident wave. It is also useful to define
� ¼ �!�8:5, � ¼ m0/�wL and � ¼ ��!2=5, in which m0 ¼ �h,
where � ¼ 922.5 kgm–3 is the density of the sea ice, and m0

is the mass per unit length of the ice in the constant thickness
region. Then, because the solution is linear and can be
expressed in terms of a separable velocity potential of the
form �ðx, z, tÞ ¼ Re �ðx, zÞe�i!t

� �
, the non-dimensionalized

problem is

r2
xz�ðx, zÞ ¼ 0 ð1aÞ

Lðx, @xÞ�zðx, 0Þ þ �ðx, 0Þ ¼ 0 ð1bÞ
�xð0þ, zÞ � �xð0�, zÞ ¼ 0 ð1cÞ
�ð0þ, zÞ � �ð0�, zÞ ¼ 0 ð1dÞ

�zðx,HÞ ¼ 0: ð1eÞ
In Equations (1), Lðx, @xÞ ¼ @2x DðxÞ@2x

� �þ ��mðxÞ�, where
m(x) is the non-dimensionalized mass per unit length within
the variable-thickness region. We label the lefthand region
in Figure 1, in which the thickness is constant, as region 0,
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the righthand region as region 2 and the variable-
thickness region as region 1. Because the thickness must
be the same in regions 0 and 2, the operator L is the
same in each of these regions, i.e. L0ðx, @xÞ ¼ L2ðx, @xÞ ¼
D0@

4
x þ �� �. In region 1, L becomes L1ðx, @xÞ ¼

L0ðx, @xÞ þ
P4

j¼1 djðxÞL1jð@xÞ, in which the functions dj
are d1ðxÞ ¼ D1ðxÞ �D0, d2ðxÞ ¼ 2D0

1ðxÞ, d3ðxÞ ¼ D00
1ðxÞ

and d4ðxÞ ¼ m1ðxÞ �m0, and the operators L1j are
L11 ¼ @4x , L12 ¼ @3x , L13 ¼ @2x and L14 ¼ ��.
The dispersion relation

By substituting wave potentials �ðx, zÞ ¼ eikxcoshkðz �HÞ
into the governing equations by way of Equation (1), we
obtain the dispersion relation that k must satisfy, i.e.

f ðkÞ ¼ ðDk4 þ �Þk tanhkH � 1 ¼ 0: ð2Þ
In Equation (2), k is the non-dimensional wavenumber (k/L is
the physical wavenumber), D ¼ 1 in regions 0 and 2, D ¼ 0
for waves in open water, and � is given by

� ¼ �!�8=5 � �h �!2=5

�wL0
: ð3Þ

The roots of the dispersion relation represent the allowed
modes in the system. For waves beneath ice, there is a real
root k0 corresponding to a propagating mode, a complex
conjugate pair of roots k–2 and k–1 corresponding to damped
propagating modes, and a countably infinite set of imaginary
roots kn (n ¼ 1, 2, . . .) corresponding to evanescent modes.
Since the dispersion relation is an even function, the
negatives of all of these are also roots. When open water
is present, there are no complex roots but there is still a real
root k0 and infinitely many imaginary roots kn (n ¼ 1, 2, . . .).

A Green’s function
The solution to Equations (1) can be found by first
determining the Green’s function for finite water depth H
that solves

r2
	
Gðx � 	, z, 
Þ ¼ �ðx � 	, z � 
Þ ð4aÞ

L0ð@	ÞG
ðx � 	, z, 0Þ þGðx � 	, z, 0Þ ¼ 0 ð4bÞ
Gðx � 	, z,HÞ ¼ 0: ð4cÞ

It has been found empirically that setting H ¼ 5L is enough
to eliminate the effect of that quantity on the scattering, i.e.
that the water then behaves as though it were deep.

Evans and Porter (2003) use an inverse Fourier transform to
solve for the Green’s function; for a comprehensive treatment
of this subject the interested reader is also directed to

Williams (2005). There, an expression is given for Gz
 that,
together with derivatives with respect to 	, is all we need:

Gz
ðx � 	, z ¼ 0, 
 ¼ 0Þ ¼ i
X1
n¼�2

Anei�n jx�	j: ð5Þ

In Equation (5), An ¼ Resð1=f0,�nÞ, f0 being the dispersion
relation for region 0. The �n obey �2n ¼ k2

n, with square roots
taken in the upper half-plane.

The general integral equation
By referring to Green’s theorem and by using Equations (1)
and (4a), Williams (2005) writes a general integral equation
as

 ðx, zÞ ¼
Z 1

�1
Gðx � 	, z, 0Þ zð	, 0Þ

�G
ðx � 	, z, 0Þ ð	, 0Þ d	 ð6Þ
in which  ðx, zÞ ¼ �ðx, zÞ � eik0xcoshk0ðz �HÞ=coshk0H.
Boundary conditions are now applied and the Green’s
function substituted in, to obtain eventually

 zðx, zÞ

¼
Z a

0

X4
j¼1

djð	ÞL1jð@	ÞGz
ðx � 	, 0, 0Þ�zð	, 0Þ d	

þ
X
xc2Xc

lim
	!xc

h
Gz
			 x � 	, 0, 0ð Þ�p0ðxcþÞ � p0ðxc�Þ

�

�Gz
		ðx � 	, 0, 0Þ�p1ðxcþÞ � p1ðxc�Þ
�i ð7Þ

in which Xc is the set of all points involving discontinuities
in DðxÞ and D0ðxÞ, and p0ðxÞ ¼ DðxÞ�zðx, 0Þ, p1ðxÞ ¼
DðxÞ�zxðx, 0Þ �D0ðxÞ�zðx, 0Þ. If we are far enough from
the origin, the damped and evanescent modes are negligible
and the potential has the asymptotic form

�ðx, zÞ � eik0x þ Re�ik0x , x ! �1
Teik0x , x ! 1

�
ð8Þ

which can be compared to the solution to obtain expressions
for R and T.

RECONSTRUCTING THE ICE SHEET
To evaluate the integrals in Equation (7), an expression for the
ice thickness is required. In this section, the method used to
represent the ice sheet is described. Typically we will have an
ice sheet for which the thickness is known as a function of the
space variable at any desired resolution, so we can construct
a vector of function values at regular intervals. The area
between a pair of adjacent points is termed a ‘section’. For a
real ice sheet, the size of the section is determined by the

Fig. 1. An infinite ice sheet with a section of arbitrarily varying thickness. Incident ice-coupled sinusoidal waves are partially reflected (R)
and partially transmitted (T) by the feature.
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resolution of the ice surface data or by the amount of
averaging that has been done. Across a single section the ice
thickness can be interpolated by a low-order polynomial,
and herein we use constants, lines and cubics. In the limit as
the number of sections increases to infinity, the interpolated
ice sheet will become exact. Within each section, numerical
quadrature is used to evaluate the integrals appearing in
Equation (7), and to do this each section is divided into a
number of panels. As the number of panels increases, the
estimates for integrals converge to exact values.

Reconstructing the thickness of the ice sheet using
piecewise constants and lines is a trivial process. Inter-
polation using cubics is implemented using the algorithm
described in Press and others (1986). This algorithm
describes how a cubic spline may be constructed so that
the spline and its first derivative are continuous everywhere,
including at the end points.

The model requires expressions for the flexural rigidity
and its first two derivatives. If those derivatives are zero,
which they are when constant interpolation is used for the
thickness because E is constant, fewer integrals need to be
evaluated using quadrature but there are boundary terms
that must be found at the edges of every section. When the
ice surface and its slope are both continuous, there are no
boundary terms, but more integrals to evaluate. We antici-
pate that using linear and cubic interpolation will require
more panels because functions will vary more over a single
section. When constants are used, more time will be spent
evaluating the boundary terms at the discontinuities
between each section.

Real and artificial ice sheets
A number of submarine voyages have been conducted,
during which upward-pointing sonar was used to map the
underside of the ice. Experiments have also been conducted
using lidar from aircraft to map the topside of the ice surface.
In both cases, the data are presented as elevations along line
segments, which represent an average value for the surface
in the vicinity of the point (a consequence of the beam width
being non-zero). Accordingly, information about how the
ice sheet varies between points is lost and assumptions must
be made to reconstruct the ice sheet from the data.

Examples of data from submarine experiments are
available from the internet, typically with points spaced
every metre (http://nsidc.org/data/g01360.html). It may be
that details of the ice sheets occurring at this scale are
unimportant in terms of wave transmission, and to enable
this idea to be explored the model has the facility to average
adjacent points. This means the number of points is reduced

(so the model runs faster) and the separation of points is
increased. However, larger sections can mean more panels
are required for the quadrature to converge.

We now proceed to create artificial ice sheets with
particular features to test the model. The merit in this
approach is that the sheet can be resampled at any desired
resolution.

A SIMPLE PRESSURE RIDGE
Leads form in an ice sheet when forces (due to currents and
wind) on the sheet are large enough to cause cracks to grow.
Once formed, the leads start to refreeze and become covered
by a thin sheet of ice. The forces that cause lead formation are
not constant, so sometimes leads close, causing the thin
refrozen ice to be broken up and piled up to form pressure
ridges. These ridges have sails and keels, with the latter
containing roughly 90% of the mass because of the relative
densities of water and ice. Initially consisting of loose blocks,
ridges refreeze and are smoothed by currents and wind to
become rounded, consolidated features.

Pressure ridges affect the propagation of waves in several
ways: by increasing the mass loading, increasing the flexural
rigidity and by presenting an obstacle to the flow under the
ice sheet. In the model created here, the first two of these
effects can be accounted for by inverting the keel (personal
communication from R. Porter, 2004), but the last cannot yet
be accommodated.

Here we establish protocols for using the model that will
later aid the simulation of real ice sheets. We investigate the
effects on wave scattering of changing the order of the
polynomial used to reconstruct the surface, and the ridge
model is varied to examine the effect of neglecting the sails
and keels. The effect of ice thickness is also examined.
Finally, the mass loading term is neglected to determine
which restoring force (gravity or the flexing of the ice sheet)
dominates the scattering of waves under a pressure ridge.

Figure 2 shows a simple model of a ridge and the inverted
keel analogue we use as an approximation. While we have
used a symmetric ridge, experiments (well summarized by
Wadhams, 1994) and simulations (Hopkins, 1998) show that
ridges are often asymmetric, but the simple model is
sufficient for our purposes. The largest keel draft observed
to date is 47m, but keels this large are not common,
typically being 5–10m (Hibler and others, 1972). The
highest sail observed was 13m high (Wadhams, 1994), but
sails are more commonly 1–2m high. The keel-draught to
sail-height ratio is commonly 3–4 : 1 (Wadhams, 1994) and
the average measured keel and sail slopes are 338 and 248

Fig. 2. A schematic showing on the left a simple model of a ridge that consists of a sail and a keel, and on the right the inverted keel we use
here. Pk(x, y, t) and P(x, y, t) are respectively the pressures within the water column when a keel is present and when it has been inverted.
Pa is the atmospheric pressure.
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respectively (Wadhams, 1994). The ridge we examine here
has a keel depth of hk ¼ 9m and width bk ¼ 36m, and a
sail with height of hs ¼ 3m and width bs ¼ 12m, which
roughly conforms to the statistics. The ice sheets are taken to
be 2m thick away from the ridge.

Justification for inverting keels
In Figure 2, a ridge with a triangular keel is shown. For the
sail–keel pair and for the keel inverted, the pressure along
the underside of the sheet can be split into several parts

Pðx, ys, tÞ ¼ Peðx, ysÞ þ Pwðx, ys, tÞ ð9aÞ
P kðx, yk

s ðxÞ, tÞ ¼ Peðx, ysðxÞÞ þ Phðx, yk
s ðxÞÞ

þ P k
wðx, yk

s ðxÞ, tÞ ð9bÞ

in which ys and yk
s ðxÞ are the y coordinates at the underside

of the ice sheet for the keel and the inverted keel
respectively, Pe is the pressure at the mean underside when
no waves are present and appears in both expressions, and
Pw and P k

w are the contributions due to the presence of
waves under the two sheets. The pressure Ph is a hydrostatic
pressure resulting from the underside of the keel being
deeper than the underside of the ice sheet. In the equi-
librium case with no waves present, we assume the two
pressures Peðx, yk

s ðxÞÞ þ Phðx, yk
s ðxÞÞ exactly balance the

atmospheric pressure and the weight of the ice sheet.
With the assumption that P k

wðx, ysðxÞ, tÞ � Pwðx, ys, tÞ for
identical incoming waves, the sole influence of failing to
include Ph results in a steady deformation of the plate. We
assume that a thin plate experiencing a steady deformation
will behave in the same way as an undeformed thin plate.
The assumption that P k

wðx, ysðxÞ, tÞ � Pwðx, ys, tÞ is difficult
to justify, but provided keel slopes are not too steep it should
be acceptable.

Further support for this assumption is provided by Porter
and Porter (2004), who use the mild-slope approximation to
examine wave scattering under ice sheets with non-uniform
undersides in water of finite depth. They found that the
governing equations were dependent only on the distance
from the underside to the sea floor, suggesting a feature
could be accounted for by placing it on the sea floor and
flipping the keel; an easier problem to solve than including
submergence. Here we have infinite depth, so anything at
the sea floor is negligible.

Inverting keels and neglecting sails
In Figure 3, the magnitude of the reflection coefficient is
plotted against wave period for the ridge, both with and
without the sail, and also using the no-mass-loading
approximation. For this ridge at higher periods, neglecting
the sail is a very good approximation and it is the longer
periods that are of most interest here. When mass loading is
omitted, the scattering coefficients are not significantly
different at the large scale but, as can be seen in Figure 3
from the dashed curve, the details have changed. When the
mass loading is neglected, there is no distinct minimum.
When the keel is neglected, the scattering is changed
markedly, suggesting it is a poor approximation. We also ran
tests in which the sail was increased in mass to unphysical
sizes (as much as a quarter of the mass of the ridge in the
sail), and the scattering coefficients remained largely
unchanged, but these results are not presented here, for
the sake of brevity. Essentially, an ice sheet with a ‘stiff’
section behaves the same as one with a ‘very stiff’ section.

Techniques for reconstructing the ice surface
Here we examine the scattering and rates of convergence
arising due to a ridge with an inverted keel as shown in
Figure 2, using different interpolation methods for recon-
structing the thickness of the ice sheet. We find that the
order of the polynomial used to interpolate the ice sheets has
significant effects on the behaviour of the model.

First we note that the ridge in Figure 2 is reproduced
precisely when the ice sheet is interpolated using piecewise
linear functions, provided that the number of sections is
chosen well. So, for linear interpolation, the only factors
affecting convergence are the number of panels used in the
quadrature scheme and the number of evanescent modes
retained. As such, it is an appropriate standard against which
convergence can be measured when other interpolation
methods are used.

For a given number of sections we define a convergence
parameter comparing two solutions by

FðpÞ ¼
XN
i¼1

ðjR4000ð�iÞj � jRð�i ,pÞjÞ2
N

ð10Þ

in which R4000(� i) is the reflection coefficient at period � i,
found using 4000 panels with linear interpolation, N is the
total number of periods used, and R(� i, p) is the reflection

Fig. 3. The consequence of neglecting the mass loading and the presence of the sail on the transmission (a), and reflection coefficients for a
ridge with an inverted keel (b). Here the ice sheet is interpolated using a piecewise linear function, and the keel is 30m wide and 3m high.
The period where reflection is zero is a result of destructive interference and does not occur when mass loading is neglected. Neglecting of
the sail is consistently a very good approximation, while neglecting the mass is a good approximation for periods higher than about 15 s.
Neglecting the keel is a very poor choice.
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coefficient calculated using p panels. In Figure 4a, F(p) is
plotted against the number of panels used. In producing this
plot, the period � i takes integer values from 1 to 25. The
number of modes used does not affect run times to the same
extent as the number of panels, and here we use 100, which
proves to be sufficient to ensure very good results.

Not surprisingly, Figure 4a shows a reduction in error as
the number of panels increases. For low numbers of panels,
error reduces rapidly, a result of more converged results at
high periods. For low p, the reflection coefficient is reason-
ably good at high periods, but it is poor at low periods and
near the perfect transmission period. Because the reflection
coefficient is much larger at low periods, it can be argued
that using F(p) as an indicator of convergence places too
much importance on low periods, which are of less interest
as they are less common in real ice sheets. Nonetheless, F(p)
is still an indicator of the error and is sufficient for our
purposes. We determined that 1600 panels were enough to
obtain a sufficiently converged simulation, while not re-
quiring the overly long run times of higher resolutions.

Figure 4b shows what happens when the ice surface is
interpolated using a cubic spline. For low numbers of
panels, the result appears poor for each simulation,
irrespective of the number of sections, but they are actually
quite good, the curves only just being distinguishable on a
plot. When cubic interpolation is used, the models do not
converge as the number of panels is increased to the
solutions generated when linear interpolation is used. Al-
though the model is converging, the ice sheet is different, so
the solution changes but not by much. In summary, while all
of the results are good, for higher numbers of sections the
agreement with the converged linear model is potentially

very good. However, higher numbers of panels are required
to realize this potential.

When piecewise constants are used, the results are slight-
ly different, as can be seen in Figure 4c. In each case, the
solution does not continue to converge at any useful rate
once there are three panels per section. To obtain increas-
ingly converged solutions when using piecewise constants,
the number of sections should be increased while keeping
three panels per section. This is a good rule for low numbers
of sections for this ridge, but it has not been tested more
generally.

Different interpolation methods also affect run times. For
increasing numbers of sections, using three panels per
section, the run times for the constant model are collected
and plotted in Figure 4d against values of F for each
simulation. The rules for choosing p for a cubic spline are
not so clear-cut, and, somewhat arbitrarily, we use 35 panels
per section and find the times required for completion of the
simulations. It can be seen that there is a limit to the
accuracy that can be achieved when constant and cubic
interpolation is used to approximate ice thickness. More
panels per section with the cubic spline produce only slight
improvements, at least for this ridge. The improvements from
using more panels with constant interpolation are even
worse. So if neither the cubic nor constant interpolation
options offer sufficient convergence, only linear inter-
polation remains. But it must be remembered that the
convergence to the point where F(p) is <10–6 is very precise,
and further enhancements are of little value. (Plots of R for
simulations using the high-resolution linear model and for
the most accurate cubic and constant simulations are
indistinguishable at normal scales.)

Fig. 4. (a–d) Convergence for the simple flipped ridge shown in Figure 2 using different polynomials for interpolating the ice thickness. In all
cases F(p) is a sum-of-squares estimate for the error, defined by Equation (10). In the legend in (d), p/s signifies panels per section. In (a) the
linear method converges well. In (b) and (c) results are poor for low resolutions, then reach a plateau where the solutions start to converge to
those for the approximate ice surfaces. Interestingly, the code is quicker when using constants at lower accuracies, but very high accuracies
can only be achieved by using the linear model.
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Earlier it was noted that results using cubic interpolation
did not converge as the number of panels was increased for
low numbers of sections because, while the quadrature had
converged, the ice thickness was restricted to an approxi-
mate form. The failure to converge beyond a limiting
accuracy in Figure 4 is not the same since high numbers
of sections were used. It is quite likely that simplistic rules of
the type ‘x panels per section looks enough’ are adequate for
low numbers of sections but provide poor solutions when
higher numbers are used. It may also be that the concavity of
the ice thickness, which is not present when linear and
constant interpolation is used, is making a contribution.

A REAL ICE SHEET
In this section, we examine the propagation of waves under
an ice sheet that is constructed to be as near as possible to a
real one. Real ice sheets are not homogeneous but are
peppered with imperfections such as leads, cracks and
pressure ridges. In addition, the properties of the ice itself
can vary, but it is thought that this is not the most significant
variation in the ice and so it is neglected. We use a profile
collected using upward-looking submarine sonar.

It is assumed that the submergence of the ice sheet is
negligible and that the contribution by sails on the top
surface is insignificant. We invert the profile (personal
communication from R. Porter, 2004), so the keels appear on
top of the sheet, a necessary step because of the modelling
requirement that the underside of the ice is flat.

In real ice sheets pressure ridges can occur with almost
any orientation. Yet, ordinary upward-looking submarine
sonar (as opposed to sidescan) does not provide information
about orientations and so these data are unavailable. Our
model can account for orientations but it cannot be used

when different features have different orientations. This is
because different orientations imply that separate features
can intersect, a three-dimensional phenomenon that cannot
be simulated in our two-dimensional model.

For the simulations described here, we have used
piecewise constants to interpolate the ice thickness. This
choice was made because it enables discontinuities in the
surface to be modelled without requiring large numbers of
panels, and so can be run without requiring excessive run-
times. Note that the piecewise representation of the ice
thickness will converge to the exact thickness when an
infinite number of sections are used. Here there is a limit to
the number of sections, as they cannot be resampled at a
higher rate whenever desired because we are limited to the
1m resolution of the original data. It may be that even a 1m
resolution is high and that lower resolutions can sufficiently
represent the scattering properties under the ice sheet. We
use Equation (10) to quantify the error but with the exact
reference value found using no averaging and using
100 modes. It was found that less than four-point averaging
of the ice surface data restricted the error to <10–4, with
most of the error contributed by the low periods. Similarly,
using more than four evanescent modes restricted the error
to <10–4, irrespective of thickness, but differences were most
significant at middle periods. Here we use three-point
averaging and ten evanescent modes, which results in an
error of 5.8�10–5. Increasing the number of panels used
in each section from three to ten (causing run-times to
increase considerably) results in the error being reduced by
3.5�10–9, so gains in accuracy are negligible.

The topmost plot of Figure 5 shows the ice surface used.
The lower two plots show the reflection coefficient for
different periods, with a curve for each of three thicknesses,
1, 2 and 3m. Most notable in the top plot of Figure 5 is the

Fig. 5. A short length from a profile of the underside of an ice sheet in the Arctic Ocean collected using upward-pointing sonar (top). The
thicknesses shown here are as measured; to obtain the 3 and 1m profiles 1m is added to or subtracted from all thicknesses. The lower two
plots show the reflection coefficient for waves of different periods under this ice sheet. The model incorporates a semi-infinite sheet with a
constant thickness at either end of the length shown.
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lack of easily discernible regular features. There are,
however, two clear keels and a feature that may be a
refrozen lead between 10 and 20m. In the lower two plots
the reflection coefficient is plotted against period, split into
two plots to help resolve small-scale features, with the high-
period plot having a logscale.

The essential features are high reflection for low periods
and low reflection for high periods. This behaviour is
superimposed with the existence of minima where reflection
reduces to near zero. Beyond 35 s and up to 100 s there are
no further minima. The minima are a result of destructive (or
near-destructive) interference, but it is not clear to us what
features in the surface cause the numbers, distribution and
values of the minima. Notably, the thickness of the ice
significantly affects the values and locations of the minima.
The presence of these minima is most heartening, however,
as they demonstrate that the scattering potential of a
variable-thickness ice sheet has features that are strongly
dependent on the mean thickness. The goal of our research
is to examine the viability of using the propagation of ice-
coupled waves to detect the mean thickness of ice, and the
results presented here support the conclusion that this may
indeed be feasible. Note, however, that the small differences
in |R| at high periods (>25 s) seen in Figure 5 would be
impossible to observe in the field: the difference in the
amplitudes of waves with different periods would be
<0.001%.

The pattern of maxima and minima is superficially similar
to those observed when electromagnetic waves propagate
through layered media (de Sterke and McPhedran, 1993). In
their work, where different layers have a random component
to the refractive indices, they observe features that corres-
pond to broad and narrow maxima in the reflection
coefficient. Using a simple model, de Sterke and McPhedran
(1993) explain these broad and narrow maxima as being a
result of interference occurring at small (their layers are all
the same thickness) and large scales respectively. They find
that narrow maxima are less likely as the random com-
ponent of the refractive index is increased in magnitude, a
possible explanation for why we have failed to find any in
the results presented here.

CONCLUSIONS
We have described a two-dimensional model that can
simulate the propagation of ice-coupled waves under an ice
sheet with a section of variable thickness. The model rests on
the assumption that linear wave theory applies and that the
thin-plate equation describes the behaviour of the ice sheet.
The thickness of the ice sheet is interpolated using low-order
piecewise polynomials and we found that results are similar
irrespective of the order chosen, with only minor differences
in the model depending on which option is selected. When
piecewise constants are employed, there are no gradient or
concavity terms but there are boundary terms for each
discontinuity. When a cubic spline is used, there are no
boundary terms but the gradient and concavity terms are
present. When piecewise constants are used, the model

requires fewer panels for the numerical quadrature scheme
to converge, with the result that simulations finish more
quickly, an important property that makes this the preferred
option.

To examine the behaviour of the model, we ran
simulations of a triangular pressure ridge: pressure ridges
consist of sails above the water and keels below, and to
account for the mass loading and flexural rigidity the keel is
inverted. We found that the contribution due to the presence
of the sail is negligible, at least for the ridge considered
herein. When mass loading is neglected, the effect on the
magnitude of the reflection coefficient is small but details
are affected, in particular zeroes no longer occur. In our
opinion, the zeroes are important and so mass should be
accounted for.

Further improvements to the model that we have planned
involve examining the consequence of including the gradi-
ent and concavity terms in the ice thickness, establishing
whether it is justifiable to neglect the submergence of keels,
and allowing for wave spectra to be analyzed. Establishing
that the model approximates reality well is of importance
and we have plans to compare the model results to
experimental data from the field.
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