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Abstract. Maser theory continues to be driven by advances in observational techniques. Here,
I consider the responses to VLBI with space-Earth baselines and cross-correlation spectroscopy
(a re-consideration of coherence properties), routine observation in full-Stokes polarization (a
re-casting of the polarization transfer equations), and long-term variability monitoring (3-D
modelling of irregular domains).
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1. Introduction
I consider in detail three areas of active maser research that may benefit from some

new, or re-discovered, theoretical insight in addition to the available observational data.
These areas are the coherence properties of astrophysical masers, the modelling of maser
polarization, and the analysis of maser variability with 3-D radiative transfer and satu-
ration models.

2. Coherence Properties
Two types of coherence are discussed in Elitzur (1992): phase coherence and band-

width coherence. Phase coherence is maintained between two rays from some point on
a source, diverging through some beam angle θ, and propagated over a distance L, pro-
vided that the phase difference Δφ = Lπθ2/λ is much smaller than 1 radian. Large
values of L, of order 1012 m in astrophysical masers, drove the conclusion that astro-
physical masers are not phase coherent. This probably remains a valid conclusion, but
the recent detection, with an interferometer including the RadioAstron instrument, of a
22-GHz (λ = 0.0136 m)H2O maser in Cep A that is unresolved at an angular scale of
10 μas, improves the condition by several orders of magnitude. At the distance of Cep A,
this angular scale corresponds to a linear distance of ∼109 m. Using this distance as L,
but keeping the original estimate of πθ2 = 3.14×10−4 , we obtain Δφ = 2.42×106, so the
conclusion of no phase coherence still appears safe, even with the smallest maser features
so far discovered.

The second type of coherence discussed in Elitzur (1992) is bandwidth coherence. For
a source to be bandwidth coherent, the essential requirement is that the homogeneous
response profile of the transition is broader than the inhomogeneous profile. The homo-
geneous profile broadens as a maser saturates due to power, or saturation, broadening.
This arises from Stark effect distortion of the molecule by the electric field of the maser
radiation. According to Elitzur (1992), power broadening becomes sufficient to enforce
bandwidth coherence for a brightness temperature of Tb > 3 × 1014(4π/Ω) K for the
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Figure 1. The coherence function as a function of time delay and of frequency across the line
in an observation of the star-forming region W3(H2O) by Takefugi et al. (2016)

22-GHz transition of H2O. For reasonable maser beam angles, see above, the brightest
maser sources, particularly flares, could be marginally bandwidth coherent. For example
water-maser flares have been observed in Orion with Tb > 1016 K (Kobayashi et al. 2000),
and with Tb � 8 × 1017 K (Strelnitskii 1982).

Recent evidence from observationally measured coherence functions (Takefugi et al.
2016) strongly suggests that very bright astrophysical masers are indeed bandwidth co-
herent. The key point is the shape of the decay of the coherence function (Fig. 1), which
has a long tail towards longer time delays that is inconsistent with the Gaussian be-
haviour expected if the function were controlled by the inhomogeneous profile. Note that
the relation between the coherence function and the line shape is a Fourier transform: a
Gaussian inhomogeneous profile transforms to a Gaussian decay in the coherence func-
tion; a Lorentzian homogeneous profile transforms to an exponential, with a much slower
decay. The observed coherence time in this example is 18 μs, suggesting a homogeneous
width of 56 kHz. This compares to an observed inhomogeneous line profile width (full
width at half power) of 96 kHz.

The Stark broadening effect by the electric field of the maser radiation imposes an
ultimate limit on the brightness temperature, above which the line will be split into
a distinctive pattern (Slysh 2003). The fact that a pattern of this type has not been
observed suggests that maser beam angles for the brightest sources are of order 10−3 ,
somewhat smaller than the estimates in Elitzur (1992). The measured coherence times
in Takefugi et al. (2016) indicate that the brightness temperatures of some H2O maser
features in W3(H2O) and W49 reach 8.5 × 1018 and 6.2 × 1022 K respectively.

Another old, but excellent, reference that covers many aspects of Doppler-broadened
maser propagation, including the statistics of the observed radiation, which is related to
the work described above, is Menegozzi & Lamb (1978).
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3. Polarization
Perhaps no aspect of theoretical maser research has been more controversial. In partic-

ular, the case of Zeeman splittings small compared to the inhomogeneous line width has
historically been very problematic. Another major source of difficulty is the use of differ-
ent conventions to describe left- and right-handed polarization, and in the definitions of
the Stokes parameters, particularly Stokes-V . Definitions conforming to the IEEE def-
inition of right- and left-handed polarization and the IAU convention for Stokes V are
set out in Green et al. (2014).

One of the reasons that the polarization problem is so difficult is that four, coupled, si-
multaneous radiative transfer equations must be solved to recover the Stokes parameters.
A piece of old insight into this problem was provided by Landi Degl’Innocenti (1987),
who developed a method of writing the Stokes problem in the style of the integrating
factor method that is used to write a formal solution of the scalar radiative transfer equa-
tion. The result is a Stokes vector solution that may be frequency and/or angle averaged
as necessary, allowing the polarization problem to be cast into a Milne-Schwarzschild
integral equation form, see, for example, King & Florance (1964), by eliminating the
radiation averages from the density matrix (DM) equations.

In detail, Landi Degl’Innocenti solves the full polarization radiative transfer equation,
di/dτ = ηi, in this case assuming negligible spontaneous emission, as i(τ) = O(τ, τ ′)i(τ ′),
where τ is the optical depth and O(τ, τ ′) is a 4 × 4 matrix operator, the propagation
operator that relates the dimensionless Stokes vector, i(τ), at two different depths. In
the limit where τ ′ → 0, this operator multiplies the Stokes vector for a ray just entering
the maser medium, and can be shown to be equal to (Landi Degl’Innocenti 1987),

O(τ, τ ′) = I +
∞∑

n=1

1
n!

∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2 ...

∫ τ

τ ′
dτnP {η(τ1)η(τ2)...η(τn )} (3.1)

In eq. 3.1, I is the identity matrix, and P is an operator that orders the Stokes matrices,
η by depth, with the greatest depth on the left. A general Stokes matrix has seven unique
elements, and may be written,

η =

⎡
⎢⎢⎣

ηi ηq ηu ηv

ηq ηi ρv −ρu

ηu −ρv ηi ρq

ηv ρu ρq ηi

⎤
⎥⎥⎦ (3.2)

where many models assume ηu = ρv = ρq = ρu = 0. The remaining terms, ηi, ηq and ηv

are functions of the molecular populations or inversions and trigonometrical functions of
the angle between the magnetic field, at a certain depth, and the ray direction, possibly
with an additional continuum component.

Radiation averages derived from eq. 3.1 can now be used to eliminate these quantities
from the DM equations. Such averages, denoted by an over-bar may be grouped into the
convenient functions,

f 0,± =
1
4π

∮
2(̄i0,± − q̄0,±) sin2 θdΩ

h0,± =
1
4π

∮
2v̄0,± cos θdΩ

g0,± =
1
4π

∮ [
(1 + cos2 θ)̄i0,± + q̄0,± sin2 θ

]
dΩ, (3.3)
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where the superscripts denote the transition type of the line shape function that has been
used for the frequency integration. The DM equations that the results from eq. 3.3 need
to be inserted into are somewhat complicated, but for a 3D model under the complete
redistribution approximation, they are

Δ+ =
α+

D

{
(1 + 2f 0)

[
1 − α−

α+ (g+ + h+) + 2(g− + h−)
]

+ (
α−

α+ f+ − f−)(g0 + h0)

+
α0

α+

[
f−(g+ + h+) − f+(1 + 2g− + 2h−)

]}
, (3.4)

where Δ+ is the inversion in the σ+ transition of a J = 1− 0 Zeeman group at a specific
node or depth of the model. The α±,0 constants are the ratio of the pump and loss
rates for the transition denoted by the superscript. The expression for Δ− has a similar
structure to eq. 3.4, whilst the π-inversion is given by

Δ0 =
α0

D

{
1 + 2(g− + h−) + 2(g+ − h+) + 3(g+g− − h+h−) + 5(g+h− − g−h+)

− α+

α0

[
g0(1 + g− + 3h−) − h0(1 + 3g− + h−)

]

− α−

α0

[
g0(1 + g+ − 3h+) − h0(1 + 3g− + h−)

]}
. (3.5)

The denominator, D, common to eq. 3.4 and eq. 3.5 is

D = (1 + 2f 0)[1 + 2(g− + h−) + 2(g + −h+) + 3(g+g− − h+h−) + 5(g+h− − g−h+)]
+ f+[h0(1 + h− + 3g−) − g0(1 + g− + 3h−)]
− f−[h0(1 − h+ + 3g+) + g0(1 + g+ − 3h+)]. (3.6)

These equations now form a set of non-linear algebraic equations in the Δ±,0 at all
positions or depths of the model.

4. Nature of Masing Objects
When the physical objects that support astrophysical masers are discussed, we often

talk of them as ‘clouds’, but our knowledge of what they actually are is rather limited.
An exception is a group of masers found in our own Solar System, known to originate
from the comae of comets. The fact that we can reliably use masers for trigonometric
parallax distance measurement strongly suggests that at least the masing objects are
more like ‘bullet’ clouds than a transient wave-like phenomenon. Clues to the nature
of maser objects include the geometry and frequency dependence of their emission, and
likely also their variability, since the brightness of maser rays is strongly dependent on
the available gain length in the line-of-sight. The considerations above call for a fully 3-D
maser model with irregular geometry.

A good way to construct a general 3-D maser model is to use the finite-element method
of discretization. Elements can in turn be generated from the Delaunay triangulation of
an irregular distribution of points (nodes), see for example Zienkiewicz & Taylor (2000). A
triangulated domain of this type is shown in Fig. 2. The radiation solution for all nodes
of the domain is carried out via a finite-element implementation of the CEP method
(Elitzur & Asensio Ramos 2006,Gray 2012) under a quasi-two-level CVR approximation
at present. The solution for a certain optical thickness is straightforwardly used as a
starting guess for the next, thicker, model, allowing highly saturated solutions to be
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Figure 2. A triangulated domain of 1177 tetrahedral (simplex) elements with 202 nodes

obtained. If the model has J nodes and Q ray paths, then the inversion Δi , at the ith
node, is given by

Δi −

⎡
⎣1+

iBG

4π

Q∑
q=1

aq

s2
q

∞∑
n=0

1
n!(n+1)1/2

⎛
⎝ J∑

j=1

Φj,qΔj

⎞
⎠
n⎤
⎦
−1

= 0, (4.1)

where the functions Φj,q are constructed from the shape-functions of the elements of
the nodes j found along ray path q to the target (node i). Solutions to eq. 4.1 show the
expected concentration of the most saturated nodes to the outside of the model, and
the least saturated nodes towards the centre. The qth ray path has a facet area aq at a
distance sq from the target.

Once nodal solutions have been computed, formal solutions can be calculated for the
brightnesses of rays along lines of sight to an observer’s position. These can be converted
to maps that show the expected decrease in the observed size of the cloud with increasing
amplification and saturation, for example Alcock & Ross (1985).

It is possible to investigate maser variability by simulating rotation of the cloud de-
picted in Fig. 2. The simulation was performed by computing the radiation transfer so-
lution in the frame of the cloud, which can have no internal velocity gradients assuming
that it rotates as a solid body. An external observer then sees the cloud with a Doppler
correction that appears mostly as broadening with a small shift in the peak frequency of
the maser line. The plane perpendicular to the rotation axis was chosen so as to present
the longest axis of the domain periodically to the observer.

Variability of Class 2 methanol masers has been investigated in detail by Goedhart,
Gaylard & van der Walt (2004), where light curves of several years duration are plotted
for a variety of sources that show patterns that include monotonic growth and decay
and periodic and aperiodic low-amplitude flaring. We show our light curve in Fig. 3 (left
panel), while the observer’s view of the cloud at ten different times (a simulated VLBI
map) is shown in the right-hand panel. The model maser has a light curve, in terms
of the brightest specific intensity, that varies by a factor of ∼3 over one rotation. The
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Figure 3. Left panel: The light curve of the rotating model maser in terms of the peak specific
intensity (in multiples of the saturation intensity). Right panel: Snap-shots of the brightness
map at various times during the cycle. A lower-depth model has been used so that the whole
cloud is easily visible.

simulated map (right-hand panel) shows that the position of brightest emission also varies
considerably with time.
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