
Received 5 November 2015
Revised 8 March 2016
Accepted 16 March 2016

Corresponding author
C. Königseder
ck@ethz.ch

Published by Cambridge
University Press
c© The Author(s) 2016

Distributed as Open Access under
a CC-BY-NC-SA 4.0 license
(http://creativecommons.org/
licenses/by-nc-sa/4.0/)

Des. Sci., vol. 2, e5
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2016.5

Improving design grammar
development and application
through network-based analysis of
transition graphs
Corinna Königseder1, Tino Stanković1 and Kristina Shea1

1Engineering Design and Computing Laboratory, Department of Mechanical and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland

Abstract
Design grammars enable the formal representation of a vocabulary and rules that describe
how designs can be synthesized just as the grammar rules of a spoken language define
how to formulate valid, i.e., grammatically correct, sentences. Design grammars have
been successfully applied in numerous engineering disciplines and enable the automated
synthesis of designs within a defined design language. Design grammar development,
however, is challenging and lacks methodological support. In this paper, a novel method
is presented that supports the development and application of design grammars using
transition graphs. In these, nodes represent generated designs and edges represent grammar
rules that transform one design into another. Rather than using a tree structure to represent
the possible application of rules, transition graphs are automatically generated and used to
help designers better understand the developed grammar. The grammar designer is given
feedback on (a) the rules, and (b) rule application sequences. This feedback can be used to
(a) improve the grammar, and (b) apply it more efficiently. Two case studies, a gearbox
synthesis task and a sliding tile puzzle, demonstrate the method. The results show the
feasibility of the method to support design grammar development and application.

Key words: generative grammar, design grammar development, design synthesis, network
analysis, transition graph

1. Introduction
Most people come across the term ‘grammar rule’ when learning a foreign
language. Grammar rules allow them to combine their learnt vocabulary in a
meaningful way such that the sentences they build can be understood by others
familiar with the language. Linguistics is, however, only one area where grammars
are used nowadays.

Since the seminal work by Chomsky (1957), various research fields emerged
that utilize formal grammar concepts.Mullins&Rinderle (1991) define grammars
as ‘a structured way of describing the relationships between the entities of a

A shorter version of this manuscript has been published as ‘Königseder, C., Stanković, T., and Shea,
K., 2015. ‘Improving Generative Grammar Development and Application Through Network Analysis
Techniques’, International Conference on Engineering Design (ICED), Milano, Italy.’

1/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

mailto:ck@ethz.ch
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1017/dsj.2016.5

language, whether that language be English prose, a computer programming
language, a shape language, or perhaps a language of mechanical function and
form’ (Mullins & Rinderle 1991). This definition suggests that grammars are used
in a wide range of applications. Grammar rules are powerful representations to
describe how from a finite set of elements (words, vocabulary) an infinite set of
designs (sentences) can be developed.

Grammatical approaches have been successfully applied in numerous
engineering design disciplines (Chakrabarti et al. 2011), e.g., in electrical
engineering, architecture and mechanical engineering or in natural language
processing, e.g., for automated language translation or speech recognition. In
the area of compiler design, grammars are designed to automatically translate
implemented source code from a higher programming language into machine
code, and a whole research area of grammar engineering evolved dealing with the
development of grammars. An elaborate set of methods to develop and analyze
grammar rules exists in this area.

In architecture, grammars are successfully used to inspire designers’ thinking
when developing new designs, or to capture and merge architectural styles. In
mechanical engineering, grammars are often used to develop product concepts
in the early stages of the design process. Though their use has shown success in
the past in generating both known and new designs, the development of grammar
rules is challenging. Several researchers mention the need for more support in the
development of engineering design grammars (Gips 1999; McKay et al. 2012a)
and the lack of support for grammar design is still seen as one of the major
drawbacks of grammatical design (Chakrabarti et al. 2011). Engineering design
grammars are often developed for specific use cases and no commonly accepted
criteria for ‘good grammars’ have been specified by the engineering design
community. While in some areas, e.g., computer science in compiler design,
different algorithms exist to analyze properties of the language that is described
by a grammar, such analyses are usually not done when developing engineering
design grammars. As an example, one can look at research on the automated
synthesis of gearboxes, a commonly addressed engineering design task. Research
on grammars for gearbox synthesis has been carried out by several researchers
(Li & Schmidt 2004; Lin et al. 2010). Most researchers developed their own
grammar for the problem instead of reusing previously developed ones and the
grammar development process is usually not documented. Being presented only
the final versions of different developed grammars and the synthesis results, it
is not obvious to the designer which grammar or which particular rules are
preferable for gearbox synthesis and why. Further, none of the publications
investigated in depth how the grammar explores the design space. This makes
it difficult to fully understand the importance and influence of single grammar
rules on the synthesis process. The development of a new grammar for a particular
design problem can therefore be seen as an art rather than a science. This makes
the use of grammar-based methods for design synthesis challenging andmight be
one reasonwhy they are still not wide-spread despite their potential for generating
design alternatives and solution spaces.

The goal of the research presented in this paper is, therefore, to support human
designers in developing grammar rules for grammar-based design synthesis
methods. This is done by providing a method to systematically analyze developed
grammar rules and their influence on the generated designs. Themethod ismeant

2/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

to provide more support for (a) the development of the grammar rules due to a
better understanding of how they explore the design space, and (b) the application
of sequences of rules. Systematic analyses can help designers to understand new
and existing grammars in depth and allow them tomakemore informed decisions
on reusing or developing engineering design grammar rules.

The paper is structured as follows. In Section 2, an overview of Computational
Design Synthesis (CDS) in general and using grammars is presented. The
use of design grammars is illustrated on the example of gearbox synthesis.
Then, transition graphs are introduced and the analogy to grammar-based CDS
is given using the gearbox example. In Section 3, the Network-Based Rule
Analysis Method (NBRAM) to support grammar development and application
is presented. In Section 4, the computational implementation of the NBRAM
is described. Section 5 demonstrates how the NBRAM can be used to analyze
application conditions for rules in detail using a gearbox synthesis case study.
Section 6 demonstrates how the method is used to analyze a grammar for a
sliding tile puzzle. Beneficial rule sequences are identified on a small-scale and
successfully applied to solve a larger-scale problem. The results show the feasibility
of themethod to support grammar development and application. Themethod and
its generality are discussed in Section 7. Conclusions are given in Section 8.

2. Background
In this section, first a general CDS framework is presented. Then, grammar-
based methods for CDS are presented and explained using a gearbox design
synthesis case study. Background information is given on transition graphs and
the analogy between transition graphs for compiler design and CDS is presented,
which inspired the method presented in this paper.

2.1. Computational Design Synthesis (CDS)
CDS is a research area that develops methods and tools for supporting the
generation of novel and creative, but also routine designs. Two major benefits
of CDS methods are mentioned in Chakrabarti et al. (2011). First, the use of
computer-based methods enables overcoming restrictions of human designers
such as limited knowledge or design fixation. The computer is not biased per se
and explores directions the human designer would probably not consider and
thus computational methods have a chance to explore novel designs. Second,
computer-basedmethods can support routine design by automating tedious tasks.
In this paper, the terminology for the CDS process is used as defined by Cagan
et al. (2005). In a first step, the designer formalizes the design problem at the
required level of detail to allow for the synthesis of meaningful designs. After
the representation is formalized, the CDS process consists of three repeated
phases: generate, evaluate and guide. In the design generation phase, a design
is selected and modified to represent a new design alternative that is then
evaluated considering defined objectives and constraints. A decision is made in
the search on how to proceed in the synthesis process, i.e., either to accept or reject
the new alternative. The synthesis process is continued until either no further
modifications are possible or it is stopped by a stopping criterion in the search
method.

3/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

2.2. Grammar-based CDS
Stiny & Gips (1972) introduced shape grammars in 1972 and proposed the use
of production systems (grammars) for design tasks. Parametric shape grammars
were then developed and applied, e.g., to construct traditional Chinese ice-ray
lattice designs (Stiny 1977) or to describe Palladio’s style for villa ground plans
(Stiny & Mitchell 1978). Since then, research on shape grammars has become
an active research area especially in architecture and also in other areas like
engineering design (Chakrabarti et al. 2011). Besides shape grammars, other types
of grammars are used in engineering design. Examples are parallel grammars
(Starling & Shea 2005), spatial grammars (Gmeiner & Shea 2013; Hoisl & Shea
2013; Hoisl 2012; McKay et al. 2012b) and graph grammars (Fu, Depennington
& Saia 1993; Helms et al. 2009; Schmidt & Cagan 1997; Schmidt, Shetty & Chase
2000). An introduction to grammatical approaches for engineering design can be
found in Mullins & Rinderle (1991), Rinderle (1991) and Cagan (2001).

In grammatical approaches to CDS, designers develop a grammar to represent
a desired design language. It consists of a vocabulary, usually describing design
elements and subsystems, as well as a set of grammar rules. These rules describe
design transformations that are defined by a left-hand-side (LHS) and a right-
hand-side (RHS), i.e., LHS→RHS. The LHS defines where the rule can be applied
in a design and the RHS defines how the design transformation modifies the
design.

Using graph grammars for design synthesis, each design is described using
a graph representation that consists of nodes and edges. For example, nodes can
represent components while edges describe functional or spatial relations between
the nodes.

2.3. Example gearbox synthesis grammar
To demonstrate the use of grammars for CDS on an example, a gearbox synthesis
grammar is presented in Figure 1. This rule set is further used in the case study in
Section 5. The rule set consists of five topologic rules and is a subset of the rule set
described by Königseder & Shea (2015). It was originally developed by Lin et al.
(2010). Topologic rules change the topology of a graph, i.e., they add or remove
nodes and edges. In Figure 1, the rule number and name are given (left) along with
the graph grammar rule (middle) and a 3D representation of the rule (right).

An example rule application sequence consisting of two rule applications
is visualized in Figure 2. The generated graphs are given on the left, a 3D
representation of the respective designs on the right. The process is started froman
initial design consisting of two shaft nodes. In iteration 1, rule 3 (create a new gear
pair, see Figure 1) is applied. The LHS of the rule consists of two shafts. These
are matched to the two shafts in the initial design. The RHS of rule 3 consists
of the two shafts and adds two gears between the shafts. The edge between gear
and shaft indicates that the gear sits on the shaft. The edge between the two gears
indicates that the two gears are in mesh. In iteration 2, rule 1 (create a new shaft,
see Figure 1) is applied. Again, the two shafts arematched and a new shaft is added
connecting the twomatched shafts via two added gear pairs. Rules to both add and
remove graph elements are included in the rule set since it is anticipated that the
grammar will be combined with a stochastic search algorithm to effectively search
the solution space.

4/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 1. Grammar rule set for gearbox synthesis (adapted from Lin et al. (2010)).

Figure 2. Example rule application for gearbox synthesis rule set.

Many researchers in grammar-based CDS view the synthesis of designs as
search through a generative tree, e.g., Brown (1997). In this tree, each node
represents a design and the edges represent rule applications. Tree-based search
methods like Breadth-First Search (BFS), Depth-First Search (DFS) or more
sophisticated tree-search methods (Kumar et al. 2012) can then be applied to
search for desirable designs. In Figure 3, a representation of a generative search
tree for the gearbox synthesis problem is given. The depth of the search tree is
limited to two rule applications starting from the initial design.

5/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 3. Generative search tree for gearbox synthesis problem.

Figure 4. Analogy between transition graphs for a finite automaton (left) and to describe relations between
designs generated during the CDS process (right).

2.4. Transition graphs and the analogy to CDS
Transition graphs as used, e.g., to describe finite automata in compiler design,
inspired the presented research. They are introduced in the following and the
analogy to CDS in engineering design is given.

Finite automata are recognizers that either accept or reject a given input string.
Each finite automaton consists of a set of states including a start state and one
or more final states, a set of input symbols (the input alphabet) and a transition
function that defines the next states for each state and each symbol (Aho et al.
2006). Finite automata can be represented by ‘transition graphs, where the nodes
are states and the labeled edges represent the transition function. There is an edge
labeled a from state s to state t if and only if t is one of the next states for state s
and input a’ (Aho et al. 2006).

An example for a transition graph for a finite automaton is given in Figure 4
(left) where the start state is 1, the final state is 3 and the input symbols are a and b.

This finite automaton accepts all strings of a’s and b’s that start and end
with an a and have no or an arbitrary number of b’s in between. With the

6/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 5. Steps 1 and 2: Network generation through generation of designs (left) and synthesis of designs to
a network representation (right).

first input symbol a, the finite automaton transforms from the start state 1 to
state 2. For every input symbol b, the finite automaton remains in state 2. The last
input symbol a then transforms the finite automaton from state 2 into the final
state 3. Examples of accepted strings are aa, aba, abba and abbba. Similar to an
automaton that accepts or rejects a given sequence of input symbols, a transition
graph, constructed for an engineering design grammar, could accept or reject a
sequence of grammar rules applied to the initial design. In a transition graph
for an engineering design grammar, each state represents a modified design and
each input symbol represents a grammar rule transforming a state. An example
transition graph for representing designs as states and rules as transitions between
them is shown in Figure 4 (right). The designs presented here are those explored in
Figure 3. The edges are labeled with the rule numbers that transform a design into
another. Note that designs generated several times in the generative tree (Figure 3)
are presented only once here leading to a network representation. Analyzing such
a transition graph using techniques from data flow analysis, the grammar rules
and influences of each rule application can be understood in detail.

Due to the identified need for more methodological support for design
grammar development and inspired from research on transition graphs, a
method is developed to support grammar development and application based
on transition graphs.

3. Network-based rule analysis method (NBRAM)
The NBRAM analyzes the designs that are generated during CDS and the rules
that are used to synthesize these. Figure 5 illustrates the three main steps.

In Step 1, designs are generated by searching through a generative tree. Starting
from an initial design, i.e., the root of the generative tree, designs are generated
through successive rule applications and each generated design is added to the
generative tree as a child node of the previous design. Using tree-based search
methods, such as DFS, i.e., expand first one rule sequence, or BFS, i.e., from one

7/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

design apply multiple different rules in parallel before moving to the next level,
the design space can be explored. Other searchmethods are also possible to use in
this step and the goal is not to find an optimal design, but to explore a portion of
the design space that can be analyzed in the following steps. Figure 5 (left) shows
example representations of explored design spaces when using tree-based search
methods. Each node in the graph represents one design and each edge between
the nodes represents the rule that was applied to transform a design into another
one.

Using grammars and search algorithms, the same designs are often generated
repeatedly and tree-based representations often represent these designs as
multiple different nodes in the tree, each resulting from a different rule sequence.
Many search algorithms store a list of already explored designs to avoid expanding
on the same design more than once. The authors propose that representing these
repeated designs as one unique design instead of multiple times in the search tree
can help gain useful insights and decreases the search space size because it allows
the generation of a state transition graph, where states are unique.

Therefore, in Step 2 (Figure 5, right), all generated designs are analyzed
to identify unique and repeated designs. Uniqueness is a problem dependent
property and can, e.g., refer to a design’s topology in a structural design problem
or its parameter values for parametric problems. The designer developing the
grammar defines what uniqueness means for the given problem. The tree-based
representations are traversed gradually and every time a previously undiscovered
design is found, it is given a new, unique ID (UID). Every time an already
discovered design is found, its node in the tree-based representation is deleted
and the edges, i.e., the rule with which the design was generated and the rules that
were applied next, are connected to the already generated (unique) design. Doing
this, the tree-based representations merge to one or more networks of design
transitions. In these networks, called transition graphs, each node represents a
unique design, or state, and each edge represents a transition from a source design
to a target design. A simple example for this is already given in Figures 3 and 4
(right).

The transition graph can be analyzed to gain information about (a) the rules
themselves, and (b) the rule application sequences. In Step 3 of the NBRAM,
different graph analyses are performed (see Figure 6). The designer is given
two methods to access the information. First, automated network analyses are
performed and results are presented to the human designer. Second, the network
is represented visually for manual exploration of the generated designs and their
relations. Implementation details of the respective graph searches are given in
Section 4. Seven properties are identified to support the analysis of grammar rules
and rule sequences. In general, more properties can be investigated. The seven
properties presented below are selected to address topics that are (a) found most
relevant to support grammar development and application by the authors, and
are (b) previously discussed in grammar related research. The properties can be
investigated with the NBRAM as shown in Figure 6.

Properties 1 to 3 are investigated automatically when using the NBRAM. In
addition, the provided visualizations and interactive tools allow the designer to
study the transition graph and investigate properties 4 to 7.

Property 1 (Do–undo):Do–undo rule pairs are identified, i.e., pairs of ruleswhere
one rule un-does what the other did. A simple example of such a rule pair

8/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 6. Step 3: Analyzing the transition graph to understand grammar rules and their application. The
pictograms for gearbox and sliding tile puzzle indicate for which case study the respective analysis is
conducted.

is two rules of which one adds a component and the other one deletes it.
While rules that remove components are helpful in the generative process
for back tracking, they can also cause difficulties. For the selection of an
appropriate search algorithm, this information can be important because a
repeated application of do–undo rules might result in generating the same
designs over and over again. So, the designer can use this information on
do–undo rules to either change the grammar, or select a search algorithm
accordingly.

Property 2 (Loops): Loops in the transition graph can be identified. Similar to do–
undo rules, a loop in the transition graph represents a sequence of rules that,
when applied to a design, modify it but in the end recreate exactly the design
the sequence started with. Avoiding such loops in the synthesis process,
either by reformulating the grammar or through using this information in a
search algorithm, can allow for faster design space exploration.

Property 3 (Multiple paths): Alternative rule sequences can be identified, i.e.,
sequences of rules that transform a given design s to a design t via different
paths in the transition graph. Sometimes these alternative paths represent
sequences of rules, where the order of the rule application does not matter.

9/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

For example, applying rule A first and then rule B leads to the same design
as applying rule B first and then rule A. The intermediate designs, however,
are different. In other cases, alternative paths can represent different rule
application sequences where one sequence consists ofmore rule applications
than the other. If multiple paths exist, the designer can reason about them
and consider, e.g., if the rule set can be reduced by deleting or combining
rules. Reducing the number of paths can speed up the synthesis process.
Depending on the intermediate designs that are generated via the different
paths, it can, however, also be useful to preserve the generation of multiple
paths and keep the intermediate designs as starting points for further
exploration.

Property 4 (Reachability): The designer of a grammar is often interested to know
if the developed rules are able to generate a certain design or if there is a
sequence of rule applications that transforms a given design into a desired
design. Questions of reachability can be answered using the transition graph,
e.g., is it possible to reach design t from design s? This allows, e.g., analyzing
if design t can be synthesized starting the synthesis process from design s.

Property 5 (Sequences): Besides knowing if a design t can be reached from design
s, designers are usually interested in knowing the required transformations.
Which rules have to be applied to transform design s to design t?
Understanding the application of rules in sequences depending on the
design s on which the sequence is applied can help designers to reason
about improving the grammar rules and to learn meaningful sequences.

Property 6 (Shortest Sequence): When more than one sequence of rule
applications exists to transform a given design into a desired design, the
designer either manually selects one or a search algorithm chooses which
rules to apply. Sometimes it is worthwhile to explore rule sequences with
many rule applications to generate promising intermediate designs (see
also Property 3, multiple paths). Often, however, it is beneficial to know the
shortest rule sequence to transform a design s into a design t . Learning
shortest rule sequences to transform one design into another using the
transition graph can then help to speed up the synthesis process.

Property 7 (Location): It is often the case that the LHS of a rulematches in several
locations of a design. How does the rule application location influence the
generated results? The effect of a rule’s application location in the design can
be analyzed by exploring the designs that are generated when applying the
same rule to the same design but in different locations.

Analyses for the seven properties are conducted. The pictograms in Figure 6
for the gearbox synthesis (Section 5) and sliding tile puzzle (Section 6) indicate
for which case studies the respective analysis results are presented.

4. Implementation
The transition graph is generated using GrGen.NET (GrGen), an open source
graph rewriting tool (Geiß et al. 2006). It is visualized using OrganicVIZ (Cash,
Stanković & Štorga 2014), a graph visualization tool capable of representing
large graphs and supporting graph analyses as well as providing several filtering
options. Using OrganicVIZ, the designer can manually study the transition graph
to understand the search space. Nodes and edges can be changed in size and color

10/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

to provide an overview and emphasize certain designs in the search space. Highly
connected designs, i.e., designs with several edges connecting it to other designs
can, e.g., be represented with larger nodes. Additional information, e.g., on each
design’s attributes, can be displayed to the user for each graph node and edge.

For the automated graph analysis, graph grammar rules implemented in
GrGen are used to detect do–undo rules (Property 1), loops (Property 2) and
alternative sequences (Property 3). To find shortest paths between any two designs
in the transition graph, a BFS with backtracking is implemented (Property 6).
A console application is developed such that the designer can interactively
search shortest paths between designs and determine reachability between designs
(Property 4). To analyze arbitrary paths between designs (Property 5) and analyze
the influence of the rule application location (Property 7), the visualization in
OrganicVIZ can be used.

5. Case study I – gearbox synthesis
Gearbox design using generative grammars is a common CDS problem and
research has been carried out by several scientists (Schmidt et al. 2000; Li &
Schmidt 2004; Lin et al. 2010; Starling & Shea 2005; Starling 2004; Swantner &
Campbell 2012; Pomrehn & Papalambros 1995). It is therefore considered as an
appropriate test case for the NBRAM and demonstrates how the method can be
used to address the properties do–undo, loops,multiple paths and location.

5.1. Introduction to the gearbox case study
The five topologic rules of the gearbox grammar described in Section 2.3 are used
to generate gearbox designs. The search space is explored exhaustively until a
predefined depth (d) of the search tree is reached. More details and the pseudo-
code of the algorithm are presented in Appendix A. The NBRAM is then applied
to synthesize a transition graph from the generated search tree and to analyze the
grammar rules and their application in detail.

5.2. Results
Figure 7 shows the transition graph when the five topologic rules are applied
exhaustively to an initial design (design with UID 1 in Figure 7). The initial
design consists of input shaft, output shaft and a gear pair connecting the two.
The maximum sequence length is set to two rules to generate the transition graph
in Figure 7, i.e., the depth of the generative tree is two (d = 2).

The transition graph is generated automatically and is visualized using
OrganicVIZ. Uniqueness is defined in this case study to distinguish between
designs according to their topologies. Same colors of the graph nodes indicate that
these nodes have the same number of forward and reverse speeds. The pictorial
images are generated using yComp (Kroll et al. 2015) and are added manually.
Node labels (UID) indicate the unique ID of each generated gearbox topology.
This number is used to link the nodes in the OrganicVIZ visualization to the
gearbox representations that are stored during the exhaustive generation and can
be visualized, e.g., using yComp. The edge labels in Figure 7 indicate which rule
is applied to transform a design into another one.

11/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 7. Transition graph for the gearbox case study. Rule sequences with two rules (d = 2) are explored
exhaustively starting the synthesis from design with UID 1.

5.2.1. Analyzing LHS matches of rules (Property 7: location)
Analyzing all outgoing edges from one node, the human designer can explore the
effect of LHS matches when the same rule is applied at different locations in a
design. In Figure 7, rule 5 (replace a gear pair) is, e.g., applied at three different
locations on the design with UID 2. Of the three rule applications two result in
the same design (UID 17), while the third generates a different design (UID 9).

Between the designs with UID 1, UID 2, UID 3 and UID 4, rule 2 (delete a
shaft) and rule 4 (delete a gear pair) are applied at variousmatches but result in the
same designs. The human designermight find this interesting because they would
expect a different behavior. Figure 8 represents a zoomed in view of the transition
graph for the transitions between the designswithUID1 andUID2. Pictograms of
the gearbox designs and example 3D visualizations are given. When rule 2 (delete

12/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 8.Zoomed in view on transitions for designswithUID 2 andUID 1. The graphs describing the gearbox
designs are given along with an example 3D visualization.

a shaft) is applied to the design with UID 2, the human designer might expect
that this rule is only matched once, since only one shaft can be removed between
input and output shaft that have to remain in the design. This comparison between
expected and actual matches of rules facilitates the identification of rules whose
LHSs might be formulated too ambiguously or too constrained.

The transitions between the design with UID 2 and that with UID 1 are
analyzed in more detail to understand how the formulation of the LHS leads to
several matches. It is found that the LHS matching conditions for rules 2 and
4 lead to more matches than intended. Based on that knowledge, the rules are
formulated differently to better represent the rule designer’s intention of when a
rule should be applied. In the original implementation, the rules are formulated
using negative application conditions. These describe patterns in the LHS of a
rule that define when the rule’s application should be prohibited. When a rule
is matched on a graph but also the pattern described by the negative application
condition exists in this graph then the rule is not applied. Instead of using negative
application conditions, i.e., describing patterns that should not exist in the graph,
the LHSs of the rules are formulated to describe patterns that have to exist.
These are termed positive application conditions and describe patterns that are
required in the graph to allow a rule’s application. In the following, the change
from negative to positive application conditions is explained for rule 2. A more
detailed explanation, also for rule 4, is given in Appendix B. In the original
implementation, the LHS of rule 2 (delete a shaft) is looking for a shaft node and
a gear node. The negative application condition describes a pattern such that the
matched gear should not be in the same power flowpath between input and output
shaft as the matched shaft. This means an additional power flow path between
input and output shaft has to exist tomake sure that input and output shaft are still
connected when the matched shaft is removed. Using this LHS rule formulation

13/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 9. Difference when using old/negative (left) or new/positive (right)
implementation of application conditions for rules 2 and 4 (d = 2).

with the negative application condition, the shaft in the middle of the left power
flow path and either the upper or the lower gear in the right power flow path of
the design with UID 2 (Figure 8, left) can be matched. This leads to two possible
rule matches. Since the designer intends to have only one match for rule 2 on the
design with UID 2, the rule is changed and formulated using positive application
conditions. The LHS is changed to only look for a shaft and a positive application
condition is formulated as a pattern that contains a gear pair that should not be
in the same power flow path as the matched shaft. Changing rule 2 this way, it is
only matched once on the design with UID 2.

Changing the formulation of the LHSs of rules 2 and 4 (see Appendix B for
details) reduces the number of matches as intended. Figure 9 shows the transition
graphs for rule sequences with two rules using negative application conditions
(Figure 9, top) and positive application conditions (Figure 9, bottom) for the
LHS matching. In both cases, 18 topologically different designs are generated,

14/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 10. Transition graphs for rule sequences from 1 (d = 1) (top left) to 4 (d = 4) (bottom right) rule
applications.

but the number of rule applications, i.e., edges in the transition graph, varies.
It is reduced from 50 to 30 when the LHSs are changed. Regions where the
number of edges changes are highlighted in Figure 9. This reduction of LHS
matches does not reduce the number of designs that are generated. The speed of
exploring the search space, however, changes significantly. For a sequence length
of 4 rules, e.g., 829 designs are generated exhaustively within 25 minutes with the
new LHS application conditions. When using the old LHS application conditions,
by contrast, the process is stopped after approximately 1 hour due to lack of
memory on the laptop that is used (MacBook Pro, Intel Core i7 CPU with 2.80
GHz, 8 GB RAM).

5.2.2. Understanding the search space
Figure 10 visualizes transition graphs for sequences with 1–4 rules. For the given
rule set, the number of topologically different designs increases drastically and it
can be observed that designs are highly connected to each other. This means the
same designs can be generated via numerous, different rule sequences.

5.2.3. Detect do–undo rules (Property 1: do–undo)
Besides analyzing the LHSs of the rules, loops can also be detected automatically
using the transition graph. Examples for do–undo rules are, e.g., rule 1 (create a

15/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 11. Transition graphs for rule sequences of 3 rule applications (d = 3) for
different rule sets. Rules 1 and 4 are replaced by rule 5 (left) and rule 5 is replaced by
rules 1 and 4 (right).

new shaft)←→ rule 4 (delete a shaft), rule 3 (create a gear pair)←→ rule 4 (delete
a gear pair) and rule 1 (create a new shaft)←→ rule 4 (delete a gear pair). Many
loops are found, which is expected for highly connected transition graphs.

5.2.4. Analyze alternative paths (Property 3: multiple paths)
It is further found, that rule 5 (replace a gear pair) can be replaced by applying a
sequence of rule 4 (delete a gear pair) and rule 1 (create a new shaft). The NBRAM
is used to investigate whether rule 5 can be removed from the rule set. Transition
graphs are generated for a sequence length of three rule applications (d = 3). Two
rule sets are used, which are subsets of the original rule set. In the first rule set, rule
5 is kept but rules 1 and 4 are removed. In the second rule set, rule 5 is removed.
Transition graphs for both rule sets are shown in Figure 11. The transition graph
for the complete rule set, i.e., rules 1 to 5, and a sequence length of three (d = 3) is
shown in the lower left corner of Figure 10. Removing rules 1 and 4 from the rule
set results in a drastically reduced transition graph. Only 22% of the topologies are
explored compared to the complete rule set. Removing rules 1 and 4 is therefore
considered inappropriate. When rule 5 is removed from the rule set, 49% of the
topologies are explored compared to the complete rule set. Besides the number
of generated topologies, the connectivity of designs also varies depending on the
used rule set. Using rule 5 results in a stronger connected transition graph, i.e.,
designs can be transformed into others requiring fewer rule applications. Further,
when the exploration is limited to a certain number of rule applications, more
designs are explored when rule 5 is included in the rule set.

For a sequence length of four rules, the effect of having rule 5 in the rule
set is even stronger. Only 331 gearbox topologies are explored requiring 981 rule

16/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

applications when rule 5 is deleted from the rule set compared to 829 topologies
and 2,770 rule applications when rule 5 is used.

5.3. Key findings
Using the NBRAM, different aspects about the gearbox synthesis task and
the grammar are learnt. First, the LHSs of rules are analyzed and inefficient
implementations of the LHS application conditions are discovered. Second, the
highly interconnected nature of the search space and the exponential growth of
the number of gearbox topologies when applying longer sequences of rules are
understood from the transition graph visualizations. Third, do–undo rule pairs
are identified and loops in the transition graph are analyzed automatically. This
confirms the gained knowledge, that the gearbox designs are highly connected to
each other. Fourth, it is discovered, that rule 5 can be replaced by the sequence
rule 4→ rule 1. Using the NBRAM, it is found, however, that it is useful to have
rule 5 in the rule set. This is in accordance with the decision by Lin et al. (2010)
to develop this rule for gearbox synthesis.

6. Case study II – sliding tile puzzle
The sliding tile puzzle is used as a second case study to demonstrate how the
NBRAM can be used to address properties 1 to 6. This problem has been used
frequently since its invention in 1879 (Slocum & Sonneveld 2006) and it is still
used in artificial intelligence research. It is easy to understand, however hard to
solve both, for humans as well as the computer. Further, it is easily scalable, which
is why it is used in this paper to show how beneficial rule sequences can be learnt
on a small-scale problem and used to solve larger-scale problems.

6.1. Introduction to the sliding tile puzzle case study
In a sliding tile puzzle, a number of tiles are arranged in a rectangle with one tile
missing. By sliding tiles one after another into the missing spot, the tiles have to
be ordered in a defined way. Even though the principle is easy to understand,
for larger puzzles, numerous possible states exist, leading to a vast number of
designs that have to be exploredwhen trying to solve the problem. In 1879 Johnson
proved that for each n-tile puzzle where n is the number of tiles, there exist
(n + 1)! states with only half of them being solvable (Johnson & Story 1879).
For the classical 8-tile puzzle, also called 3 × 3 puzzle, this leads, e.g., to 9!/2 =
181,440 feasible states. The sliding tile puzzle is challenging not only to humans
trying to solve it, but also for optimization algorithms due to the vast number of
possible arrangements. When trying to understand the problem, human experts
sometimes learn sophisticated relations between certain tile configurations and
apply sequences to switch between known configurations quickly. As, in analogy
to this, the goal in this paper is to support human designers in understanding
relations between different designs and grammar rules that transform those
designs, the sliding tile puzzle is a well-suited case study. It demonstrates that
through analyzing transition graphs, human designers can gain deeper knowledge
about designs and identify beneficial rule application sequences. The NBRAM
is applied on a small-scale problem to increase the designer’s understanding of

17/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Table 1. Rule set for the sliding tile puzzle.

the problem and identify beneficial sequences in a first step. Then the learnt rule
sequences are applied automatically on a larger-scale problem.

A small version of the puzzle is used in the first part of the case study consisting
of five tiles, numbered one to five, arranged on a 2× 3 tile grid. A grammar with
four rules is developed to modify any given puzzle. The four rules (Up (U), Down
(D),Right (R) and Left (L)) are visualized in Table 1. The LHS of each rule shows an
example design on which the rule can be matched and the RHS shows the design
after the rule application. Involved tile positions are highlighted in gray. In the
last column of Table 1, the possible matches for each rule are given for the 5-tile
puzzle, indicated by the positions on which the empty tile can be positioned.

6.2. Part 1: Understanding the small-scale problem
All possible states of the 5-tile puzzle are explored exhaustively. The transition
graph is generated consisting of all unique designs where each unique design
represents a possible tile configuration as a vector, e.g., (1, 2, 3, 4, 5, 0) represents
the target design. TheNBRAMis applied and results for properties do–undo, loops,
multiple paths and reachability are shown in the following sections.

6.2.1. Understanding the search space
As for the sliding tile puzzle, half of the states are not solvable, two transition
graphs are generated for all possible permutations of the tiles with numbers (0, 1,
2, 3, 4, 5) with ‘0’ denoting the empty tile. Both graphs are visualized in Figure 12
representing exactly what has been demonstratedmathematically in 1879, namely,
that for a given puzzle, half of the states are solvable, whereas the other half are not,
and that no solvable puzzle can be transformed into an unsolvable one and vice
versa. Figure 13 shows a zoomed in view of the transition graph of solvable designs
containing the final design. The node colors and sizes are visualized depending
on the degree, i.e., the number of incoming and outgoing edges. Large red (dark)

18/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 12. Transition graphs for solvable (left) and unsolvable (right) puzzles. Large, red nodes are of degree
six, smaller, green nodes are of degree four.

Figure 13.A zoomed in view of the transition graph showing designs and their transformations through rules.
Large, red nodes are of degree six, smaller, green nodes are of degree four.

nodes are of degree six and represent designs where the empty tile is in the middle
of the tile puzzle. The smaller green (light) nodes are of degree four and represent
designs where the empty tile is in one of the corners of the tile puzzle. This shows
that designs with higher degree, i.e., with the empty tile in the middle of the
puzzle, are stronger connected to other designs because more rule applications
are possible from this state than when the empty tile is in a corner.

6.2.2. Answering questions of reachability (Property 4: reachability)
For any design s, the question of whether or not it is solvable can be answered
by analyzing the reachability of the final state, design t , from the given design s.
Any design for which no path to the final state t can be found is unsolvable. This
means that to distinguish between the solvable and unsolvable transition graph
in Figure 12, one has to identify in which graph the final state is present (see
Figure 13, upper left node). Having a closer look at an excerpt of the transition

19/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 14. Loops are detected to reason about the rules and to avoid them during synthesis. Large, red nodes
are of degree six and smaller, green nodes are of degree four.

graph (Figure 13) we can see relations between designs (states) expressed through
rules (transitions) and identify designs that are reached via more rule applications
than others. This is highlighted using the different colors and node sizes.

6.2.3. Detect do–undo rules (Property 1: do–undo)
Do–undo rules can easily be found, as for any rule to transform one design s into
another design t in this case study there exists an undo rule to transform t to s.
This lies in the nature of the problem, that for each tile that is slid into an empty
position, the previous position of the tile becomes empty, allowing it to be slid
back. As expected, two pairs of do–undo rules are identified, namely the pairs
Up←→ Down and Left←→ Right.

6.2.4. Analyze alternative paths (Property 3: multiple paths) and loops
(Property 2: loops)

Alternative paths, as well as loops can be detected (see Figure 14) representing
what humans trying to solve the tile puzzle also easily experience, e.g., that sliding
tiles in a squared region repeatedly will transform the puzzle to its initial state
after a given number of moves. Figure 14 shows an example of a loop that rotates
three tiles in counter clockwise direction. Understanding such loops can help to
avoid the application of a sequence of rules that describes such a loop, as then the
whole sequence is negligible. It can also visually be recognized that there might be
a shorter and a longer sequence of rule applications to transform a design from
one state to another.

Besides the manual interpretation of the transition graphs that represent the
human’s understanding of this simple problem well, the automated analyses are

20/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 15. Example for the 8-tile puzzle.

also tested. Numerous alternative paths between designs are found and questions
of reachability between any two designs are answered successfully. It is further
demonstrated that the shortest paths can be found between any two designs.

6.3. Part 2: Applying knowledge on the large-scale problem
The 8-tile puzzle is used as a large-scale problem to analyze whether learning
rule application sequences identified on a reduced problem, can help to solve
larger-scale problems. An example puzzle is given in Figure 15.

The task is to find a sequence of rule applications transforming the given
puzzle (left) to the desired puzzle (right) using the information learnt on the 5-tile
puzzle. While the 5-tile puzzle with its 6!/2 = 360 solvable states can be explored
exhaustively, the 8-tile puzzle has a significantly larger search space with 9!/2 =
181,440 solvable states making it harder, and for larger puzzles impossible, to
explore exhaustively.

Humans often follow certain strategies to solve the tile puzzle. The most
common is to start solving the puzzle from the top to the bottom. Doing this, the
tiles for the first row are arranged first and as soon as each of them is in its correct
position, they are not moved any more. Then the next row is considered. Having
such strategies allows humans to focus on different aspects one after another and
makes it easier to handle the complexity of a large-scale puzzle.

Similar to this, the 8-tile puzzle is decomposed into 5-tile puzzles and these
are solved sequentially. Problem decomposition is a commonly used problem
solving technique (Pólya 1957) and is frequently used in engineering design
(Pahl & Beitz 1984). Various methods exist to decompose problems into sub-
problems, e.g., target cascading for parametric problems (Kim et al. 2003), or
agent-based approaches in optimization (Barbati, Bruno & Genovese 2012),
where sub-problems are solved by different agents and then recombined. Problem
decomposition is used in this research to demonstrate how beneficial rule
sequences can be used to solve a design task.

6.3.1. Algorithm used to solve large-scale problem (includes Property 5:
sequences and Property 6: shortest sequence)

The human-based strategy for solving the tile puzzle from the top is implemented
in this case study using heuristics (see Appendix C for further details). Further,
the 8-tile problem is subdivided into a series of 5-tile problems to solve. The
smaller 5-tile puzzle is mapped into a region of the 8-tile puzzle and only tiles
within the smaller 2×3 regions are changed. The remaining tiles stay untouched.
Changing between 2 × 3 regions, e.g., first looking at the upper region, then at
the lower region in the 3 × 3 puzzle, tiles can move through the whole 3 × 3
puzzle. A schematic overview of the algorithm used to solve the larger-scale
problem is presented in Figure 16. The rationale behind this algorithm is that the

21/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 16. Schematic overview of the algorithm used to solve larger-scale problem based on beneficial rule
sequences learnt on small scale.

information learnt on the small scale supports solving the large-scale problem by
directing the search to explore only promising regions of the search space. Other
algorithms can be used; however, the simple algorithm developed for this case
study showed sufficient for demonstration purposes. It is described on a generic
level in the following as it is generally applicable to decomposable problems for
which heuristics are available to define promising designs. For the interested
reader, the problem specific implementation for the sliding tile puzzle is given
in Appendix D. It is based on two heuristics for changing between regions in the
8-tile puzzle and for identifying promising designs for the current iteration. Both
heuristics are explained in more detail in Appendix C.

The algorithm is presented in Figure 16 and consists of three steps.

22/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 17. Sequence of rule applications to solve example 8-tile puzzle.

In Step 1, the search space of the small-scale problem is explored exhaustively.
NBRAM is applied to the small-scale problem, i.e., the transition graph is
generated and beneficial rule sequences are identified.

In Step 2, the search space of the large-scale problem is explored gradually. The
learnt sequences from Step 1 are applied to explore parts of the search space of
a larger-scale problem. The process is started from the initial design (Step 2.1).
In Step 2.2, promising designs are identified. What is considered promising is
problemdependent and heuristics, i.e., knowledge that is derived fromexperience,
or rules of thumb can be used to determine if a design is promising. For the puzzle
in Figure 15, e.g., a promising design would be one where tile ‘3’ is in the first row
such that the first row is ‘1’, ‘2’, ‘3’, i.e., it fits with the final design. Once promising
designs are identified, the currently explored design and the promising designs are
mapped from the large-scale space to the small-scale space (Step 2.3). Through this
mapping, the problem is reduced from the larger-scale to a smaller-scale problem
for which rule sequences among designs are known. Using this information about
the small-scale problem, sequences of rule applications, i.e., paths in the transition
graph, can be found that reach the promising designs starting from the current
design (Step 2.4). The found paths are then mapped back to the large-scale space,
i.e., the rule sequences that successfully solve the small-scale problem are used to
explore portions of the space of the large-scale problem (Step 2.5). This can be
done for all of them or they can be filtered to consider only the most promising
ones with respect to some criteria. Now that different paths to promising designs
are explored, it is checked whether or not a final design is found (Step 2.6). If not,
the search continues with Step 2.2 by selecting one of the explored designs and
defining promising designs that should be reached from there. If a final design
is found, this means that a sufficiently large portion of the large-scale space is
explored (2.7) and the algorithm continues with Step 3.

In Step 3, the sequence of rule applications to solve the large-scale problem is
found by searching the shortest path from the initial to the final design.

6.3.2. Results
The learnt rule sequences from the 5-tile puzzle are successfully applied to the
8-tile puzzle. For any solvable puzzle in the 8-tile space, a sequence of rule
applications is found to transform the given puzzle into the final puzzle. For
the initial design presented in Figure 15, for example, 21 moves are identified
to transform the initial design into the final design. Figure 17 visualizes
schematically, how the puzzle is solved. The first puzzle represents the initial
design. The lower region is considered and therefore highlighted. Applying the
rule sequence (D, R, U , L , D) generates the first intermediate design. Now the

23/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

upper region is considered and so forth until the final design is generated after 21
rule applications.

6.4. Key findings
NBRAM enables understanding the search space of the sliding tile puzzle visually,
e.g., through the visualization of the twounconnected transition graphs of solvable
and unsolvable designs. Further, it is shown that the understanding of the search
space can be used to identify beneficial rule application sequences. In the second
part of the case study, beneficial sequences are used to solve a larger-scale problem.

7. Discussion
The two case studies demonstrate how the NBRAM can be used for different
problems. The NBRAM should preferably be used to analyze grammar rules
before they are applied in theCDSprocess in combinationwith a search algorithm.

Both case studies use graph grammars. The presented method is, however,
similarly applicable to other types of grammars, e.g., shape grammars. In the
transition graph each state would represent a shape and each rule application
would be represented as a transformation of the shape to generate a new shape.
Emergent sub-shapes can be handled as different possible locations to apply a rule.
One challenge, however, is defining what constitutes a unique design, i.e., shape
similarity, if a set grammar approach to shape grammars is not used.

The gearbox case study shows how the transition graph can be used to analyze
rule applicationswhere the location of the rule application in the design influences
the synthesis results. Results show how rules can be identified that are matched
more often than intended, i.e., their LHSs are formulated too vaguely. Modifying
the LHS formulation of the rules makes it possible to reduce the number of
indifferent (from an engineering point of view) matches of these rules. While the
generated designs remain the same, these changes can have a strong influence
on the run time and required working memory when the rules are used in the
CDS process. Therefore, these detailed analyses of the LHSs can not only help
the human designer to debug and understand rule matches, but also to speed up
the synthesis process when LHSs are formulated more specifically to the synthesis
task.

In the sliding tile puzzle case study, the transition graph for a small-scale
problem, the 5-tile puzzle, is generated and analyzed giving insights on the
grammar as well as the problem itself. The 8-tile puzzle is used to demonstrate
that rule sequences learnt for small-scale problems can be used to solve large-scale
problems. For the given puzzle, a rule sequence of 21 rule applications was
found, while more sophisticated algorithms might find a shorter sequence of
rule applications. The difference can be explained with the sequential subdivision
of the 8-tile puzzle in 5-tile regions that restrict rule applications to smaller
regions. The aim of this part of the case study, however, is not to search for
computer-competitive strategies to solve the sliding tile puzzle, but to demonstrate
that beneficial rule sequences can be learnt and applied that is successfully shown
also with a simple search algorithm. For the tile puzzle only one final state exists,
but the presented algorithm can likewise be used for problems with several final
states and would present the rule sequence to the first final state that is found.

24/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

For both case studies, the automated analysis of the synthesized transition
graphs enables the designer to identify loops and alternative sequences of rules.
The case studies demonstrate the potential of using visualizations and analysis of
transition graphs to strengthen the human designers’ understanding of developed
grammar rules and the relations between designs and rule sequences. Depending
on the problem at hand, it might be possible to explore the search space
exhaustively for a smaller sub-problem, as in the tile puzzle case study, or for a
limited number of rules in each applied rule sequence, as in the gearbox case study.
For larger problems it is also possible to explore portions of the design space using
stochastic search algorithms. Then, it is recommended to start the generation
process repeatedly and from different initial designs to collect sufficient data and
not let the choice of the initial design or the randomness of the search algorithm
bias the results. The different designs are then combined to one ormore transition
graphs depending onwhether or not the same designs are generated fromdifferent
initial designs.

The algorithm that is proposed to solve the 8-tile puzzle is presented on a
generic level in Figure 16. It is, however, only applicable to design problems,
if they can be decomposed into smaller-scale problems. If this is not the case,
beneficial rule sequences can still be learnt using NBRAM, butmore sophisticated
algorithms should be used to specify where to apply them.

For most real world engineering problems, the exact number of final designs
is not known. Often, only some characteristics of final designs are known and an
evaluation routine has to check whether these characteristics are present in an
explored design and whether the design fulfills all constraints and can therefore
be considered as a valid final design. The gearbox synthesis problem can be
considered as such a real world problem. Finding beneficial rule application
sequences can then be more complicated than the results of the sliding tile puzzle
case study might suggest. This is especially the case for problems that cannot
be decomposed into smaller-scale problems. Future research should address this
issue and further investigate methods to automatically analyze the effect of the
LHS application condition on the generated designs since in the current version
of the method this is done through manual analysis of the visualization.

In this paper, seven properties for grammars are presented and it is shown
how the NBRAM can be used to analyze these properties. Examples for further
properties that can be considered in the future are the expressiveness of a grammar
and the similarity of different grammars. The expressiveness property could
indicate the breadth of ideas that can be described with a grammar. The similarity
property could be used to identify similarities between different grammars based
on the transition graphs they generate.

A modified sliding tile puzzle was used in research by Vale & Shea (2003)
that is directed towards finding beneficial rule sequences. The method proposed
in Vale & Shea (2003) learns performances of rule sequences from previous rule
applications during the CDS process and uses machine learning (ML) techniques
to decide on future rule applications. The focus is on accelerating the search
process and learning during the CDS process. In this paper, by contrast, the focus
is on supporting the human designer in developing grammars. Future research
could, however, combine the presented approach with methods like the one
presented in Vale & Shea (2003). Beneficial and counterproductive rule sequences
could be learnt using the NBRAM and provided to the ML-based search as initial

25/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

information. Similarly, the ML-based search could provide visualizations of the
learnt information to the human designer to further increase their understanding
of the grammar rules and the designs they generate.

8. Conclusion
The method presented in this paper can support designers in developing and
applying grammar rules. The major contribution of the presented method is that
it represents a novel approach to analyze grammar rules by combining a graph
representation (transition graph) of generated designs and rule applications with
network analysis algorithms and interactive visualizations. Exhaustively exploring
small portions of the search space to collect data and generate transition graphs
to visualize relations between different designs and sequences of rule applications
allows for a systematic rule analysis and can give human designers useful feedback
about the grammar they developed. Designs, for which the same rule can lead to
different designs depending on the rule’s application location, can be identified
and based on the resulting designs, the effect of the application location can be
analyzed. This information can, e.g., be used to improve the LHS of a rule to
increase or decrease the number of LHS matches. By manually analyzing the
transition graph or computationally through graph search algorithms, loops in the
transition graph can be identified. In addition, efficient rule application sequences
can be identified through shortest path search in the transition graph. The two
presented case studies demonstrate the potential of transition graph analysis to
support the development and application of engineering design grammars.

Appendix A. Algorithm for exhaustive generation of
designs
The pseudo-code for the algorithm for exhaustive generation of designs is given
in Figure 18. The algorithm requires an initial design (initialDesign), the rule set
(ruleSet) and amaximumnumber of rule applications (maximumSequenceLength)
as input. Outputs are a list of explored designs (graphs) and a list (transformations)
storing each applied rule, the design the rule is applied to, and the resulting
design. Starting from an initial design, all rules in the rule set (ruleSet) are explored
exhaustively until a given number of rule applications (maximumSequenceLength)
from the initial design. The algorithm is implemented as a BFS with isomorphism
check to not explore already found topologies repeatedly. It explores the design
space in levels (level) until the maximum number of rule applications (line 2).
For each level, the algorithm iterates through all rules in the rule set (line 3). The
selected rule r is applied to all graphs from the previous level (previous, line 4).
For each graph g, all matches m of the current rule r are identified (line 6) and
for each match m a new graph (newGraph) is generated by applying rule r on
graph g at match m (line 8). The generated graph (newGraph) is evaluated (line 9)
and if it constitutes a topology that is not found yet in one of the previous levels,
(newTopology returns true in line 10), then the design is stored in the list of designs
to be expanded in the next level (next, line 11). Each generated graph (newGraph)
is stored in the list graphs (line 13) and for each rule application, the rule and the
previous and resulting graph are stored in transformations (line 14). Once all rules
in the ruleSet are applied for the current level, the graphs from list previous are

26/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 18. Pseudo-code for exhaustive generation.

replaced with those from list next (line 18), list next is cleared (line 19) and the
algorithm continues with the next level (line 3).

Appendix B. Analysis of LHSs of rules 2 and 4 for the
gearbox case study
In Figure 19, all matches of rule 2 (delete a shaft) on the design with UID 2 (see
Figure 8) are shown (left). The rule formulation in GrGen is provided on the right
of Figure 19. LHS and RHS of the rule are indicated using curly braces. The LHS
of the rule consists of a node of type shaft (S0) and a node of type gear (G0). In
addition, a negative application condition is defined using the negative statement.
Negative application conditions are used to define patterns that, when present in
the graph, prohibit the rule’s application. In case of rule 2, this is when the gear
G0 is reachable from shaft S0, or when shaft S0 can be reached from gear G0. The
rationale behind this condition is that when no gear G0 exists that is not reachable
by shaft S0 or can be reached from S0, then there exist only power flow paths
in the gearbox that involve S0. The rule is then not applied since removing S0
would result in an invalid design, i.e., a design where input shaft and output shaft
are not connected. The functions reachableOutgoing() and reachableIncoming()
are used to identify the sets of nodes that can be reached or are reachable from
shaft S0. The RHS of the rule is defined within the modify statement. First, the
shaft S0 is deleted. Then, two rules are applied that remove dangling nodes in
the graph. The first is called deleteUnusedGears and removes all gears that were
connected to shaft S0, i.e., those gears that are mounted on shaft S0. The second is
called deleteUnusedGearPairsAndShafts. It searches through the remaining graph
to identify gear pairs and shafts that are not required any more since they are not
connected to both input and output shaft of the gearbox to form a valid power
flow path.

27/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 19. Rule 2 (delete a shaft) formulated using a negative application condition.

Figure 20. Rule 4 (delete a gear pair) formulated using a negative application condition.

On the left in Figure 19, the two matches of rule 2 on the graph with UID 2
are shown. The shaft S0 is matched to the same node, since it is the only node of
type shaft in the graph. The two gears on the right power flow path through the
gearbox can be matched to gear G0 such that the negative application condition
is not fulfilled and the rule can be applied to remove the shaft S0 and the then
dangling gear nodes to transform the design into that with UID 1.

Comparing the graphs with UID 2 and UID 1 (see Figure 8), the rule designer
might expect that two matches of rule 4 (delete a gear pair) are found to delete
either the first or the second gear pair of the left power flow path. The transition
graph, however, shows that rule 4 is applied to eight differentmatches on the graph
with UID 2 to transform it to the graph with UID 1. Figure 20 shows the rule

28/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 21. Rule 2 (delete a shaft) formulated using a positive application condition.

Figure 22. Rule 4 (delete a gear pair) formulated using a positive application condition.

formulation in GrGen for rule 4. The expression ‘G0:Gear ?–? G1:Gear’ indicates
that two nodes of type gear have to exist and have to be connected by an edge.
‘?–?’ indicates that the direction of the edge connecting the two nodes is not
relevant. The remainder of rule 4 is structured similarly to rule 2 and therefore
not described here in detail. On the left of Figure 20, the eight matches of rule 4
on the design with UID 2 are shown that transform it to the design with UID 1.

When the humandesigner understands that rules are notmatched as intended,
e.g., more often than necessary, the LHS of the rules can be formulated more
carefully. Figures 21 and 22 show how this can be done for rules 2 and 4,

29/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 23. Heuristics for defining regions of sub-problems (left) and search patterns
(right).

respectively. The LHSs are reduced to only contain the nodes that have to
be removed. Instead of negative application conditions, positive application
conditions are used (independent statement). The shaft (rule 2) or gear pair (rule 4)
are removed from the graph when there is another gear that is neither reachable
from the matched node(s), nor can it reach the matched node(s). In addition, the
direction of the edge between gear G0 and gear G1 in rule 4 is specified to be
directed from G0 to G1 (G0→ G1) to reduce ambiguity.

Appendix C. Heuristics for the sliding tile puzzle
Two heuristics are used to steer the search space exploration for the sliding tile
puzzle using the algorithm described in Appendix D. They are described in the
following.

1. Heuristic for region.
Figure 23 (left) presents heuristics for which region to consider in the next

iteration. The gray regions define, where the next modifications are performed.
When the empty tile (indicated with ‘0’ in Figure 23) is in the top or bottom
row, the top or bottom region are selected. When it is in the middle row, further
heuristics can be applied or one region can be selected randomly. Given, e.g., the
initial puzzle in Figure 15, the lower region is selected based on the heuristic for
the region.

2. Heuristic for patterns.
The common human strategy to solve the sliding tile puzzle from the top

is implemented by defining search patterns. The patterns are described as six
character strings and define desirable tile positions giving the tile numbers and ‘*’
as a wildcard symbol. In Figure 23 (right) one example for a heuristic for patterns
is given. It assumes that the lower region of the tile puzzle is considered and a
tile with number ‘3’ is present in this lower region but no tiles with numbers ‘1’
or ‘2’ are present. The heuristic in Figure 23 (right) defines patterns to identify all
puzzles with tile ‘3’ and the empty tile in the upper row of the selected region. This
represents one part of the strategy commonly used by humans to move tiles that
belong to the upper row (tiles ‘1’, ‘2’, ‘3’) into the middle row and then, in a next
step when the upper region is considered, into the upper row, e.g., to replace the
‘5’ in the initial design in Figure 15.

30/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Figure 24. Process of gaining information on small scale (Step 1) and applying it to explore (Step 2) and solve
larger-scale problems (Step 3).

Appendix D. Details on the algorithm used to solve the
8-tile puzzle based on rule sequences learnt on the
5-tile puzzle
The process to solve the 8-tile puzzle is presented in Figure 24. In Step 1, the
transition graph is explored exhaustively for the small-scale puzzle and stored in
the 5-tile library. This means all transformations between any 5-tile puzzles are
known. In Step 2, the design space of the 8-tile puzzle is explored partially using a
BFS approach. It is implemented using a queue. In each iteration the first element
in the queue is considered as the current design (Step 2.1). The 8-tile puzzle is
subdivided using the heuristic for the region (see Appendix C). The considered
region is highlighted in gray in Figure 24. The tiles are thenmapped from the 8-tile
space to the 5-tile space. In this transformation, the tile numbers aremapped from
the numbers {0, 1, 2, 3, 4, 5, 6, 7, 8} to the number {0, 1, 2, 3, 4, 5}. The empty
tile (number 0) remains in both spaces, the remaining numbers have to bemapped
such that the mapped design constitutes a solvable design in the 5-tile space.
The mapping for the example iteration shown in Figure 24 is, e.g., (5-tile space –
8-tile space): (1–4), (2–8), (3–3), (4–7), (5–6), (0–0). The samemapping is applied
to the search patterns for promising designs that are defined using the pattern
heuristic. In Step 2.2, for each pattern, all designs that match it are identified in

31/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

the 5-tile library. In Figure 24, five example designs matching the heuristics for
patterns (see Appendix C) are shown (30****, *03***, *30***, 03****, 3*0***), but
many more are possible. The shortest paths, i.e., the rule sequences with the least
rule applications, to these designs are identified using the 5-tile library. To avoid
exploring an unnecessary large space of the 8-tile puzzle search space, for each
pattern heuristic only the generated designs with the shortest rule sequences are
considered further (Step 2.3). The considered designs are transformed back into
the 8-tile space and are integrated into the larger-scale puzzle, i.e., the changed
(gray) and unchanged (white) regions are combined (Step 2.4). For each explored
design, a test is performed whether it was already found previously. If not, it is
added to the end of the queue (Step 2.5). At the end of the iteration, the rule
sequences leading from the first (currently considered) design in the queue to the
designs that are now added to the queue are stored in the 8-tile library (Step 2.6).
Thismeans that the 8-tile library builds up information about the transition graph
of the 8-tile space with the nodes representing puzzles and the edges representing
rule sequences. This process is continued until the final design is found. As soon
as it is found, the complete sequence to solve the 8-tile puzzle is generated (Step 3)
by analyzing the 8-tile library, in which the generated designs in the 8-tile space
and the sequences of rule applications to transform them are stored. As in Step 1,
it is found by searching the shortest path using a BFS with backtracking with the
only difference that instead of single rules, the transformations are sequences of
rules.

References
Aho, A. V., Lam, M. S., Sethi, R. & Ullman, J. D. 2006 Compilers: Principles, Techniques,

and Tools. Addison-Wesley Longman Publishing Co., Inc.
Barbati, M., Bruno, G. & Genovese, A. 2012 Applications of agent-based models for

optimization problems: a literature review. Expert Systems with Applications 39,
6020–6028.

Brown, K. N. 1997 Grammatical design. IEEE Expert/Intelligent Systems and Their
Applications 12 (2), 27–33.

Cagan, J. 2001 Engineering shape grammars. In Formal Engineering Design Synthesis (ed.
E. K. Antonsson & J. Cagan). Cambridge University Press.

Cagan, J., Campbell, M. I., Finger, S. & Tomiyama, T. 2005 A framework for
computational design synthesis: model and applications. Journal of Computing and
Information Science in Engineering 5, 171–181.

Cash, P., Stanković, T. & Štorga, M. 2014 Using visual information analysis to explore
complex patterns in the activity of designers. Design Studies 35, 1–28.

Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M.,Hernandez, N. V. &
Wood, K. L. 2011 Computer-based design synthesis research: an overview. Journal of
Computing and Information Science in Engineering 11, 021003,1–10.

Chomsky, N. 1957 Syntactic Structures. Mouton de Gruyter.
Fu, Z.,Depennington, A. & Saia, A. 1993 A graph grammar approach to feature

representation and transformation. International Journal of Computer Integrated
Manufacturing 6, 137–151.

Geiß, R., Batz, G., Grund, D.,Hack, S. & Szalkowski, A. 2006 GrGen: a fast spo-based
graph rewriting tool. In Graph Transformations (ed. A. Corradini, H. Ehrig, U.
Montanari, L. Ribeiro & G. Rozenberg). Springer.

Gips, J. 1999. Computer implementation of shape grammars, NFS/MIT Workshop on
Shape Computation.

32/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

Gmeiner, T. & Shea, K. 2013 A spatial grammar for the computational design synthesis
of vise jaws. In International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference (ASME IDETC), Portland, OR, USA.

Helms, B., Eben, K., Shea, K. & Lindemann, U. 2009 Graph grammars – a formal
method for dynamic structure transformation. In 11th International DSM Conference,
Greenville, SC, USA.

Hoisl, F. & Shea, K. 2013 Three-dimensional labels: a unified approach to labels for a
general spatial grammar interpreter. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 27, 359–375.

Hoisl, F. R. 2012. Visual, interactive 3D spatial grammars in CAD for computational
design synthesis. Dissertation, Technische Universität München.

Johnson, W.W. & Story, W. E. 1879 Notes on the ‘15’ puzzle. American Journal of
Mathematics 2, 397–404.

Kim, H. M.,Michelena, N. F., Papalambros, P. Y. & Jiang, T. 2003 Target cascading in
optimal system design. Journal of Mechanical Design 125, 474–480.

Königseder, C. & Shea, K. 2015 Comparing strategies for topologic and parametric rule
application in automated computational design synthesis. Journal of Mechanical
Design 138 (1), 011102-011101–011102-011112; doi:10.1115/1.4031714.

Kroll, M., Beck, M., Geiß, R.,Hack, S. & Leiß, P. yComp [Online]. Available:
http://www.info.uni-karlsruhe.de/software.php/id=6 (Accessed July 17, 2015).

Kumar, M., Campbell, M. I., Königseder, C. & Shea, K. 2012 Rule based stochastic tree
search. In Design Computing and Cognition ’12 (ed. J. S. Gero). Springer.

Li, X. & Schmidt, L. 2004 Grammar-based designer assistance tool for epicyclic gear
trains. Journal of Mechanical Design 126, 895–902.

Lin, Y. S., Shea, K., Johnson, A., Coultate, J. & Pears, J. 2010 A method and software
tool for automated gearbox synthesis. In International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (ASME
IDETC), San Diego, CA, USA.

McKay, A., Chase, S., Shea, K. & Chau, H. H. 2012a Spatial grammar implementation:
from theory to useable software. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 26, 143–159.

McKay, A., Chase, S., Shea, K. & Chau, H. H. 2012b Spatial grammar implementation:
from theory to useable software. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 26, 143–159.

Mullins, S. & Rinderle, J. 1991 Grammatical approaches to engineering design, part I: an
introduction and commentary. Research in Engineering Design 2, 121–135.

Pahl, G. & Beitz, W. 1984 Engineering Design. Springer.
Pólya, G. 1957 How to Solve it a New Aspect of Mathematical Method. Doubleday.
Pomrehn, L. P. & Papalambros, P. Y. 1995 Discrete optimal design formulations

with-application to gear train design. Journal of Mechanical Design 117, 419–424.
Rinderle, J. 1991 Grammatical approaches to engineering design, part II: melding

configuration and parametric design using attribute grammars. Research in
Engineering Design 2, 137–146.

Schmidt, L. C. & Cagan, J. 1997 GGREADA: a graph grammar-based machine design
algorithm. Research in Engineering Design 9, 195–213.

Schmidt, L. C., Shetty, H. & Chase, S. C. 2000 A graph grammar approach for structure
synthesis of mechanisms. Journal of Mechanical Design 122, 371–376.

Slocum, J. & Sonneveld, D. 2006 The 15 Puzzle: How It Drove the World Crazy. The
Puzzle that Started the Craze of 1880. How America’s Greatest Puzzle Designer, Sam
Loyd, Fooled Everyone for 115 Years. Slocum Puzzle Foundation.

Starling, A. C. 2004. Performance-based computational synthesis of parametric
mechanical systems. Dissertation, University of Cambridge.

33/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

http://dx.doi.org/10.1115/1.4031714
http://www.info.uni-karlsruhe.de/software.php/id=6
https://doi.org/10.1017/dsj.2016.5

Starling, A. C. & Shea, K. 2005 A parallel grammar for simulation-driven mechanical
design synthesis. In International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference (ASME IDETC), Long Beach,
CA, USA.

Stiny, G. 1977 Ice-ray: a note on the generation of Chinese lattice designs. Environment
and Planning B: Planning and Design 4, 89–98.

Stiny, G.&Gips, J. 1972 Shape grammars and the generative specification of painting and
sculpture. In Proceedings of IFIP Congress 1971, 1972. North Holland Publishing Co.

Stiny, G. &Mitchell, W. J. 1978 The Palladian grammar. Environment and Planning B 5,
5–18.

Swantner, A. & Campbell, M. I. 2012 Topological and parametric optimization of gear
trains. Engineering Optimization 44, 1351–1368.

Vale, C. A. W. & Shea, K. 2003 A machine learning-based approach to accelerating
computational design synthesis. In International Conference on Engineering Design
(ICED), Stockholm, Sweden.

34/34

https://doi.org/10.1017/dsj.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.5

	Improving design grammar development and application through network-based analysis of transition graphs
	Introduction
	Background
	Computational Design Synthesis (CDS)
	Grammar-based CDS
	Example gearbox synthesis grammar
	Transition graphs and the analogy to CDS

	Network-based rule analysis method (NBRAM)
	Implementation
	Case study I – gearbox synthesis
	Introduction to the gearbox case study
	Results
	Analyzing LHS matches of rules (Property 7: location)
	Understanding the search space
	Detect do–undo rules (Property 1: do–undo)
	Analyze alternative paths (Property 3: multiple paths)

	Key findings

	Case study II – sliding tile puzzle
	Introduction to the sliding tile puzzle case study
	Part 1: Understanding the small-scale problem
	Understanding the search space
	Answering questions of reachability (Property 4: reachability)
	Detect do–undo rules (Property 1: do–undo)
	Analyze alternative paths (Property 3: multiple paths) and loops (Property 2: loops)

	Part 2: Applying knowledge on the large-scale problem
	Algorithm used to solve large-scale problem (includes Property 5: sequences and Property 6: shortest sequence)
	Results

	Key findings

	Discussion
	Conclusion
	Appendix A. Algorithm for exhaustive generation of designs
	Appendix B. Analysis of LHSs of rules 2 and 4 for the gearbox case study
	Appendix C. Heuristics for the sliding tile puzzle
	Appendix D. Details on the algorithm used to solve the 8-tile puzzle based on rule sequences learnt on the 5-tile puzzle
	References

