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PURE SUBRINGS OF COMMUTATIVE RINGS

S. CHAKRABORTY, R. V. GURJAR and M. MIYANISHI

Abstract. We study subalgebras A of affine or local algebras B such that

A ↪→B is a pure extension from algebraic and geometric viewpoints.

§0. Introduction

Let ϕ :A→B be a homomorphism of commutative rings. We say that ϕ is

a pure homomorphism, or pure embedding, or pure extension if the canonical

homomorphism ϕM :M ⊗A A→M ⊗A B is injective, for any A-module M .

This condition implies that ϕ is injective. Therefore, identifying A with

ϕ(A), we often say that A is a pure subring of B, or that B is a pure

extension of A. The notion of purity was first raised by Warfield [15]. The

associated morphism aϕ : SpecB→ SpecA is also called a pure morphism

of affine schemes.

A morphism of schemes p : Y →X is called a pure morphism if p is an

affine morphism, and there exists an affine open covering {Ui}i∈I of X,

such that p|p−1(Ui) : p−1(Ui)→ Ui is a pure morphism for every i ∈ I. The

formal properties of pure subalgebras and pure morphisms are summarized

in Section 1.

In this paper, we are interested in pure subalgebras of an affine or local

domain. The underlying field k, unless otherwise specified, is always assumed

to be algebraically closed and of characteristic 0. Sometimes we also assume

k to be the field of complex numbers C to apply results of local analytic

algebras. Let A be a pure k-subalgebra of an affine domain B. Then, by [5],

A itself is affine. Furthermore, if B is normal then A is also normal, and

the associated morphism aϕ : SpecB → SpecA is surjective by Lemma 1.1

below.
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It is easy to see that a faithfully flat extension of commutative rings is

pure (Lemma 1.7). There are many important results about flat extensions

of commutative rings by J. Frisch, A. Grothendieck, L. Gruson, M. Raynaud,

and others.

The fibers of a flat morphism are all equidimensional, but the converse is

not true in general. Interestingly, for a morphism between normal varieties,

equidimensionality of fibers implies purity of the morphism (Lemma 2.7).

Unfortunately, in general, fibers of a pure morphism do not have correct

dimension. Rings of invariants of reductive group actions on a polynomial

ring provide plenty of examples of pure subrings such that the corresponding

quotient morphisms do not have equidimensional fibers. This fact is one of

the underlying reasons why invariant theory is such a fascinating subject.

It is the authors’ impression that there are not many papers about pure

extensions. We use some important results due to M. Hochster about pure

extensions (Section 1). In this paper we prove several new results about pure

extensions, and give many examples to indicate the subtlety of the notion

of purity.

We study the following questions.

Question 1. If R⊆ S is a pure extension of algebraic local rings, is the

induced map of completions R̂ → Ŝ also a pure homomorphism?

Question 2. If R⊆ S is an extension of algebraic local rings such that

the associated map Spec S → SpecR is surjective, is the induced map

Spec Ŝ → Spec R̂ also surjective?

Closely related to these is another question.

Question 3. Let R⊆ S be a pure extension of analytic local rings,

corresponding to germs of complex spaces (V, p), (W, q). Is it true that the

image of a neighborhood of q in W contains a neighborhood of p in V ?

We show that all of these questions have affirmative answers with mild

restrictions on R and S.

We now state the main results proved in this paper.

(1) Let R⊆ S be algebraic local rings. Assume that this is a pure extension.

If R is either reduced, or Gorenstein, then the induced map of

completions R̂⊆ Ŝ is also pure (Corollary 3.2.1).
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PURE SUBRINGS OF COMMUTATIVE RINGS 35

(2) Let R⊆ S be algebraic local rings such that R̂ is an integral domain. If

the morphism Spec S → SpecR is a surjection, then Spec Ŝ → Spec R̂

is also a surjection (Theorem 3.4).

(3) Let R⊆ S be a pure extension of analytic local rings over C such that

R is an integral domain. Then the image of a Euclidean neighborhood

of the closed point of Spec S contains a Euclidean neighborhood of the

closed point of SpecR (Theorem 3.5).

(4) Let A⊆B be an inclusion of normal affine domains over a field k such

that the morphism SpecB → SpecA is generically finite and surjective.

Then there exists a normal affine domain C/k such that A⊆ C ⊆B,

the morphism Spec C → SpecA is quasi-finite and surjective, and C

is the largest affine subring of B containing A with these properties.

Further, C is a pure extension of A (Theorem 4.4).

The proofs of Theorems 3.4 and 3.5 are rather nontrivial. For the proof

of Theorem 3.4 we need ideas from Artin’s approximation theorem.

The following question arises in this context, and we discuss it later.

Question. Let A be a two-dimensional pure subalgebra of k[x, y]. Is

the associated morphism Spec k[x, y] → SpecA quasi-finite?

We give a counterexample to this question. However, if A is a graded

subring of k[x, y] then we do not yet know if the answer is affirmative.

A faithfully flat extension is pure. In general, the fibers of a pure

morphism can have variable dimensions. In Section 5 we give several

examples, and also some positive results, which illustrate the subtlety of

the notion of pure extensions, and which shed more light on this important

notion.

We raise several open problems whose solution, we believe, is valuable for

algebraic geometry and commutative algebra.

We are indebted to M. Hashimoto for motivating us to study the present

subject. In fact, the announcement of his result [5] at a workshop in

Oberwolfach in 2005 initiated our study of pure subalgebras of polynomial

rings.

§1. Preliminaries

We recall some of the standard properties of pure extensions which are

frequently used in the paper. Some of these are trivial consequences of the

definitions. For the rest, appropriate references are mentioned.
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36 S. CHAKRABORTY, R. V. GURJAR AND M. MIYANISHI

For a commutative ring A, let SpecA and Max A denote the sets of prime

ideals and maximal ideals of A respectively.

Let A⊆B be commutative rings. If A is a direct summand of B (as an

A-module), it follows from the definition that A is a pure subring of B.

This fact is implicitly used in this paper. Later, we will see two important

instances when this happens:

(a) if A is normal, and B is a finite module over A; or

(b) if A is a complete local ring, and A⊆B is pure.

By an algebraic local ring we mean a localization of an affine algebra over

a field k at a maximal ideal.

Lemma 1.1. Let ϕ :A→B be a pure embedding. Then the following

assertions hold.

(1) Suppose that ϕ splits as

A

C

B
ϕ

ϕ1 ϕ2

Then ϕ1 is a pure embedding. If ϕ1 and ϕ2 are pure embeddings, then

so is ϕ, that is, pure extension is transitive.

(2) For any ideal I of A, we have IB ∩A= I. In particular, if B is

Noetherian, so is A.

(3) The associated morphism ϕ∗ : SpecB → SpecA is surjective.

Lemma 1.2. A ring homomorphism ϕ :A→B is pure if and only if

ϕM :M →M ⊗B is injective for any finitely generated A-module M .

Lemma 1.3. (Local criteria for purity) If ϕ :A→B is a ring homomor-

phism, then the following are equivalent.

(1) The homomorphism ϕ is pure.

(2) For any multiplicatively closed set S ⊆A, S−1ϕ : S−1A→ S−1B is

pure.

(3) For any p ∈ Spec A, ϕp :Ap→Bp is pure.

(4) For any m ∈Max A, ϕm :Am→Bm is pure.

(5) There exist x1, x2, . . . , xn ∈A, generating the unit ideal, such that ϕxi :

Axi →Bxi is pure for each i= 1, 2, . . . , n.
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Lemma 1.4. (Extension of scalars) If A ↪→B is a pure extension of

commutative rings, for any A-algebra C, C −→ C ⊗A B is pure.

Corollary 1.4.1. Given any two pure A-algebras B and C, A ↪→
B ⊗A C is a pure extension.

A ring homomorphism f :A→ B is called cyclically pure if, for any ideal

I ⊆B, A ∩ IB = I, or, equivalently, if any ideal in A is contracted from

some ideal in B. Note that analogues of Lemma 1.1 hold for cyclically pure

extensions.

The following important result from [6, Theorem 1.7] is often used in this

paper. We state a special case which is sufficient for our purposes.

Lemma 1.5. Let A be a Noetherian excellent ring, and let ϕ :A→B be

an embedding. Then the following assertion holds.

If A is reduced, or Gorenstein, or a local Cohen–Macaulay ring of

dimension > 2, then ϕ is a pure embedding if and only if it is cyclically

pure.

The following result is proved in [9].

Lemma 1.6. Let A⊆B be affine domains over a field of characteristic 0.

If A is normal, and the induced morphism SpecB → SpecA is quasi-finite

and surjective, then ϕ is a pure embedding.

Lemma 1.6 immediately implies that if A is a normal affine subalgebra

of k[x1, x2, . . . , xn], such that the extension is integral, then this is a pure

extension.

Lemma 1.7. If A is a subring of B, such that B is a faithfully flat A-

module, then the extension is pure.

Proof. See [11, Theorem 7.5].

The following criterion of purity can be found in [8, Corollary 5.3].

Lemma 1.8. Let A be a Noetherian ring, which is a subring of B. Then

A is a pure subring of B if and only if A is a direct summand, as an A-

module, of each finitely generated A-submodule of B. In particular, if B is

a finitely generated A-module, A ↪→B is a pure embedding if and only if A

is a direct summand of B as an A-module.

The following result and its proof were shown to us by C. Huneke to

whom we are very thankful.
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Lemma 1.9. Let A be a pure subring of B. Assume that A is a

Noetherian complete local domain. Then A is a direct summand of B as

an A-module.

Proof. Let E be the injective hull of the residue field of A. The hypothesis

that A is a pure subalgebra of B implies that the map E→ E ⊗A B is

injective. Hence, the dual map HomA(E ⊗A B, E)→HomA(E, E)∼=A is

surjective, where the last isomorphism follows since A is complete. However,

HomA(E ⊗A B, E) is isomorphic to HomA(B, A), and the surjective map

from this module to A just sends a homomorphism f to f(1). Thus, there

exists an A-module homomorphism g :B→A, and consequently A is a

direct summand of B.

§2. Some new observations

We use the following terminologies in this paper.

Let f : X −→ Y be a dominant morphism of affine algebraic varieties.

Then we have the following.

(1) The morphism f is called pure if the induced morphism f∗ :OY −→
OX is pure.

(2) A point x ∈X is called pure if OY,f(x) −→OX,x is pure. We call f

strongly pure if each x ∈X is pure.

(3) A point y ∈ f(X) is called completely pure if each point in f−1(y) is

pure.

(4) A point y ∈ Y is called partially pure if some point in f−1(y) is pure.

(5) A point y ∈ f(X) is called pure if OY,y −→OX ⊗OY,y is pure.

Note. An algebraic variety is always assumed to be irreducible unless

otherwise specified.

Since given any y ∈ f(X) and some x ∈ f−1(y), we have a natural

factorization
OY,y OX ⊗OY,y

OX,x

it is easy to see that any completely pure point is partially pure, which,

in turn, is pure.

https://doi.org/10.1017/nmj.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.2


PURE SUBRINGS OF COMMUTATIVE RINGS 39

Let A ↪→B be a pure extension. Suppose that there is an element x of B

satisfying a relation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, with ai ∈A, ∀i.

Then, as an easy corollary of Lemma 1.5, it follows that a0 is contained in

the ideal generated by a1, a2, . . . , an in A. A partial converse of this fact

holds under special conditions.

Lemma 2.1. Let A be a Dedekind domain. Then, for any polynomial

f(x) := a0 + a1x+ a2x
2 + · · ·+ anx

n ∈A[x] of positive degree,

A−→A[x]/(f) is pure if a0 is contained in the ideal generated by

a1, a2, . . . , an in A.

Proof. In view of the local criteria for purity as in Lemma 1.3, after

localizing the extension at a maximal ideal of A, we may assume that A is

a discrete valuation ring. First, we observe that, if B is a (cyclically) pure

A-algebra, for any A-algebra C, B ⊕ C is also a (cyclically) pure A-algebra.

Now, coming to the proof, if a0 = 0, there exists m> 0 such that xm|f
but xm+1 does not divide f . Since A[x] is a unique factorization domain,

and gcd(xm, f/xm) = 1, we have

A ↪→ A[x]

(f)
↪→ A[x]

(xm)
⊕ A[x]

(f/xm)
.

Now, A[x]/(xm), being a free module over A, is pure. Hence, by the above

observation,

A ↪→ A[x]

(xm)
⊕ A[x]

(f/xm)

is also pure, and consequently so is A ↪→A[x]/(f).

Otherwise, if a0 6= 0, then f can be factored as f = ag, where a :=

gcd(ai)
n
i=0, and g is a primitive polynomial. Therefore, we have

A[x]

(f)
=
A[x]

(ag)
↪→ A

(a)
[x]⊕ A[x]

(g)
.

However, then, by [14], A[x]/(g) is a faithfully flat A-algebra. Therefore,

the above observation, together with Lemma 1.7, implies that

A ↪→ A

(a)
[x]⊕ A[x]

(g)

is pure, and consequently so is A ↪→A[x]/(f).
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The following lemma is in the same spirit, which shows that for Dedekind

domains, the question of purity boils down to the question of surjectivity of

the associated morphism of schemes.

Lemma 2.2. Let A⊆B be integral domains. Suppose that a height 1

prime p in A is contracted from B, and that Ap is a DVR. Then any p-

primary ideal in A is contracted from some ideal in B.

Proof. We have the following commutative diagram:

A B

Ap Bp

Since p-primary ideals in A are in one-to-one correspondence with the

pAp-primary ideals of Ap, it is sufficient to prove that any pAp-primary ideal

is contracted from some ideal in Bp. This is a special case of the following

lemma.

Lemma 2.3. Let A⊆B be integral domains, with A being a UFD. If any

height 1 prime in A is contracted from some ideal in B, then any principal

ideal in A is a contracted ideal.

Proof. Let a be any nonzero, nonunit element in A with a prime

factorization (up to a unit)

a=
r∏
i=1

peii , with distinct primes pi and positive integers ei.

If possible, let a∗ ∈ (a)B ∩A− (a). Then a∗ can be written as

a∗ = β

r∏
i=1

pfii ,

where the fi are nonnegative integers, and β ∈A− {0} is relatively prime

to pi, for each i. Since a∗ /∈ (a), there exists some i for which fi < ei. Again,

a∗ ∈ (a)B implies that there exists some b ∈B such that a∗ = ab, implying

that β
∏
j 6=i p

fj
j ∈ (pi), leading to a contradiction.

We have the following corollaries of Lemma 2.2 (using Lemma 1.5).
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Corollary 2.3.1. If A⊆B are integral domains, with A being a

Noetherian normal domain, such that every height 1 prime in A is con-

tracted, then any unmixed ideal of height 1 in A is also a contracted ideal.

Corollary 2.3.2. Any surjective morphism from an affine variety to

a smooth curve is pure.

This also follows easily since such a morphism is faithfully flat (and

Lemma 1.7).

The following corollary extends a cyclically pure version of Lemma 2.1 to

the formal power series case.

Corollary 2.3.3. Let A be a Dedekind domain, and let f ∈A[[x]] be a

nonconstant formal power series. Then

A ↪→ A[[x]]

(f)

is cyclically pure if f0 lies in the ideal generated by f1, f2, . . . , where f(x) :=

f0 + f1x+ f2x
2 + · · · .

Proof. The proof follows almost the same lines as the proof of Lemma 2.1.

However, instead of using Nagata’s criteria for faithful flatness, we take a

prime factorization of f and apply Corollary 2.3.1.

The following lemma is a special case of Lemma 1.1(1). We write it down

in this particular form for the sake of future reference.

Lemma 2.4. (Square diagram for purity) If

A B

C D

α

β γ

δ

is a commutative diagram of commutative rings, then β, γ, δ are (cyclically)

pure implies that α is also (cyclically) pure.

Proof. The proof follows directly from the definitions.

Lemma 2.5. Let A⊆B be integral domains, with A being a Noetherian

normal domain. If the image of Spec B contains all height 1 primes of

Spec A, then any element ξ of the quotient field of A, which is integral over
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B, is an element of A. In particular, the result is true for pure extensions,

as the morphism of schemes associated to any pure morphism is surjective.

Proof. Since A is normal, it suffices to show that ξ is in every localization

of A at a height 1 prime ideal p. Suppose that this is not true for some p.

Then ξ−1 must lie in the maximal ideal pAp, that is, ξ = 1/a for some

a ∈ pAp. Since ξ is integral over B, ξ satisfies an integral equation ξn +

b1ξ
n−1 + · · ·+ bn = 0, with bi ∈B. By replacing ξ by 1/a, and clearing the

denominator in the equation, we obtain

1 + b1a+ b2a
2 + · · ·+ bna

n = 0.

Therefore, a is a unit in B. However, by the given condition, there exists

q ∈ Spec B such that p = q ∩A, which implies that a ∈ q, leading to a

contradiction.

Lemma 2.6. Let A be an affine k-domain, and let A ↪→B be a pure

embedding. Let I be a radical ideal of A, let A=A/I, and let B =B/IB.

Then A ↪→B is a pure embedding.

More generally, if I is any ideal in A such that A is Gorenstein, then

A ↪→B is a pure embedding.

Proof. It is a special case of the base change property of pure extensions,

as stated in Lemma 1.4.

Lemma 2.7. Let ϕ :X −→ Y be a dominant morphism of affine vari-

eties, with dim X =m and dim Y = n. Assume that Y is normal. Let x ∈X
be such that any irreducible component of ϕ−1(ϕ(x)), which contains x, has

dimension equal to m− n. Then the induced local morphism

ϕ∗x :OY,ϕ(x) −→OX,x

is pure.

Proof. We indicate a proof when m− n= 1. The general case is proved

similarly by taking repeated hyperplane sections. Let H be a general

hyperplane section of X through x. Then ϕ|H :H −→ Y is quasi-finite.

Hence, the induced morphism of complete local rings ÔY,ϕ(x) −→ ÔH,x
is finite. By Lemma 1.8, this is a pure embedding; in fact this is a

direct summand. Since there is a surjection ÔX,x −→ ÔH,x, we deduce that

ÔY,ϕ(x) −→ ÔX,x is also a direct summand, hence a pure extension. This,

together with Lemmas 2.4 and 1.7, implies that OY,ϕ(x) −→OX,x is a pure

extension.
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Remark. In Section 5.10 we give an example where the set of

completely pure points is not open in Y .

We add here the following remark.

Let G be a reductive algebraic group acting on an affine regular C-

domain A. Then by Hochster–Roberts [7], the ring AG of G-invariants is

a pure subalgebra of A. In a similar context, we can ask whether the ring

of invariants of a Ga-action on a polynomial ring C[x1, . . . , xn] is a pure

subring of C[x1, . . . , xn]. The answer is positive if n6 3 but negative for

n> 4. There are three crucial points to prove in the case n6 3. Namely, we

have the following.

(1) The ring of invariants is regular.

(2) The quotient morphism

q : Spec C[x1, . . . , xn]→ Spec C[x1, . . . , xn]Ga

is surjective.

(3) The fibers of the quotient morphism q are all of dimension one.

In fact, with all three conditions satisfied, q is a faithfully flat morphism,

and hence pure by Lemma 1.7. In the study of pure extensions, the

surjectivity of the morphism SpecB→ SpecA is always a key point. Bonnet

[3] and later Kaliman [10] proved via topological arguments that if n= 3,

the quotient morphism q is surjective. This is a fairly significant result in

understanding the subalgebras of a polynomial ring, and it is desirable to

give a proof which may elucidate the algebro-geometric background.

Proposition 2.8. Let B = C[x1, . . . , xn] be a polynomial ring with a

nontrivial action of the additive group Ga, let D be the associated locally

nilpotent derivation, and let A be the kernel of D. Then we have the following

assertions.

(1) If n6 3, the inclusion A ↪→B is a pure embedding.

(2) Suppose n= 4. Define the Weitzenböck derivation by D(xi) = xi+1 for

16 i6 3 and D(x4) = 0. Then the quotient morphism q : SpecB→
SpecA is neither surjective nor flat. Hence, the inclusion A ↪→B is

not a pure embedding.

Proof. (1) If n6 3, we show that B is faithfully flat over A, whence

A ↪→B is a pure embedding by Lemma 1.7. We only consider the case
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n= 3. It is known that A is a polynomial ring in two variables, and q is

equidimensional of dimension one (cf. [12]). Hence, B is flat over A. On

the other hand, the surjectivity of q is proved by [3] and [10]. Hence, B is

faithfully flat over A.

(2) The ring A is generated over C by the following four elements:

X = x4, Y = x2x4 −
1

2
x23, Z = x1x

2
4 − x2x3x4 +

1

3
x33,

W = 9x21x
2
4 + (8x22 − 18x1x3)x2x4 + 6x1x

3
3 − 3x22x

2
3.

Hence, SpecA is a hypersurface X2W = (2Y )3 + (3Z)2 in A4. We show that

the set {(0, 0, 0, W )|W 6= 0} is not in the image of q. In fact, for a closed

point of SpecA with X = x4 = 0, we have Y =−1
2x

2
3 and Z = 1

3x
3
3. If x3

moves, the point (−1
2x

2
3,

1
3x

3
3) covers the curve (2Y )3 + (3Z)2 = 0 in the

(Y, Z)-plane. If x3 6= 0, we can find x1, x2 so that W = 6x1x
3
3 − 3x22x

2
3 takes

an arbitrary value. If x3 = 0, then W = 0. Hence, {(0, 0, 0, W )|W 6= 0} is

not in the image of q.

As for the flatness of B over A, it suffices to show that q is not

equidimensional. It is clear that the general fibers of q have dimension one.

However, over the point (0, 0, 0, 0), the fiber is given by {x3 = x4 = 0}, which

is a plane. Therefore, we have shown that A ↪→B is not a pure embedding.

A more straightforward way to see that A ↪→B is not a pure embedding is

to use that IB ∩A 6= I, for I :=XA+ Y A. In fact, IB contains X, Y, Z, W ,

but Z, W 6∈ I.

We note that Bonnet [3] constructed an example of Ga-action on A4

whose quotient morphism is not surjective.

§3. Purity and surjectivity

In this section we study the relationship between the notions of purity

and surjectivity of the induced morphism Spec S → SpecR for an inclusion

of rings R ↪→ S. Of particular interest will be the cases when R, S are

analytic local rings, or complete local rings.

We now answer the questions raised in the introduction.

Let R⊆ S be algebraic local rings.

By Lemma 1.7, faithful flatness implies purity. Therefore, in answering

Question 3, we have a generalization of the well-known result that flat maps

are open.

We believe that this is a new result about pure morphisms. The proof of

this result is quite nontrivial.
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As a first step in relating purity to surjectivity we record the following

easy consequence of Chevalley’s theorem, as in [11, Theorem 6], which tells

us that the surjectivity of the Spec map, associated to a local morphism,

actually translates into the local surjectivity in Zariski-topology.

Theorem 3.1. Let A⊆B be Noetherian rings of finite krull dimension,

such that A is an integral domain, and B is a finitely generated algebra over

A. Suppose that, for some p ∈ Spec B, the induced morphism of schemes

Spec Bp −→ Spec Apc

is surjective. Then there exists an open set V ⊆ Spec A, such that pc ∈ V ⊆
ai(Spec B), where ai : SpecB → Spec A is induced by the natural inclusion

i :A−→B.

Corollary 3.1.1. Let φ :X −→ Y be a morphism of affine algebraic

sets, with Y being irreducible. If x ∈X is such that

SpecOX,x −→ SpecOY,φ(x)

is surjective, then there exists an open set V ⊆ Y , satisfying φ(x) ∈ V ⊆
φ(X). In particular, the result is true when x ∈X is pure.

The next result shows that purity carries over to completion.

Theorem 3.2. Let Rm −→ Sn be a cyclically pure extension of algebraic

local rings. Then the induced map R̂m → Ŝn is also cyclically pure. (Note

that cyclic purity implies that the morphism is local.)

Proof. If ψ : R̂m → Ŝn is the induced natural map, then we get the

following commutative diagram:

Rm Sn

R̂m Ŝn
ψ

Given any ideal Î of R̂m, by Krull’s intersection theorem, we have

Î =
∞⋂
n=1

(Î + m̂n).
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Since the ideal Î + m̂n is m̂-primary for each n, it is sufficient to show that

any m̂-primary ideal is contracted from some ideal in Ŝn. If q̂ is any m̂-

primary ideal in R̂m, then there exists an m-primary ideal q in Rm such that

q̂ = qR̂m. Now, Rm ↪→ Sn being pure, there exists an ideal p ∈ Sn satisfying

p ∩Rm = q. Since completion is faithfully flat and hence pure by Lemma 1.7,

there exists an ideal p̂ ∈ Ŝn such that p̂ ∩ Sn = p. The diagram being

commutative, ψ−1(p̂) ∩Rm = q. Therefore, ψ−1(p̂) is also m̂-primary, and

consequently an extended ideal. Hence, ψ−1(p̂) = q̂, as the extended ideals

are in one-to-one correspondence with the contracted ideals. Therefore,

ψ : R̂m → Ŝn is cyclically pure.

As a corollary, we get an affirmative answer to Question 1. This also

follows from [7, Proposition 6.11], but we have given a direct elementary

proof.

Corollary 3.2.1. Let R⊆ S be a pure extension of algebraic local

rings. If R is either reduced or Gorenstein, then the induced map R̂ → Ŝ

is also a pure extension. Similarly, the extension of the associated analytic

local rings Ran → San is also a pure extension.

Proof. The proof follows from Lemma 1.5.

Since R̂ is the completion of Ran, we deduce the result that the extension

of the associated analytic local rings Ran → San is also a pure extension.

Next, for Question 2, we begin by recalling a simple fact in commutative

algebra.

Lemma 3.3. If p is a prime ideal in a Noetherian ring R, such that

Spec (R/p) is infinite, then

p =
⋂

q∈V (p)\{p}

q.

Proof. The proof follows from the prime avoidance theorem.

Now, let R be an algebraic local domain of dimension > 1. Then, by a

standard result in commutative algebra, R̂ is a reduced ring. Therefore, in

this case Lemma 3.3 has the following corollaries.

Corollary 3.3.1. With the above hypothesis for R, the intersection of

all nonzero prime ideals is (0) in R as well as in R̂.

Corollary 3.3.2. If dim R̂= d, then any prime ideal p of height

smaller than d is the intersection of all prime ideals of height d− 1
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containing p. (Geometrically, this means that every irreducible germ of an

algebroid variety is the union of all the algebroid curves in it.)

Theorem 3.4. Let (R,m)⊂ (S, n) be algebraic local domains such that

R̂ is an integral domain. Suppose that the morphism Spec S → SpecR is

surjective. Then the morphism Spec Ŝ→ Spec R̂ is also surjective.

Proof. By [1, Chapter 3, (10.14)], we have an injection R̂ → Ŝ.

Consider first the case when mS is primary for n. Then it is easy to see

that Ŝ is integral over R̂. In this case the result is well known.

So we assume that mS is not primary for n. Let d := dim R. We further

assume that d > 1, since the result is trivial for d= 1.

We claim that it suffices to prove that given any prime ideal p̂⊂ R̂ such

that height p̂ = d− 1, there is a prime ideal q̂⊂ Ŝ such that p̂ = q̂ ∩ R̂.

For, assuming this, if p̂ ∈ Spec R̂ is of height less than d− 1, then, by

Corollary 3.3.2, there exists an ideal I in Ŝ contracting to p̂. However, any

maximal element of the set {I C Ŝ | I ∩ R̂= p̂} is a prime ideal in S, and

hence p̂ must be in the image of Spec Ŝ.

Let mS =Q1 ∩Q2 ∩ · · · ∩Qr+1, where Qi are primary for prime ideals

pi strictly smaller than n for 16 i6 r, and Qr+1 (if it occurs in a minimal

primary decomposition) is primary for n. Suppose that p̂ is not of the form

q̂ ∩ R̂ for any prime ideal of q̂ in S. Then p̂Ŝ =Q′1 ∩ · · · ∩Q′s ∩Q′s+1, where

Q′j is primary for a prime ideal p′j which contracts to some pji for 16 j 6
s, ji 6 r, and Q′s+1 is primary for n̂. Clearly, s> 1.

We write S = k[x1, . . . , xn](x1,...,xn), R= k[f1, . . . , fe](f1,...,fe). It follows

that fl ∈ pi for each l, and 16 i6 r + 1, where pr+1 = n. Let p̂ =

(ϕ1, . . . , ϕm)⊂ k[[f1, . . . , fe]]. Then ϕj ∈ p′β for each j, and β 6 s+ 1. Each

p′β contains some pβi . Hence, each fα is contained in each p′β for β 6 s+ 1.

Thus, ϕj ∈Q′β for each j, and β 6 s+ 1.

There exists N > 0 such that p′β
N ⊂Q′β for each β. Hence, we can write

ϕi = ϕj0 + ϕj1,

where each ϕj0 is a polynomial in f1, f2, . . . , fe, and ϕj1 ∈ n̂ ·Q′β. It follows

that the ideal (ϕjo, . . . , ϕm0) generates ∩s+1
1 Q′β mod n̂ · (∩s+1

1 Q′β). By

Nakayama’s lemma, this implies that (ϕ10, . . . , ϕm0) = p̂Ŝ.

By [2, pages 32–33], we can assume that (ϕ10, . . . , ϕm0)R̂ is of height

d− 1. Let I = (ϕ10, . . . , ϕm0)⊂R.
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Claim. IS ∩R⊂
√
I.

To see this, we write the primary decomposition of I as I = ∩Ji, where

the Ji are primary for distinct prime ideals J̃i. Since Spec S → SpecR is

surjective, we have J̃iS ∩R= J̃i. It follows that IS ∩R⊂ ∩J̃i =
√
I.

Now, (IS)Ŝ ∩ S = IS, since Ŝ is a faithfully flat extension of S. It follows

that IŜ ∩ R̂= (p̂Ŝ) ∩ R̂ is an ideal, which contracts to an ideal contained in√
I. Hence, p̂Ŝ cannot contract to an ideal which is primary for n̂.

This contradiction shows that p̂ is contracted from Ŝ. This completes the

proof of Theorem 3.4.

Remark. With the notation and assumptions of Theorem 3.4, we

deduce easily that the morphism Spec San → SpecRan is also surjective.

The next result gives an affirmative answer to Question 3 for morphisms

of complex analytic varieties. This generalizes the well-known result that a

flat morphism is open.

We need the following well-known result from complex analysis.

Rouché’s theorem. Let g(w), h(w) be holomorphic functions of one

variable w in a simply connected open set U ⊆ C. Let Γ be a simple closed

curve in U . If |g|> |h| on Γ, then g and g + h have the same number of

zeros counted with multiplicity inside Γ.

We use this as follows.

Let g(z, w) be holomorphic in variables z1, z2, . . . , zr and one variable

w in an open neighborhood U of (0, 0) in Cr+1. Suppose that g = b0(z) +

b1(z)w + · · ·+ bn(z)wn + · · · , where n is the smallest positive integer such

that bn is a unit in the convergent power series ring C{z}. Assume for

simplicity that bn = 1 + cn, where cn(z) is a nonunit.

Claim. There exist open sets U1, U2 in Cr, C respectively such that

U1 × U2 is contained in U , and such that for any fixed (z) ∈ U1, we have

|b0 + b1w + · · ·+ wn|> |cnwn + bn+1w
n+1 + · · · | on the boundary of U2.

To see this, suppose |w|= δ < 1/2. Since cn + bn+1w + bn+2w
2 + · · ·

vanishes at the origin in Cr+1, by continuity we can assume that δ1, δ are

so small that |zi|< δ1 in N1, |w|< δ in U2, and |cn + bn+1w + · · · |< 1/2 in

N1 × U2. Since b0, b1, . . . , bn−1 are nonunits, we can find an open neighbor-

hood N ′1 of 0 ∈ Cr such that |(b0 + b1w + · · ·+ bn−1w
n−1)/wn|< 1/2 for all

(z) ∈N ′1 and |w|= δ. Taking U1 =N1 ∩N ′1, we get the required result.
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Now by Rouché’s theorem, for any fixed (z) ∈ U1, the numbers of zeroes

of b0 + b1w + · · ·+ wn and g in U2 are the same. Clearly, by shrinking U1

if necessary, for any (z) ∈ U1 the equation b0 + b1w + · · ·+ wn = 0 has n

zeroes in U2. Hence, this is also true for g inside U2. This proves that the

image of any neighborhood of (0, 0) in {g = 0} under the map (z, w) → (z)

contains a neighborhood of 0 in Cr.
In the application of the above ideas in the proof of Theorem 3.5 when

dim V > 1, we have bn = c0 + cn, where c0 ∈ C, with 1/26 |c0|6 1, and cn
is a nonunit. Then the rest of the above argument can be changed to get an

upper bound on |w| which is a root of g = 0.

Theorem 3.5. Let π : (W, q) → (V, p) be a morphism of complex

analytic germs. Assume that V is reduced and irreducible (but W may

be reducible or nonreduced). If the induced map on the local rings R :=

OV,p → S :=OW,q is pure, then for any Euclidean neighborhood U of q in

W the image π(U) contains a Euclidean neighborhood of p in V .

Proof. We prove the result using suitable induction on dim V and the

number r +m defined below for W .

We implicitly use the following observation. If I ⊆R is an ideal such that

one of the conditions of Lemma 1.5 is satisfied for the inclusion R/I ⊆ S/IS,

then this is also a pure embedding.

We assume that p, q are the origins in Cr, Cr+m respectively.

Let R= C{z1, z2, . . . , zr}/I, S = C{z1, . . . , zr, w1, . . . , wm}/J . Here,

r +m may be larger than the embedding dimension of S. Let J =

(f1, . . . , fl).

Write fi = ai0 + ai1(z)w
A1 + ai2(z)w

A2 + · · · , where each Aj is a multi-

index (j1, . . . , jm), and wAj = wj11 · · · w
jm
m , etc. For any multi-index Aj , we

denote |Aj |=
∑

a ja.

Let U be the set of points in Cr+m such that |zi|6 δ0, |w|6 δ0 < 1/2 for

a suitable δ0.

Case 1. Suppose that, for some fi, one of the coefficients aiα is a unit in R.

(This includes the case when W is a product of V and another variety.)

By making a unitary (linear) change of coordinates involving only

w1, . . . , wm (so that Euclidean distances are preserved), we can assume

that the monomial corresponding to aiα is wjmm for some jm. By the

Weierstrass preparation theorem, we can write fi = uigi, where ui is a

https://doi.org/10.1017/nmj.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.2


50 S. CHAKRABORTY, R. V. GURJAR AND M. MIYANISHI

unit in C{z1, . . . , wm}, and gi = wjmm + bm−1w
jm−1
m + · · ·+ b0. The coef-

ficients b0, b1, . . . , bm−1 are nonunits in {z1, . . . , zr}. It follows that

S is integral over a subring S1 such that R⊆ S1 ⊆ S and S1 :=

C{z1, . . . , w1, . . . , wm−1}/J1. Let W1 be the germ in Cr+m−1 corresponding

to J1. Then the image of any neighborhood of (0, 0) ∈W under the map

(z, w) → (z, w1, . . . , wm−1) contains a neighborhood of the origin in W1.

Any such point in W is contained in {fi = 0}.
Now we are in a position to use Rouché’s theorem. By the discussion

above, we can find open neighborhoods U1, U2 of the origins in Cr+m−1, C
respectively such that over any point in W1 ∩ U1 there are exactly jm points

in (U1 × U2) ∩ {fi = 0}, one of which lies in W .

Since R → S is pure, so is R → S1. By induction, the result is true for

W1 → V . Hence, it is also true for W → V .

To complete the induction for Case 1, we must prove the result for m= 1.

However, the same argument as above shows that in this case the

morphism π satisfies the assertion of the theorem.

Case 2. Now we can assume that for each i every aiα is a nonunit in R.

Case 2.1. Suppose first that dim R= 1 and R= C{z}. The proof of this

case is the crucial point of the proof of the general case.

Since π is nonconstant, using the well-known result in 1-variable complex

analysis that a nonconstant holomorphic map is open, we can easily deduce

the result. However, we must prove a uniform statement for all 1-dimensional

sections of V obtained by intersecting with linear subspaces when dim V > 1

and their scheme-theoretic inverse images inW . We consider a neighborhood

U of p in V defined by points p′ with |zk|6 δ for a suitable δ < 1, which we

will choose later, and k varies over the set {1, 2, . . . , r}.
Now, each aiα is a power series in one variable z vanishing at the origin.

For any element f ∈ J let ze be the largest power of z which divides all aα,

where f =
∑

α aαA
α. Let J ′ be the ideal generated by all f/ze as f varies

over elements in J . Then W is locally the union of {z = 0} and the variety

W ′ defined by J ′.

For simplicity, assume that J ′ is generated by f ′1, . . . , f
′
l , and f ′i =

Σa′iαw
α, where f ′i = fi/z

ei . No a′i0 can be a unit in R, for otherwise J ′

is the unit ideal and W ′ = φ. This implies that π is constant near q. This

contradicts the hypothesis that R → S is pure (hence injective). However,

by construction for each i, some a′iα with |α|> 0 is a unit. Arguing as above,

we can reduce to the case m= 1, in which case we get the required result.
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Since we need to prove this result for all 1-dimensional sections of V

when dim V > 1, we must prove a quantitative statement involving an upper

bound on |aij |.
Again, let f := f1, and let f = a0 + a1w + · · · .
Let mini ordz(ai) = e. Let a′i := ai/z

e. Our equation is of the form

a′0(z) + a′1(z) + · · ·+ a′n(z)wn + a′n+1(z)w
n+1 + · · ·= 0, such that all the a′i

are nonunits for i < n, and a′n is a unit. By the application of Rouché’s

theorem discussed earlier we deduce the result in this case.

This completes the proof of Case 2.1 when dim R= 1, m= 1 and V is

smooth.

Case 2.2. Now we consider the case when dim V = 1, m= 1, and V is a

singular curve.

The normalization of OV,p in its quotient field is isomorphic to C{z}.
Let V ′ → V be the normalization. Let W ′ be the fiber product W ×V V ′.
Both the morphisms V ′ → V, W ′ → W are finite, and W ′ → V ′ is pure by

Lemma 1.4. By taking small open neighborhoods of points in V ′ lying over

p we are reduced to the previous case.

Case 3. Now assume that dim V > 2.

Case 3.1. To explain the main idea we first assume that V is smooth of

dimension 2.

First, we prove two technical results which are useful in the arguments

below.

Let f = a0(z1, z2) + a1(z1, z2)w + · · ·+ an(z1, z2)w
n + · · · be a conver-

gent power series in variables z1, z2, w, such that ai(z1, z2) is a nonunit in

R := C{z1, z2} for every i. For any linear homogeneous polynomial L(z1, z2),

consider the ring R0 := C{z1, z2}/(L) = C{τ}. Clearly, we can take z1 or

z2 as τ . Assume that z1 = τ . Let ai be the image of ai in R0. Then ai
is a nonunit. Let ei > 0 be the τ -order of ai. Consider the set of integers

ei − {minj ej}. We assume that for any L we have e0 − {minj ej}> 0. Let

nL be the smallest integer i (depending on L) such that ei = {minj ej}.

Lemma 3.5.1. The integers minjej , nL are bounded as L varies over

the set of all linear homogeneous polynomials, so that at least one ai is

nonzero in R0.

Proof. We consider the ideal I := (a0, a1, . . .). Since I is finitely gener-

ated, it follows that minjej is bounded as L varies, such that at least one

ai is nonzero in R0. Similarly, nL is bounded above.
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The next result concerns upper bounds on the coefficients of the terms

occurring in the application of Rouché’s theorem as the linear homogeneous

polynomials L vary.

As above, let g := f/z1
e = b0 + b1w + · · · be a nonunit in

C{z1, z2, w}/(L), with f ∈ J , such that for some n there is a term in

g of the form bnw
n, where bn is a unit in R. To start with, by making

a suitable unitary (linear) change of coordinates involving z1, z2, we can

assume that bn = c0 + cn, where c0 is a constant, with 1/26 |c0|6 1, and

cn is a nonunit. In order not to complicate the notation, we assume that

c0 = 1. We also assume that nL is the smallest such integer. Then nL > 0

for all L such that L does not divide f . For a fixed f , the set of integers nL
is bounded above. Hence, for simplicity of exposition, we assume that nL
is a constant n> 1.

We can assume that there are suitable δ1 > 0, δ2 > 0 such that |cn +

bn+1w + bn+2w
2 + · · · |< 1/2 if |z1|6 δ1, |z2|6 δ1, |w|6 δ2.

Since bi is a nonunit for i < n, we can assume that δ1 is such that

|(b0 + b1w + · · ·+ bn−1w
n−1)< |w|n/2 when |z1|6 δ1, |w|= δ2. Now, it fol-

lows that |b0 + b1w + · · · |< |b0 + b1w + · · ·+ bn−1w
n−1 + wn| when |w|=

δ2. By Roché’s theorem, for any |z1|6 δ1, |z2|6 δ1, the numbers of zeros of

the equations b0 + b1w + · · ·= 0 and b0 + b1w + · · ·+ bn−1w
n−1 + wn = 0

inside |w|< δ2 are the same. As in the discussion above, this number can

be assumed to be n.

We must show that the numbers δ1, δ2 can be chosen independent of L.

This can be seen as follows.

Any line L in C2 has the equation z2 = cz1 for some constant c, or z1 = 0.

We give the argument assuming that |c|6 1, since if |c|> 1 then we can take

z2 = τ .

We need to analyze the power series f(z1, cz1, w) more carefully. If

some monomial γza1z
b
2 occurs in f with γ ∈ C a nonzero constant, then

there is a term γcbza+b1 in f(z1, cz1, w). The maximum possible number

of monomials of total degree a+ b in z1, z2 is a+ b+ 1. For terms bi
with i < n, if |z1|6 δ1 < 1/2, then (a+ b+ 1)|cbza+b1 |6 |(a+ b+ 1)za+b1 |6
(a+ b+ 1)δa+b. Since n is bounded, there are at most n · (a+ b+ 1) terms

containing za+b1 for i < n. Collecting all the terms with the same monomial

za+b1 , we get n convergent power series of the form
∑

l γlδ
l, which tend to 0 as

δ1 tends to 0. Hence, δ1 and δ2 < 1 can be chosen small and independent of L.

The argument for the series cn + bn+1w + bn+2w
2 + · · · is similar but more

complicated. In this case we get a convergent power series in variables δ1, δ2
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of the form
∑

l γl(δ1)δ
l
2, where γl is a convergent power series in δ1. Hence,

a similar argument shows that |cn + bn+1w + · · · |< 1/2 when |z1|6 δ1, δ2
are sufficiently small (independent of L).

Now, as in the proof when dim V = 1, we prove that the image of any

Euclidean neighborhood of O in W contains a Euclidean neighborhood of

O in V .

As before, let f1, . . . , fl be the equations defining W .

Let Ji be the ideal generated by all the aiα in OV,p. We consider a prime

ideal p which defines an irreducible curve C in V which is an irreducible

component of a hyperplane section of V . It suffices to show that there is an

ε > 0 such that for every such curve C there is an ε-neighborhood of p in C

which is contained in the image of π.

For the application of Rouché’s theorem, we use f := f1 below, write

f =
∑
aαw

Aα , and assume that f |L is not identically zero for every L.

By Lemma 1.3, the extension R/p⊆ S/pS is also pure.

Again, first consider the case when R/p is smooth. As before, we can

assume that R/p = C{z}.
The functions |aiα|C have the same upper bound as |aiα| on V . It is

possible that for some such C and an i all aiα ∈ p. Such an fi can be ignored

for the consideration that follows.

We now consider only those C for which aiα|C are not all identically zero.

Now, Ji 6⊂ p. As above, let ei be the z-order of fi.

Claim. For any p such that Ji 6⊂ p, the set of integers ei as L varies is

finite.

This follows using the primary decomposition of Ji, and the hypothesis

that dim V = 2.

Now, f/zei = a′0 + a′1w + · · ·+ a′nw
n + · · · , where a′n is a unit, and no a′i

is a unit for i < n. The set of integers ei, nL is bounded above.

Hence, given any η > 0, we can find a δ such that whenever |zi|6 δ,
we have |a′i|< 1/2 for i < n, and this for all L. Similarly, |cn + a′n+1w +

a′n+2w
2 + · · · |< 1/2 if |zi|6 δ, |w|6 δ for all L. Therefore, in the applica-

tion of Rouché’s theorem there is a uniform upper bound on the absolute

value of at least one w corresponding to any (z) ∈ U1.

Now the proof is similar to the case when dim R= 1, and R is smooth.

A similar proof to that above works when dim R/p = 1, and R/p is

singular.
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Case 3.2. Now, let dim V > 2.

We again consider the ideals Ji and irreducible components C of 1-

dimensional sections of V with corresponding local ring R/p. If some fi ∈ p,

with the notation above, then such an fi can be ignored for the consideration

that follows. If there is a p which contains all Ji, then every point in the

curve C is in the image of π.

Now, assume that not all fi ∈ p. The proof is the same as in the two-

dimensional case. (The proof of the claim is also not difficult.)

We leave the details to the reader.

This completes the proof of Theorem 3.5.

Remark. In Section 5, we give an example of a graded morphism

C2 → C2, such that the image of any neighborhood of the origin in the

domain contains a neighborhood of the origin in the range (which easily

implies the surjectivity of the induced map at germ level), but the morphism

is not pure. This shows that the converse of Theorem 3.5 is false.

Theorem 3.5 has an interesting corollary. There exist convergent power

series f1, f2, . . . , fm in variables z1, . . . , zn with m> n such that there

is no convergent power series relation between the fi, but there is a

formal power series relation between them [4]. This gives an inclusion

R := C{f1, f2, . . . , fm} ⊂ S := C{z1, z2, . . . , zn}.

Corollary 3.5.2. Any inclusion R⊆ S of local analytic domains such

that dim R> dim S is not pure.

Proof. Suppose that this is a pure extension. By Theorem 3.5, the image

of the corresponding analytic map, say W → V , contains a nonempty open

subset U of V . By Sard’s theorem, the inverse image of a general point of U

is a nonempty smooth subvariety of W . This is a contradiction, since dim

W < dim V .

§4. Some positive results in special cases

Coming back to the quasi-finiteness question raised in Section 1, we will

see in Section 5 that even a pure morphism of affine planes need not be quasi-

finite. However, the result is true for subalgebras generated by monomials.

Theorem 4.1. Let A be a subring of k[n](:= k[x1, . . . , xn]), generated

by the monomials f1, . . . , fm. Suppose that the induced morphism ai :
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Spec k[n] → SpecA is generically quasi-finite. Then A ↪→ k[n] is pure if and

only if A is normal, and the powers xNi (16 i6 n) are contained in A for

some integer N > 0. In particular, k[n] is integral over A if A ↪→ k[n] is a

pure embedding.

Proof. First, suppose that A ↪→ k[n] is a pure embedding. Then

A is also a normal domain. Let A1, A2, . . . , Am be the n-tuples of

exponents corresponding to f1, . . . , fm; namely, Ai := (ai1, ai2, . . . , ain)

when fi = xai11 xai22 · · · xainn . Since ai is generically quasi-finite, the m× n-

matrix A, whose row vectors are A1, . . . , Am, has rank n. After rein-

dexing, if required, we may assume that A1, . . . , An are Q-independent.

Hence, they have maximal rank in the Q-vector space generated by

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1). Then, for some integer r > 0,

r(1, 0, 0, . . . , 0) lies in the abelian subgroup generated by A1, A2, . . . , An.

After a change of indices, we can write

r(1, 0, . . . , 0) = b1A1 + · · ·+ bsAs − (bs+1As+1 + · · ·+ bnAn),

where each bi is nonnegative. This means that

f b11 · · · f
bs
s = xr1f

bs+1

s+1 · · · f
bn
n .

Since A is a pure subring of the integral domain k[n], it follows from

Lemma 1.1(2) that xr1 ∈A, and similarly for x2, . . . , xn. Hence, the powers

xNi are in A for some N > 0.

The converse follows from Lemma 1.6.

Generalizing Theorem 4.1, we can then ask whether the following

conditions are equivalent.

Question 4.2. Let A be a subring of k[n], generated by the homoge-

neous polynomials f1, . . . , fm. Suppose that A is normal, and the induced

morphism ai : Spec k[n] → SpecA is generically quasi-finite. We want to

investigate the equivalence of the following three statements.

(1) A ↪→ k[n] is a pure embedding.

(2) The morphism ai is quasi-finite and surjective.

(3) The polynomial ring k[n] is integral over A.

We know that any finite morphism is quasi-finite and surjective. Since A

is normal, by Lemma 1.6, any surjective and quasi-finite morphism must be

pure. Again, it is not difficult to see that any quasi-finite, graded morphism
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is actually finite. Therefore, the question that remains open is whether

a polynomial ring is quasi-finite over a graded, pure subring of the same

dimension with induced grading.

Let A ↪→B be an inclusion of affine domains over k. In order to approach

the question of quasi-finiteness raised in the introduction, we construct

the unique subalgebra C of B, containing A, and satisfying the following

properties.

(1) The morphism Spec C→ SpecA, induced by the inclusion A ↪→ C, is a

quasi-finite surjective morphism.

(2) C is an affine domain over k.

(3) If C ′ ⊂B is an affine domain over k such that A ↪→ C ′, and the induced

morphism Spec C ′→ SpecA is quasi-finite and surjective, then C ′ ⊆ C.

We call C the quasi-finite closure of A in B.

Theorem 4.3. Suppose that Q(B) is an algebraic extension of Q(A),

and that the morphism SpecB→ SpecA is surjective. Further, assume that

A, B are normal. Then the quasi-finite closure C of A in B exists, and

satisfies the following properties.

(1) C is an integrally closed domain which is birationally equivalent to B.

(2) C is a pure extension of A.

Proof. (1) Let C1 and C2 be finitely generated k-subalgebras of B

containing A, such that Spec Ci→ Spec A is quasi-finite and surjective for

i= 1, 2. Let C1C2 be the k-subalgebra of B generated over C1 by C2. Any

maximal ideal of C1C2 is generated by a pair of maximal ideals of C1, C2.

This implies that Spec C1C2 → SpecA is quasi-finite. It is also surjective

since SpecB → SpecA is surjective.

Now, let C be the k-subalgebra of B generated by all finitely generated

k-subalgebras Ci of B containing A, such that Spec Ci → SpecA is a quasi-

finite, surjective morphism.

Since the degree of the field extension Q(B)/Q(A) is finite, say d, the

degree of the extension Q(C)/Q(A)6 d. Since the normalization of Ci in the

quotient field ofB is finite and surjective over Ci, we can assume that each Ci
is normal and birational with B. By considering the rings C1, C1 · C2, C1 ·
C2 · C3, . . . and their normalizations in their quotient field Q(B), we can

assume that C1 ⊆ C2 ⊆ C3 ⊆ · · · are all quasi-finite extensions. This gives an

increasing union of normal birational affine domains R1 ⊆R2 ⊆ · · · , which
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are quasi-finite extensions of A. It follows that every Ri ⊆Ri+1 is also quasi-

finite. By Zariski’s main theorem, these inclusions induce open embeddings

of corresponding affine schemes. Each Ri ⊆B is birational. Therefore, we

can find a suitable hypersurface section H of SpecB defined by {h= 0} such

that Ri ⊆B[1/h] for each i (this is obvious), and SpecB \H is an affine

variety contained in each SpecRi. This implies that the sequence SpecRi
is constant for i� 0. This proves that C is an affine domain.

Let b be any element of B. Since Q(B) is algebraic over Q(A), there

exists a nonzero element a ∈A such that ab is integral over A. Then A[ab],

which is a k-subalgebra generated by ab over A, is contained in C because

SpecA[ab] → SpecA is a finite morphism. Hence, A[ab]⊆ C. This implies

that b ∈Q(C), and hence Q(C) = Q(B). If b is an integral element of B over

C, then C[b] is a k-subalgebra of B, such that Spec C[b]→ Spec C is a finite

morphism. Hence, Spec C[b]→ SpecA is a quasi-finite surjective morphism.

Hence, C[b] = C, implying that b ∈ C.

(2) This follows from the quasi-finiteness of Spec C → SpecA.

With the notation as in Theorem 4.3, set Y := Spec (B), X := Spec (A),

and f : Y →X is the morphism induced by the inclusion A ↪→B. We assume

that A and B are normal. Let F be the closed set of X consisting of the

points x, such that f−1(x) contains an irreducible component of positive

dimension. Let ∆ be the union of all irreducible components of codimension

one in f−1(F ), and let Y ′ := Y \∆. Then Y ′ is an affine scheme SpecB′,

where B′ is the ideal quotient (B : J) := {f ∈Q(B)|fJn ⊆B for some n},
where J is the defining ideal of ∆. In fact, since B is normal, B′ is the

intersection of Bq, where q ranges over all prime ideals of height one of B

such that V (q) 6⊆∆. We prove the following result.

Theorem 4.4. Let the notations and assumptions be the same as in

Theorem 4.3 and as above. Suppose that C is finitely generated over k.

Then Y ′ is an open set of Spec C, and the restriction f |Y ′ : Y ′→X is almost

surjective, that is, the image f(Y ′) contains all codimension one points of X.

Proof. Let p be a prime ideal of height 1 of A. Since f : Y →X is

surjective, there exists a prime ideal q of B such that q ∩A= p. Then q

has height 1. In fact, let P = q ∩ C. Since Spec (C)→ Spec (A) is a quasi-

finite morphism, P has height 1. Note that B and C are birational, and

Bq dominates CP. Since CP is a discrete valuation ring, we have Bq = CP.

Note that, if p ranges over all prime ideals of height 1 in A, then q, lying
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over p, will range over all prime ideals of height 1 in B such that V (q) 6⊆∆.

Therefore, the open set Y ′ is contained in Spec (C). The above argument

shows that f |Y ′ is almost surjective.

Let S be the polynomial ring in n-variables over k, and let G be a

reductive algebraic subgroup of GL(n, k), acting naturally on S. Then the

ring of invariants R := SG is a graded subring of S. Let m, n be the irrelevant

maximal ideals of R, S respectively.

The next result may be well known to the experts.

Proposition 4.5. Rm is a pure subring of Sn.

Proof. The Reynold’s operator sends f ∈ S to f0 ∈R by a suitable

integration over a maximal compact subgroup K of G. An element f ∈ S
vanishes at the origin if and only if f0 vanishes at the vertex in SpecR.

Any element in Sn is of the form f/g, where f, g have no common factor,

and g does not vanish at the origin. Since S has no nonconstant units, such

a representation of an element of Sn is unique up to a nonzero constant.

Therefore, the Reynold’s operator can be uniquely extended to an Rm-

module homomorphism of Sn to Rm by sending f/g to f0/g0. This shows

that Rm is a direct summand of Sn, and hence a pure subring.

§5. Examples, and more observations on pure extensions

To start with, let us consider the following two morphisms of affine

domains, which manifest the subtlety of pure extensions.

Example 5.1.

φ : k[x, y] ↪→ k[x, y, z]

(xz2 − yz − xy)

and

ψ : k[x, y] ↪→ k[x, y, z]

(xz2 − yz − xy2)
.

Then φ is not pure, but ψ is pure.

Proof. To show that φ is not pure, look at the ideal I ⊆ k[x, y], generated

by x4 and y4 + 3x2y3 + x4y2. Then xy4 + 2x3y3 /∈ I, whereas xy4 + 2x3y3 ∈
I(k[x, y, z]/(xz2 + yz + xy)) ∩ k[x, y] because of the relation

x4z5 ∈ (y4 + 3x2y3 + x4y2)z + (xy4 + 2x3y3).
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The relation is obtained by successive substitution yz + xy for xz2. The

purity of ψ, on the other hand, is a consequence of the following lemma.

Lemma 5.2. Let f be a polynomial in k[x, y], divisible by y2. Then the

map

Ψ : k[x, y]−→ k[x, y, z]

(xz2 + yz + f)

is pure.

Proof. First, note that the associated morphism of schemes is surjective,

since it is surjective on the closed points. Therefore, by local criteria for

purity as in Lemma 1.3, it is sufficient to check that the induced local

morphism over the origin

Ψ0 : k[x, y](x,y) −→
k[x, y, z]

(xz2 + yz + f)
⊗ k[x, y](x,y)

is pure, as, over any point other than the origin, the morphism is quasi-

finite, and hence is pure by Lemma 1.6. Again, in view of the observation

that any partially pure point is pure, it suffices if we can show that the

induced map

Ψ′0 : k[x, y](x,y) −→
( k[x, y, z]

(xz2 + yz + f)

)
(x,y,z)

is pure. However, the polynomial xz2 + yz + f , as a polynomial in z, has

roots in k[[x, y]] since y2|f . Therefore, the corresponding map of completions

Ψ̂
′
0 : k[[x, y]]−→ k[[x, y, z]]

(xz2 + yz + f)

is pure. Consequently, in view of the commutative diagram,

k[x, y](x,y) ( k[x,y,z]
(xz2+yz+f)

)(x,y,z)

k[[x, y]] k[[x,y,z]]
(xz2+yz+f)

Ψ̂
′
0

Ψ′0
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Lemma 2.4 implies that Ψ′0 is pure. Hence, Ψ is pure. This completes the

proof of Lemma 5.2 and shows that ψ is a pure morphism.

The notion of pure morphism generalizes the ring of invariants of a

polynomial ring under some group actions. If a finite group G acts on

A := k[x1, x2, . . . , xn], then A is finite over the ring of invariants AG.

However, in the case of a pure extension of normal, affine domains of same

dimension, the map may not even be quasi-finite.

Example 5.3. (A pure morphism of affine surfaces need not be quasi-

finite) Let us consider the affine morphism

A2 f−→ A2, given by (x, y) 7→ (x(x+ 1), xy).

It is easy to see that f is surjective. Moreover, it is quasi-finite outside

the origin, and the fiber over the origin is the union of the line L :=

{(x, y) ∈ A2 | x= 0} and the point (−1, 0). Therefore, removing L, we get a

morphism, say f̃ , between normal affine varieties, which is quasi-finite and

surjective.

A2 − L A2

A2

i

ff̃ := f ◦ i

By Lemma 1.6, the morphism f̃ is a pure morphism of affine normal

varieties. Hence, f is a pure morphism by Lemma 1.1(1). However, f is not

quasi-finite.

Remark. In the following commutative diagram:

k[x(x+ 1), xy] k[x, xy]

k[x(x+ 1), xy] k[x, y]

k[x(x+ 1), xy] ↪→ k[x, y] is pure, and hence, by Lemma 1.1, k[x(x+ 1), xy]

↪→ k[x, xy] is also pure. However, since k[x, xy] is birational to k[x, y],
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Corollary 2.3.1 implies that k[x, xy] ↪→ k[x, y] cannot be pure. This should

be contrasted with Lemma 2.5.

We saw in Example 5.3 that the local morphism at the origin is pure in

spite of the fiber over it containing a line. However, in this case, the fiber

also contains an isolated point, i.e., a component of “correct” dimension.

Therefore, it is natural to ask whether the purity is due to the presence of

the “correct” dimensional component in the fiber. Therefore, we pose the

following question.

Question. Let φ :X −→ Y be a morphism of normal affine varieties.

Suppose that y ∈ Y is pure. Is it true that φ−1(y) must contain a component

of “correct” dimension, i.e., of dimension equal to dim X− dim Y ?

Unfortunately, this question has a negative answer, as the following

example shows.

Example 5.4. Let the multiplicative group C∗ act on the polynomial

ring S := C[X, Y, Z, W ] by ρλ(X, Y, Z, W ) = (λX, λY, λ−1Z, λ−1W ). By

the use of Reynold’s operator, it is well known that the ring of invariants

R := C[XZ, XW, Y Z, Y W ] is a direct summand of S, and hence R⊂ S is

a pure extension. The inverse image of the vertex of SpecR in Spec S is

the union of two linear subvarieties {X = Y = 0} and {Z =W = 0}, each

having dimension 2, which is larger than dim S− dim R= 1.

Example 5.5. (The pure locus is not open in general) Consider the

affine morphism

θ : A3 −→ A2, given by (x, y, z) 7→ (xz, yz).

The fiber over (0, 0) ∈ A2 is the union of the line {(x, y, z) ∈ A3 | x= y = 0}
and the plane {(x, y, z) ∈ A3 | z = 0}. Now OA2,(0,0) −→OA3,(0,0,0) is pure

by Proposition 4.5, since k[xz, yz] is the ring of invariants of k[x, y, z] under

the action of k∗, given by (λ, (x, y, z)) 7→ (λx, λy, λ−1z). However, it follows

from the following Theorem 5.6 that there exist points in A3, arbitrarily close

to the origin, such that Spec OA3,(x,y,z) −→ Spec OA2,θ(x,y,z) is not surjective,

and consequently Spec OA3,(x,y,z) −→ Spec OA2,θ(x,y,z) is not pure.

Theorem 5.6. Let f : X −→ Y be a morphism of affine varieties, with

y ∈ Y , such that dim f−1(y) > dim X − dim Y . Then, for any irreducible

component of highest dimension, say Z, of f−1(y), there exists a nonempty

Zariski-open set U ⊆ Z, such that for all x ∈ U , the induced morphism

Spec OX,x −→ Spec OY,y is not surjective.
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Proof. The proof is left to the reader as an exercise.

Theorem 5.6 has the following two interesting corollaries.

Corollary 5.6.1. Any strongly pure morphism of affine algebraic

varieties is equidimensional.

Corollary 5.6.2. The nonequidimensional pure extension

k[xz, yz] ↪→ k[x, y, z]

shows that a pure morphism need not be strongly pure.

Note. If we choose the underlying field to be the field of complex numbers

C, then the above proof also tells us that the pure locus is not even open in

Euclidean topology, as any nonempty Zariski-open set in a variety is dense

in the Euclidean topology.

5.7. The set of completely pure points may not be open. Let Y := A3,

X := Y × F , where F ∼= A3. Let L ∈ Y be a line, and let L′ := L× {0} ⊂X,

which maps isomorphically onto L. Let f : X̃ → X be the blow-up with

center L′, and let Z := f−1(L′). Then, Z ∼= L′ × P4. Every fiber of the

composite morphism X̃ → Y for a point y in L is a union of the proper

transform of Fy and a variety Vy isomorphic to P4, where Fy is the fiber over

y of the morphism X → Y . Let X0 := X̃ \ VO, where O ∈ Y is the origin.

Now, the natural morphism X0 → Y has the property that the fiber over

O has dimension 3, and for any y ∈ Y with y 6=O, the fiber over y contains

an irreducible component of dimension 4. The point O ∈ Y is completely

pure for the morphism X0 → Y , but other points in L are not pure for this

morphism. This shows that the set of completely pure points may not be

open.

Remark. The above example also shows that in Grothendieck’s theo-

rem on generic flatness, for a morphism X → Y , the set of points y in Y

such that the morphism is flat over y may not be open. It also shows that

the dimension of a fiber may not be an upper-semicontinuous function on Y .

In Section 1, we saw that pure extensions are preserved under tensor

products. However, as the following example shows, this fails to hold true

for the composite of subalgebras.

Example 5.8. Let k[x, y]⊆ k[x, y, z, w]/(x2z + yw + x). Now consider

the two k[x, y]-subalgebras B1 := k[x, y, z] and B2 := k[x, y, w]. Then, each
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Bi is a pure extension of k[x, y]. However, k[x, y, z, w]/(x2z + yw + x) =

B1B2 is not a pure extension of k[x, y].

Proof. If I is defined to be the ideal generated by x2 and y in k[x, y],

then

x ∈ I
( k[x, y, z, w]

(x2z + yw + x)

)
∩ k[x, y] \ I.

Remark. If A⊆B are commutative rings, then a simple application of

Zorn’s lemma shows that there exist maximal (cyclically) pure extensions of

A in B. However, the above example shows that there may be several such

maximal extensions, with none being ‘the maximum’ one. Consequently, any

attempt to define notions like (cyclically) pure closure proves futile.

Lemma 1.9 tells us that, if A is a Noetherian complete local ring, then a

ring extension A⊆B is pure if and only if A is a direct summand of B. The

next example shows that a pure extension of Noetherian rings, in general,

need not be a direct summand.

Lemma 5.9. Let A be an integral domain, and let A[x, y] be the

polynomial ring in two variables over A. Then,

A[x] ↪→ A[x, y]

(xy2 − y + 1)

is faithfully flat by Nagata’s criteria of faithful flatness [14], and hence pure

by Lemma 1.7. However, this extension is not a direct summand.

Proof. If possible, let

θ :
A[x, y]

(xy2 − y + 1)
−→A[x]

be an A[x]-linear map, and denote the image of θ(Y n) by θn. Then, for any

n> 0, we have

xθn+2 = θn+1 − θn.

First, note that θ1 must have a positive degree, as otherwise either θ2 or

θ3 is not solvable. Again, deg θ2 = deg θ3 = deg θ1 − 1. A routine inductive

argument shows that, for any n> 1,

deg θ2n 6 deg θ1 − n, as well as deg θ2n+1 6 deg θ1 − n.
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Since the degree of any nonzero polynomial is always nonnegative, the θn
will eventually be 0 for all n� 0. Let n0 be a positive integer such that

θn0−1 6= 0 and θn = 0 for all n> n0. Then,

xθn0+1 = θn0 − θn0−1.

This is a contradiction.

The following example shows that we can even get a pure embedding of

algebraic local domains which is not a direct summand.

Example 5.10. Let k be an algebraically closed field of characteristic

0. Let us consider the following example:

k[x](x) ↪→
( k[x, y]

(xy2 − y + x)

)
(x,y)

.

The extension is faithfully flat by Nagata’s criteria of faithful flatness [14],

and hence pure by Lemma 1.7. However, as we will see, it is not a direct

summand.

Proof. The polynomial xy2 − y + x, as a polynomial in y over k[x], splits

in k[[x]], with the roots being

y =
−1 ±

√
1− 4x2

2x
.

Therefore, taking the ‘−’ sign, we get a root, say xy0, with y0 := 1 + x2 +

. . . . If possible, let

θ :
( k[x, y]

(xy2 − y + x)

)
(x,y)

� k[x](x)

be a k[x](x)-linear map. A moment’s reflection will convince the reader that(
k[x,y]

(xy2−y+x)

)
(x,y)

is a DVR, and

i :
( k[x, y]

(xy2 − y + x)

)
(x,y)

−→ k[[x]], with y 7→ xy0,

is an embedding of local rings. Let Bn be the image of
(

k[x,y]
(xy2−y+x)

)
(x,y)

under i. Then,

θ ◦ i−1 :Bn � k[x](x)
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is also k[x](x)-linear. Note that the nBn-adic topology of Bn coincides with

the topology induced by the xk[[x]]-adic topology of k[[x]]. Since k[x](x) is

dense in k[[x]] with respect to the xk[[x]]-adic topology, it follows that k[x](x)
is also dense in Bn with respect to the nBn-adic topology. Moreover, any

k[x](x)-linear endomorphism of Bn is continuous with respect to the nBn-

adic topology. So the k[x](x)-linear map θ ◦ i−1, being identity on a dense

subset k[x](x), must be identity on Bn. This is a contradiction since xy0 ∈Bn

is not contained in k[x](x).

In the final two examples, we deal with complex affine varieties. Suppose

that X and Y are affine cones, i.e., affine varieties given by homogeneous

prime ideals, of the same dimension, and f :X −→ Y is a surjective

morphism given by homogeneous polynomials. In this set-up, the question

of purity over the origin plays a key role in determining the purity of f .

Therefore, it is natural to ask how the following three properties are related.

(1) The induced local morphism at the origin f∗0 :OY,0 −→OX,0 is pure.

(2) Given any Euclidean open ball around the origin in X, f(X) contains

a Euclidean open ball around the origin in Y .

(3) The associated morphism of stalks at the origin f̃0 : Spec OX,0 −→
Spec OY,0 is surjective.

By Lemma 1.1, purity implies local surjectivity of the corresponding

morphism of schemes. By Theorem 3.5, (1) implies (2).

Since any nonempty Euclidean open set in a variety is dense in its Zariski-

topology, it is easy to see that (2) implies (3). The last property, as one might

expect, is indeed weaker than the other two. In the next example, we see

that (3) does not imply either (1) or (2). Finally, the last example shows

that, even if the image of any Euclidean ball at the origin contains an open

set around the origin, the induced local morphism may not be pure.

Example 5.11. Let us consider a morphism of affine planes

θ : A2 −→ A2, given by (x, y) 7→ (xy2, x2(x+ y)).

Clearly, θ is surjective. Considering the factorizations of polynomials in

the variables xy2 and x2(x+ y) in k[x, y], it is also not difficult to see that

even

Spec k[x, y](x,y) −→ Spec k[xy2, x2(x+ y)](xy2,x2(x+y))
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is surjective, which, since the rings under consideration are two-dimensional,

also implies that the going-down property holds for

k[xy2, x2(x+ y)](xy2,x2(x+y)) ↪→ k[x, y](x,y).

After a suitable change of variables, one can show that k[xy2, x2(x+ y)]⊆
k[xy2, x2(x+ y), y3] is not pure, implying that k[xy2, x2(x+ y)]⊆ k[x, y]

is also not pure. Finally, to make sense of the second property, we confine

ourselves to complex affine varieties. In order to show that θ does not satisfy

(2), first note that since the map is homogeneous, it is sufficient to prove

that there exists an open ball, say B, around the origin such that θ(B) does

not contain any open set around the origin.

Therefore, let us define U := B((0, 0), 1/2). If possible, let V be an open

set around the origin contained in f(U). Choose any (a, a) ∈ V \ {(0, 0)}.
Then, a routine computation shows that for any sufficiently large n, the

points of the form (a/n, a) are not in the image of U . Hence, f(U) does not

contain any open set around the origin.

The last example shows that (3) is actually weaker than (1).

Example 5.12. Let R := C[X(Y 2 −X2), X2Y ]⊆ S := C[X, Y ]. This

gives a morphism π : C2 → C2. Since the line {X = 0} maps to the origin,

π is not quasi-finite. It is not difficult to show that the image of any

neighborhood of the origin contains a neighborhood of the origin. However,

the morphism is not pure.

§6. Open problems

In this section we gather together several questions about pure extensions

for which the authors do not know answers.

Question 1. Let A be an n-dimensional affine graded k-subalgebra of

the polynomial ring k[X1, X2, . . . , Xn]. If this is a pure extension, then is

the corresponding morphism of schemes quasi-finite?

Question 2. Let A⊂ k[X, Y ] be a 2-dimensional k-subalgebra of the

polynomial ring k[X, Y ] such that A is a direct summand of k[X, Y ] as an

A-module. Is the corresponding morphism of schemes quasi-finite?

Question 3. Let A⊂B be affine domains. Suppose that for some

maximal ideal m⊂A the extension Am ⊂Bm is pure. Is there a maximal

ideal n⊂B lying over m such that Am ⊂Bn is pure?
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Question 4. Let A⊂B be a pure extension of affine k-domains (or

algebraic local domains) such that this is a pure extension. Assume that A

is normal. Is the extension A⊂B also pure, where B is the integral closure

of B in its quotient field?

Question 5. Let A⊂B be affine k-domains. Consider the set of prime

ideals p⊂A such that Ap ⊂Bp is a pure extension. Is this set open in

SpecA?

Question 6. Let A⊂B, as in Question 5 above. Consider the set of

prime ideals p⊂A such that for some prime ideal q⊂B lying over p the

extension Ap ⊂Bq is pure. Is this set open in SpecA?
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