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ABSTRACT

The present paper introduces a simple aggregated reserving model based on
claim count and payment dynamics, which allows for claim closings and re-
openings. The modelling starts off from individual Poisson process claim
dynamics in discrete time, keeping track of accident year, reporting year and
payment delay. This modelling approach is closely related to the one under-
pinning the so-called double chain-ladder model, and it allows for producing
separate reported but not settled and incurred but not reported reserves. Even
though the introduction of claim closings and re-openings will produce new
types of dependencies, it is possible to use flexible parametrisations in terms
of, for example, generalised linear models (GLM) whose parameters can be
estimated based on aggregated data using quasi-likelihood theory. Moreover,
it is possible to obtain interpretable and explicit moment calculations, as well
as having consistency of normalised reserves when the number of contracts
tend to infinity. Further, by having access to simple analytic expressions for
moments, it is computationally cheap to bootstrap the mean squared error of
prediction for reserves. The performance of the model is illustrated using a
flexible GLM parametrisation evaluated on non-trivial simulated claims data.
This numerical illustration indicates a clear improvement compared with mod-
els not taking claim closings and re-openings into account. The results are also
seen to be of comparable quality with machine learning models for aggregated
data not taking claim openness into account.
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118 M. LINDHOLM AND H. ZAKRISSON

1 INTRODUCTION

In the present paper, focus is on aggregated reserving making use of claim
count and claim payment data, which allows for handling claim closings and
re-openings. The modelling approach follows the same underlying idea as in
Wahl et al. (2019), which introduces the so-called collective reserving model
(CRM), where individual claims are modelled using discrete Poisson processes
keeping track of accident year, reporting year, and payment delay in years,
and which allows for multiple payments per claim. Due to this, the introduced
model will be referred to as the CRMO – a CRM with openness dynamics.
Further, this modelling approach is similar to the one used in, for example,
Verrall et al. (2010) which underpins the double chain-laddermodel introduced
in Martinez-Miranda et al. (2012). Further, by using this slightly more granu-
lar representation than the one used with the standard chain-ladder technique
makes it possible to obtain separate reported, but not settled (RBNS) and
incurred, but not reported (IBNR) reserves. Moreover, reserve moments can
be calculated explicitly and are possible to give constructive interpretations.
This will also be the case when allowing for claim closings and re-openings,
although this will introduce additional dependencies. That is, starting from
individual claims, it is natural that you need to keep track of claims staying
open as well as those that have been closed, but could become re-opened.
Examples of individual claim models with claim closings are, for example,
Antonio and Plat (2014), Crevecoeur and Antonio (2019), Bettonville et al.
(2020), and Delong et al. (2020), where the latter two also allow for claim re-
openings. Another type of computer intensive approach is to use self-exciting
processes as in Maciak et al. (2021). Their approach allows for re-openings,
and self-exciting processes are able to capture complex dynamics and depen-
dencies, but with the potential drawback of being more complex than standard
marked point process reserving models.

Further, a discrete time setup will allow us to estimate parameters in, for
example, flexible generalised linear models (GLM) using aggregated data and
quasi-likelihood theory, but now having to keep track of the number of claims
staying open together with the number of claims becoming re-opened. This is
natural, but perhaps not ideal, since the main driver behind future payments is,
reasonably, the number of open claims, regardless of whether they have been
re-opened or not. With this in mind, a more restrictive version of the model is
considered that allows for estimating parameters based on only knowing the
number of open claims.

Moreover, the current model is an extension of the CRM from Wahl et al.
(2019) and by re-using arguments for the CRM, it is possible to obtain con-
sistency for normalised reserves when letting the number of contracts tend to
infinity.

The modelling approach used in the current paper is a constructive one,
starting from detailed claim dynamics. Another approach is to instead con-
sider less explicit modelling, but instead allowing for flexible parametrisations
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using machine learning techniques. Successful examples of aggregated reserv-
ing models using machine learning techniques can be found in, for exam-
ple, Gabrielli et al. (2020) where neural networks (NN) are combined with
the over-dispersed Poisson (ODP) chain-ladder model and Lindholm et al.
(2020), which considers ODP chain-ladder type models using gradient boost-
ing machines (GBM), as well as GBM and NN versions of CRM type models.
By construction, Gabrielli et al. (2020), Lindholm et al. (2020) use aggregated
data, but individual claim reserving models can be found in, for example,
Delong et al. (2020), which uses a similar basic process approach as the CRM
using NN:s, or Lopez et al. (2019) using trees. The present paper introduces a
model that also could be parametrised using machine learning techniques. As
will be seen in Section 6, however, already using a rather simpleGLM formula-
tion of the CRMO will produce predictions whose performance is comparable
with aggregated machine learning reserving models based on simulated data
from Gabrielli and Wüthrich (2018). This illustrates the potential benefits of
modelling claim openness dynamics explicitly.

The remainder of the paper is organised as follows: Section 2 introduces
data and notation, followed by Section 3, which introduces the CRMO.
Section 4 discusses moment calculations, which are needed for the quasi-
likelihood approach treated in Section 5, consistency of normalised reserve
estimates, together with a more detailed comparison with the CRM fromWahl
et al. (2019). Section 5 also briefly discusses how the bootstrap procedure for
calculating MSEP for the CRM can be adapted to the CRMO, before moving
to a number of numerical examples in Section 6 based on data generated by
the individual claims history simulation machine presented in Gabrielli and
Wüthrich (2018). The paper ends with a number of concluding remarks given
in Section 7.

Since many of the calculations closely follow those for the CRM in Wahl
et al. (2019), those calculations not considered essential for the exposition are
omitted.

2 DATA AND NOTATION

Following the notation in Wahl et al. (2019), let Nij denote the number
of claims that occurred in accident year i, i= 1, ...,m and were reported j,
j= 1, . . . , d years after occurring, and let Xijk denote the sum of all incremen-
tal payments from claims that incurred in year i, were reported j years after
that and paid k, k= 1, ..., κ years after being reported, where κ is the maxi-
mum payment delay. While it is possible to use different maximum delays for
reporting claims and payments, respectively, only d = κ =m− 1 will be con-
sidered in this paper. For more on this, see, for example, Verrall et al. (2010),
Wahl et al. (2019).

Further, let Nopen
ijk denote the number of claims that incurred in accident

year i, were reported j years thereafter that are open at the end of the k:th year
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120 M. LINDHOLM AND H. ZAKRISSON

thereafter, that is open at the end of year i+ j+ k. Thus, Nopen
ijk ≤Nij for all

k= 0, ...,m− 1. Let Nstay-open
ijk and Nre-open

ijk denote the number of open claims
that were and were not open in the previous year, respectively. Note that

Nopen
ijk =Nre-open

ijk +Nstay-open
ijk .

Consider a setting where one has access to data from the perspective of the
first day of the m+ 1:th year. That means that all data Nij such that i+ j≤m
and all data Xijk, N

open
ijk , Nre-open

ijk ,Nstay-open
ijk such that i+ j+ k≤m is available,

which can be formalised using the index set

A0 = {(i, j, k): i+ j+ k≤m} ,
as the data sets

X0 = {
Xijk: (i, j, k) ∈A0

}
,

N+
0 =

{
Nij,N

re-open
ijk ,Nstay-open

ijk : (i, j, k) ∈A0

}
.

In certain cases, we might not have access to how many of the open claims
stem from re-openings or not, and in those cases N+

0 will have to be replaced
by the less granular set

N0 =
{
Nij,N

open
ijk : (i, j, k) ∈A0

}
.

3 EXPLICIT MODELLING OF CLOSINGS AND RE-OPENINGS OF CLAIMS –
THE CRMO MODEL

The aim of the current paper is to introduce an extension of the CRM that was
introduced in Wahl et al. (2019), which allows for closing and re-opening of
claims, including multiple re-openings and closings per claim. This new model
will be abbreviated CRMO, where “O” stands for “openness dynamics”.

Following Wahl et al. (2019), we let Nij follow an over-dispersed Poisson
distribution with intensity parameter νij and over-dispersion parameter φ,
that is

E
[
Nij

] = νij,

Var
(
Nij

) = φE
[
Nij

]
. (3.1)

Further, note that Nopen
ijk can be expressed as a sum of boolean variables,

Nopen
ijk =

Nij∑
l=1

Nopen
ijkl ,

whereNopen
ijkl = 1 if claim l of claims incurred in year i and reported j years after

that is open at the end of the k:th year thereafter. Conditioned onNopen
i,j,k−1,l, this
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can be viewed as a Bernoulli variable, with staying-open probability pijk and
re-opening probability qijk such that for k= 1, ...,m,

Nopen
ijkl |Nopen

i,j,k−1,l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, with probability pijk, if Nopen
i,j,k−1,l = 1

0, with probability 1− pijk, if N
open
i,j,k−1,l = 1

1, with probability qijk, if Nopen
i,j,k−1,l = 0

0, with probability 1− qijk, if N
open
i,j,k−1,l = 0

,

where pijk, qijk ∈ [0, 1]. This means that Nopen
ijk will be the sum of two sums of

i.i.d. Bernoulli variables

Nopen
ijk =Nstay-open

ijk +Nre-open
ijk ,

where

Nstay-open
ijk =

∑
l:Nopen

i,j,k−1,l=1

Nopen
i,j,k,l

and

Nre-open
ijk =

∑
l:Nopen

i,j,k−1,l=0

Nopen
i,j,k,l.

For k= 0, there can be no re-openings, and the distribution of the openness-
booleans can instead be expressed as

Nopen
i,j,0,l =

⎧⎨
⎩
1, with probability pij0

0, with probability 1− pij0
,

where pij0 ∈ [0, 1] and

Nstay-open
ij0 =Nopen

ij0 =
Nij∑
l=1

Nopen
i,j,0,l.

Thus, this construction yields the following conditional distributions

Nstay-open
ijk |Nopen

i,j,k−1 ∼Bin
(
Nopen
i,j,k−1, pijk

)
,

Nre-open
ijk |Nij,N

open
i,j,k−1 ∼Bin

(
Nij −Nopen

i,j,k−1, qijk
)
.

and

Nopen
ij0 |Nij ∼Bin

(
Nij, pij0

)
.

Continuing, every open claim is assumed to produce a number of payments fol-
lowing a conditional Poisson distribution. That is, letNpaid

ijk denote the number
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122 M. LINDHOLM AND H. ZAKRISSON

of claims that incurred in accident year i, were reported j years thereafter, and
that are paid during the k:th year thereafter, whose conditional distribution is
given by

Npaid
ijk |Nopen

i,j,k−1 ∼ Po
(
λijkN

open
i,j,k−1

)
(3.2)

for k≥ 1 where λijk ≥ 0. Hence, the λijk:s denote the average number of pay-
ments during year k stemming from a claim that incurred in accident year i,
was reported j years after that and was open at the end of year i+ j+ k− 1.
For k= 0, the number of payments depends on the number of reported
claims as

Npaid
ij0 |Nij ∼ Po

(
λij0Nij

)
.

This means that the interpretation of λij0 differs slightly from that of other
λijk, as it is the expected number of payments made for a claim during the
remaining calendar year after being reported.

Concerning paid amounts, let Yijkl be the size of the l:th payment of the

Npaid
ijk payments and assume that all individual payments are independent over

l with moments

E
[
Yijkl

] =μijk ≥ 0,

Var
(
Yijkl

) = σ 2
ijk ≥ 0.

Thus, finally, incremental payments Xijk can be written as

Xijk =
Npaid
ijk∑
l=1

Yijkl.

Remark 1

(a) In order to simplify the exposition, we introduce the column vector

θ = (ν, φ, p, q, λ,μ, σ )′,
where ν = {νij:1≤ i≤m, 0≤ j<m}, p= {pijk:(i, j, k) ∈ I},
q= {qijk: (i, j, k) ∈ I}, λ = {λijk:(i, j, k) ∈ I}, μ = {μijk:(i, j, k) ∈ I},
σ = {σijk:(i, j, k) ∈ I}, where all νij, λijk,μijk, σijk ≥ 0, pijk, qijk ∈ [0, 1], and
where

I = {(i, j, k):1≤ i≤m, 0≤ j<m, 0≤ k<m}.
For practical purposes, we will, however, assume that the parametrisa-
tion of θ is estimable based on the information contained in X0,N0 (or
N+

0 ), but usually without specifying this in detail. That is, for example,
νij := exp{αi + βj} and similarly, which in practice will make the num-
ber of unique parameters in θ considerably less than O(m3). A concrete
example of this is given in Section 6.
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(b) The simple sequential structure defined by (3.2) can, of course, be replaced
with a longer historical dependence in terms of delay. For ease of exposi-
tion and to keep calculations manageable, we will only focus on definition
(3.2). Further, note that the construction above, notwithstanding the par-
ticular choice of dependence structure, is in line with how individual claim
dynamics would look in a micro model. These dynamics will naturally lead
to a distinction between claims staying open and becoming re-opened, even
though it is the total number of open claims that is the driver behind future
payments. One can, however, note that if pijk = qijk = πijk it follows that

Nopen
ijk |Nij,N

open
i,j,k−1 ∼Bin(Nij, πijk), (3.3)

which means that πijk corresponds to the probability that a claim is open
in (i, j, k), regardless of whether it has been closed prior to k or not. Thus,
it is possible to have that Nopen

i,j,k+s ≥Nopen
ijk for s≥ 1, that is, net re-openings

are allowed.
(c) The motivation of including dynamics for closing and re-opening claims is

a generalisation of the Collective Reserving Model (CRM) introduced in
Wahl et al. (2019), and it is seen that the CRM is retrieved by setting all
pijk:s equal to one. A more detailed comparison with the CRM is found
in Section 5.2. Further, there are other models in the literature that only
capture closing of claims, without treating re-openings, see, for example,
Bettonville et al. (2020) and Crevecoeur and Antonio (2019).

(d) As with the models discussed in Verrall et al. (2010), Martinez-Miranda
et al. (2011), and Wahl et al. (2019), the current model is defined based
on individual claim dynamics. Still, due to the current Poisson assump-
tion, under suitable conditionings, the aggregated model can be described
in terms of an over-dispersed Poisson model. From this perspective, the
sufficient statistics for the aggregated model tell us that no information is
lost while aggregating. For more on aggregation of “micro” level informa-
tion, see, for example, Huang et al. (2015, 2016), Charpentier and Pigeon
(2016), Lindholm and Verrall (2020).

(e) Note that the above model can be expressed in terms of the hierarchi-
cal model framework presented in Crevecoeur and Antonio (2019), using
number of open claims as one of the layers. For the purpose of this
paper, this observation does not lead to additional insights and will not
be discussed further.

4 MOMENTS

In order to be able to obtain a reserve predictor, we need to first obtain an
expression for the expected value of the outstanding payments. Further, since
the model structure is defined in terms of (i, j, k)-tuples, it is possible to obtain
separate IBNR and RBNS reserves. Moreover, the simple model structure will
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allow us to obtain recursive expressions for (co)variances, which can be used
in (semi-)analytical approximations of the reserve MSEP. Furthermore, due
to the sequential structure defining the dynamics of the number of claim pay-
ments as a function of time, given by (3.2), it is clear that it is not meaningful
to condition on more granular information than that contained in N0. That
is, the least granular information that does not loose information is given by
(i, j, k)-level knowledge of the Nopen

ijk :s, and when calculating first and sec-
ond moments, the final expressions will not require (explicit) knowledge of
Nstay-open
ijk or Nre-open

ijk .
The derivation of moments will make use of the standard sum represen-

tation of outstanding payments, with RBNS and IBNR reserves defined by

R=RR +RI ,

where

RR =
m∑
i=1

RR
i , RI =

m∑
i=1

RI
i (4.1)

and

RR
i =

m−i∑
j=1

Rij, RI
i =

m−1∑
j=I−i+1

Rij, (4.2)

where Rij is the sum of all outstanding payments from claims stemming from
accident year i with a reporting delay of j, that is,

Rij =
m−1∑

k=m−i−j+1

Xijk. (4.3)

Here one can note that the Rij:s are independent. This is, however, not in gen-
eral the case for the Xijk:s. Further, let θ be defined as in Remark 1, and let the
theoretical reserve predictor be denoted by

h (θ ; N0) :=E [R |N0] (θ),

while the corresponding RBNS and IBNR estimators are denoted by

hR (θ ; N0) :=E

[
RR |N0

]
(θ), hI (θ ; N0) :=E

[
RI |N0

]
=E

[
RI

]
(θ).

The standard computable (plug-in) reserve predictors are, hence, given by

R̂ := h
(̂
θ ; N0

)
and analogously for the RBNS and IBNR reserves. Similar estimators can be
constructed for individualRi andRij. The derivation of moments for outstand-
ing payments closely follows those given in Wahl et al. (2019) and are based
on suitable repeated conditionings that are either omitted or merely outlined.
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4.1 Expected values

The expected value of Rij is

E
[
Rij |N0

] =
m−1∑

k=m−i−j+1

E
[
Xijk |N0

]
,

where the expected value of the payments is obtained by repeated conditioning,
and where the split into RBNS and IBNR follows from the indexation given
by (4.2) and (4.3). In more detail, it follows that

E
[
Xijk |N0

] =μijkλijkE
[
Nopen
i,j,k−1 |N0

]
(4.4)

for k= 1, ...,m− 1, and

E
[
Xij0 |N0

] =μij0λij0E
[
Nij |N0

]
,

where the expected value of the number of open claims is most conveniently
expressed recursively as

E

[
Nopen
ijk |N0

]

=
⎧⎨
⎩
Nopen
ijk , (i, j, k) ∈A0

(
pijk − qijk

)
E

[
Nopen
i,j,k−1 |N0

]
+ qijkE

[
Nij |N0

]
, (i, j, k) /∈A0

, (4.5)

for k= 1, ...,m− 1, and

E

[
Nopen
ij0 |N0

]
= pij0E

[
Nij |N0

]
,

where

E
[
Nij |N0

] =
⎧⎨
⎩
Nij, (i, j, 0) ∈A0

νij, (i, j, 0) /∈A0

.

Remark 2

(a) In agreement with Verrall et al. (2010) and Wahl et al. (2019), it is
seen that (4.4) can be re-written in terms of ψijk =μijkλijk, which is a
parametrisation that will be used when discussing estimation in Section 5.

(b) By using the reduced model where pijk = qijk discussed in Remark 1(b),
it is seen that the expected values not in A0 reduce to only depending on
Nij:s, as it should.
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4.2 (Co)variances

Compared with the situation in Verrall et al. (2010) and Wahl et al. (2019), the
payments Xijk are no longer independent for equal i and j (unless all pijk ≡ 1,
when the model coincides with the CRM), and the variance of outstanding
payments must be calculated in full according to

Var
(
Rij |N0

) =
m−1∑

k=m−i−j+1

⎧⎨
⎩Var

(
Xijk |N0

) + 2
m−1∑
l=k+1

Cov
(
Xijk,Xijl |N0

)⎫⎬
⎭ ,

(4.6)

where the split into RBNS and IBNR follows from the indexation given by
(4.2) and (4.3). Still, the components of (4.6) can be represented recursively
according to

Var
(
Xijk |N0

) =μ2
ijkλ

2
ijkVar

(
Nopen
i,j,k−1 |N0

)

+
(
μ2
ijk + σ 2

ijk

)
λijkE

[
Nopen
i,j,k−1 |N0

]
(4.7)

for k= 1, ...,m− 1, and

Var
(
Xij0 |N0

) =μ2
ij0λ

2
ij0Var

(
Nij |N0

)
+

(
μ2
ij0 + σ 2

ij0

)
λij0E

[
Nij |N0

]
.

For (i, j, k) ∈A0,

Var
(
Nopen
ijk |N0

)
= 0,

and for (i, j, k) /∈A0,

Var
(
Nopen
ijk |N0

)
= (

pijk − qijk
)2 Var (

Nopen
i,j,k−1 |N0

)

+ (
pijk

(
1− pijk

) − qijk
(
1− qijk

))
E

[
Nopen
i,j,k−1 |N0

]

+ qijk
(
1− qijk

)
E

[
Nij |N0

]
+ q2ijkVar

(
Nij |N0

)
+ 2

(
pijk − qijk

)
qijkCov

(
Nopen
i,j,k−1,Nij |N0

)
(4.8)

for k= 1, ...,m− 1 and

Var
(
Nopen
ij0 |N0

)
= pij0

(
1− pij0

)
E

[
Nij |N0

]
+ p2ij0Var

(
Nij |N0

)
.

https://doi.org/10.1017/asb.2021.33 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.33


A COLLECTIVE RESERVINGMODEL 127

where

Cov
(
Nopen
ijk ,Nij |N0

)
= (

pijk − qijk
)
Cov

(
Nij,N

open
i,j,k−1 |N0

)
+ qijkVar

(
Nij |N0

)
for k= 1, ...,m− 1 and

Cov
(
Nopen
ij0 ,Nij |N0

)
= pij0Var

(
Nij |N0

)
.

Also,

Var
(
Nij |N0

) =
⎧⎨
⎩
0, (i, j, 0) ∈A0

φνij, (i, j, 0) /∈A0

.

As for the covariance terms of the payments, it holds that

Cov
(
Xijk,Xijl |N0

) =μijkμijlλijkλijlCov
(
Nopen
i,j,k−1,N

open
i,j,l−1 |N0

)
,

when k= 1, ...l− 1 and

Cov
(
Xij0,Xijl |N0

) =μij0μijlλij0λijlCov
(
Nij,N

open
i,j,l−1 |N0

)
.

Here,

Cov
(
Nopen
ijk ,Nopen

ijl |N0

)
= (

pijl − qijl
)
Cov

(
Nopen
ijk ,Nopen

i,j,l−1 |N0

)

+ qijlCov
(
Nopen
ijk ,Nij |N0

)
for k= 0, ..., l− 1. The derivation of the above (co)variances is again given by
straightforward repeated conditioning.

Remark 3

(a) By inspecting the expressions for the (co)variances, it is clear that the
corresponding quantities for the CRM are retrieved by setting all pijk := 1.
That is, Nij ≡Nopen

ij,k , for all k, and those covariance terms that are not
immediately cancelled will be turned into variance terms.

(b) For the model discussed in Remark 1(b) where pijk = qijk, the moments
are simplified considerably, and all explicit dependencies between Nopen

ijk :s
are replaced with variances only depending on Nij:s.

(c) Note that Var (Xijk |N0)= ϕijkE[Xijk |N0] for all (i, j, k) ∈A0, where
ϕijk is a function of θ , hence satisfying the ODP moment assump-
tion. Moreover, Cov(Xijk,Xi,j,l |N0)= 0 for all k 	= l and (i, j, k), (i, j, l)∈
A0, and, in particular, it holds that all Xijk,Xi,j,l where k 	= l and
(i, j, k), (i, j, l)∈A0 are conditionally independent, givenN0.

(d) Analogously to the discussion in Remark 2 it is seen that (co)variance-
expressions can be simplified by introducing ψijk :=μijkλijk.
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5 ESTIMATION

The CRMOas introduced in Section 3 is very flexible and in practice we need to
make assumptions concerning the parametrisation of this model. Concerning
the claim occurrence part of the model, a natural way to proceed is to use the
over-dispersed chain-ladder parametrisation, that is,

νij = eαi+βj , (5.1)

which corresponds to a standard over-dispersed Poisson GLM. Following this
approach, φ can be estimated, as in, for example, Martinez-Miranda et al.
(2011), Eq. (11), according to

φ̂ = 1
m(m+1)

2 − (1+ 2(m− 1))

∑
(i,j)∈A0

(
Nij − ν̂ij

)2
ν̂ij

.

Furthermore, recall that the motivation for using a quasi-likelihood approach
for modelling the parameters defining the distribution of Nij, that is, νij and φ,
relies on that all Nij are independent and that

Var (Nij)= φE[Nij]= φνij,

and that by using the parametrisation (5.1), it is sufficient to only have obser-
vations on A0 and still be able to predict future claim occurrences. In Wahl
et al. (2019), this was exploited for the payment part of the process as well, by
observing that the CRM results in that

Var (XCRM
ijk |N0)= ϕ̃E[XCRM

ijk |N0]= ϕ̃ψ̃ijkNij, (5.2)

where ψ̃i,jk, ϕ̃ > 0, and where all XCRM
ijk independent.

Remark 4

(a) For the numerical illustrations in Wahl et al. (2019), the parametrisa-
tion ψ̃ijk =μijkλ̃ijk = ψ̃k is used, based on that λ̃ijk = λ̃k and μijk =μ. This
combined with that σ 2

ijk = σ 2 implies a constant over-dispersion parameter
ϕ̃. (Note that we do not have to introduce μ̃ijk and σ̃ijk, since these param-
eters will always have the same meaning for the CRMO and the CRM.)
This particular choice is partly motivated by the fact that the CRM can
be estimated using more aggregated Xij-data, which is not an alternative
in the current paper, since we are interested in capturing the dynamics of
claim closings and re-openings.

(b) In Lindholm et al. (2020), it is assumed that

ϕ̃ijk :=
μ2
ijk + σ 2

ijk

μijk
≡ ϕ̃, (5.3)

which is an artificial, and in many situations unreasonable, assumption.
Still, it allows us to estimate the ψ̃ijk:s flexibly and reduces the number
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of parameters. Note, however, that ϕ̃ijk is only a function of payment size
parameters, and we could just as well assume that these are independent of
(i, j, k). The practical consequences of assuming (5.3) are primarily that
the model interpretation becomes less clear. This will be discussed further
in Sections 6 and 7.

In the current setting, for the CRMO, this relationship holds true as well,
but only conditionally independent for all (i, j, k) ∈A0. That is,

Var (Xijk |N0)= ϕE[Xijk |N0]= ϕψijkN
open
i,j,k−1, (i, j, k) ∈A0, (5.4)

where ψijk =μijkλijk, and where

ϕ = μ2
ijk + σ 2

ijk

μijk

which follows directly from (4.4) and (4.7) for all Xijk where (i, j, k) ∈A0, and
recall from Remark 3 that these Xijk are conditionally independent. Moreover,
as for the CRM, the functional form describing the ψijk:s should be possible
to estimate based on data inA0 alone and that the functional form should still
allow for predictions into the future. Furthermore, concerning the estimation
of ϕ, this can be done analogously as for the CRM based on Xijk-level data by
using

ϕ̂ = 1
m(m+1)(m+2)

6 − (1+ 3(m− 1))

∑
(i,j,k)∈A0

(
Xijk − ψ̂ijkN

open
i,j,k−1

)2
ψ̂ijkN

open
i,j,k−1

. (5.5)

Thus, the ψijk:s and the over-dispersion parameter ϕ can be estimated using
a quasi-Poisson likelihood. Consistency of these parameter estimators follows
the arguments fromWahl et al. (2019), Prop. 2 for the CRM.

What remains now is to estimate the probabilities defining the dynamics for
closing and re-opening of claims. In the ideal situation, one has access to the
additional informationNstay-open

ijk and Nre-open
ijk , and given this information, the

probabilities pijk and qijk are estimated using standard binomial likelihoods.
This approach guarantees consistency of the parameter estimators. In Section
6, we use GLM:s with canonical link functions. Although this modelling
approach is simple, it requires a lot of data, data which are not needed for
reserve prediction, see also the discussion in the first paragraph of Section 4.
Another way to estimate the pijk:s and qijk:s is to only use Nopen

ijk -data and
make the (artificial) assumption pijk = qijk = πijk for all (i, j, k). While it is
unlikely that the probability of a claim re-opening is equal to that of a claim
staying open, the parameter πijk can instead be interpreted as the probability
of a claim being open k years after being reported in (i, j). Moreover, the πijk:s
can then be estimated using, for example, standard GLM:s with canonical
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link functions, since the number of open claims will then be (conditionally)
likelihood equivalent with

Nopen
ijk |Nij ∼Bin

(
Nij, πijk

)
. (5.6)

As commented on in Section 4, the moment expressions for Nopen
ijk will also be

vastly simplified for this more restrictive model.
An alternative to estimate model parameters only based on Nopen

ijk data is to

treat the Nstay-open
ijk :s andNre-open

ijk :s as missing values. This situation is straight-
forward to approach using the EM-algorithm, even though this approach
tends to be sensitive to initial values, since the sum-of-Binomial structure
will, when using more flexible parametrisations, likely lead to identification
problems for the probabilities, resulting in many local maxima for the joint
likelihood. Even if this approach may produce reasonable reserve predictions,
this will have implications on the variance structure.

5.1 Comments on consistency of normalised reserves

Based on the constructive arguments that underpin both the CRM and the
CRMO in terms of individual claim dynamics, it is natural to explicitly intro-
duce accident year specific exposures wi that corresponds to the number of
contracts for accident year i. That is, assume that Nij ∼ODP (νij, φ) where

νij :=wiαiβj =winij(θ),

where nij(θ) := αiβj, and note that Nij can be expressed as

Nij
d=

wi∑
l=1

Ñijl, (5.7)

where all Ñijl are i.i.d. ODP (αiβj, φ). Hence, since the R̂ijs will be proportional
to the corresponding Nijs (or expectations thereof), R̂ij/wi can be thought of
as the approximate reserve from a single contract. Thus, consistency of R̂ij/wi
has a natural interpretation and is also treated in, for example, Huang et al.
(2015, 2016).

Further, note that when letting wi → ∞ the dimension of θ̂ is fixed.
Moreover, if we assume that the parametrisation of θ is estimable based on
X and N+

0 data (or assuming that pijk = qijk, see also Remark 1), by the
arguments inWahl et al. (2019), Proposition 2(ii), it follows that θ̂ → θ in prob-
ability as wi → ∞. Next, given that the reserves can be split into an IBNR and
a RBNS part, the consistency of θ̂ immediately yields that R̂I

ij/wi as wi → ∞.
Continuing with the RBNS reserves, from Section 4 for (i, j, k) such that
Xijk corresponds to an RBNS payment, it holds that Nij and N

open
i,j,m−i−j are N0
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measurable, which gives us that

hijk(θ ;N0) :=E[Xijk |N0](θ)

:=E[Nopen
i,j,k−1 |N0](θ)ψijk

=ψijkNopen
i,j,m−i−j

k−1∏
l=m−i−j+1

(
pijl − qijl

)

+ψijkNij

k−1∑
l=m−i−j+1

qijl
k−1∏
n=l+1

(
pijn − qijn

)
(5.8)

by repeated conditioning using (4.5), and analogous calculations yields

E[hijk(θ ;N0)]=E[Nij]

⎛
⎝k−1∑
l=1

qijl
k−1∏
n=l+1

(
pijn − qijn

) + pij0
k−1∏
l=1

(
pijl − qijl

)⎞⎠ψijk

=winij(θ)

⎛
⎝k−1∑
l=1

qijl
k−1∏
n=l+1

(
pijn − qijn

) + pij0
k−1∏
l=1

(
pijl − qijl

)⎞⎠ψijk

=wixijk(θ), (5.9)

where

xijk := nij(θ)

⎛
⎝k−1∑
l=1

qijl
k−1∏
n=l+1

(
pijn − qijn

) + pij0
k−1∏
l=1

(
pijl − qijl

)⎞⎠ψijk.

Further, by also noting that both the expected value and variance of (5.8)
conditional on Nij are proportional to Nij gives us that

Var (E[hijk(θ ; N0)])∝ wi,

where “∝” corresponds to equality up to scaling factors (being functions only
of θ) in front of leading terms, that is

Var (E[hijk(θ ;N0)])=wivijk(θ)<∞, for wi <∞,

where vijk(θ) is a function expressed in terms of the parameter vector θ .
Consequently, it holds that

P(| 1
wi
hijk(θ ; N0)− xijk|> ε)≤ vijk(θ)

ε2wi
→ 0 as wi → ∞,

that is hijk(θ ;N0)/wi → xijk(θ) in probability as wi → ∞.
Further, by estimating the parameters θ using N+

0 and combining with the
above it follows that

1
wi
hijk (̂θ ;N0)

p→ xijk as wi → ∞,
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due to the continuous mapping theorem, and, hence,

1
wi
R̂R
ij :=

1
wi

m−1∑
k=m−i−j+1

hijk (̂θ ;N0)
p→

m−1∑
k=m−i−j+1

xijk(θ) as wi → ∞,

which follows from elementary operations of convergence in probability
(Cramér-Slutsky). For more details and alternative proofs, see, for example,
Wahl et al. (2019).

Remark 5 Note that the overall consistency of R̂ij/wi as wi → ∞ is a mixture
of QMLE consistency of θ̂ and the trivial Nij/wi consistency. One can, however,
note that Nij/wi in light of (5.7) can be thought of as the QMLE of nij(θ) based
on the i.i.d. individual claim counts Ñijl , l= 1, . . . ,wi. Further, the interpretation
of the above is that by increasing the number of underlying contracts in the port-
folio, we expect that the relative reserve in each cell will converge, without letting
the dimension of the observed data tend to infinity. Consequently, for sufficiently
large portfolios, the influence of conditioning on actually observed claim counts
instead of using conditional expected counts will diminish, which partly motivates
the reasonability of using chain-ladder technique models, see Martinez-Miranda
et al. (2012, Thm. 1).

5.2 Comparison with the CRM

As already discussed in Remarks 1, 2, and 3, the CRM, as presented in Wahl
et al. (2019), is a special case of the model introduced in the current paper,
corresponding to pijk = 1 for all combinations of i, j, k. Further, the expected
value of a payment conditioned on the number of reported claims for the CRM
can be expressed as

E
[
Xijk |Nij

] = ψ̃i,j,kNij,

for some parametrisation ψ̃i,j,k, if we restrict our attention to (i, j, k) ∈A0 (oth-
erwise replaceNij with νij). By assuming that the true claim dynamics are given
by the CRMO, one obtains

E
[
Xijk |Nij

]

=μijkλijk

⎛
⎝k−1∑
l=1

qijl
k−1∏

m=l+1

(
pijm − qijm

) + pij0
k−1∏
l=1

(
pijl − qijl

)⎞⎠Nij, (5.10)

which follows from repeated conditioning, see (5.9). Further, in Wahl et al.
(2019), Lindholm et al. (2020) GLM:s of the form

log ψ̃ijk := αi + βj + γk, (5.11)

are used whereas in Lindholm et al. (2020), machine learning algorithms
are used in order to learn non-linear representations of ψ̃ijk using flexible
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parametrisations in terms of functional forms ψ̃(i, j, k;θ). Consequently, given
that the CRMO dynamics are the correct ones, the CRM parametrisation
(5.11) will likely not produce sufficient flexibility compared with (5.10). This
could possibly be achieved by using machine learning techniques as those
discussed in Lindholm et al. (2020).

To conclude this far, theoretically it is possible to equate the conditional
expected values of Xijk between the CRM and the CRMO, when conditioning
on Nij:s, but the computable predictors of these moments will in general not
agree.

Concerning higher moments, the variance of Xijk, (i, j, k) ∈A0 satisfies

Var (Xijk |Nij)= ϕψijkE[N
open
i,j,k−1 |Nij]+ψ2

ijk Var (N
open
i,j,k−1 |Nij)

= ϕE[Xijk |Nij]+ψ2
ijk Var (N

open
i,j,k−1 |Nij)

= ϕ̃E[Xijk |Nij]. (5.12)

Thus, if we assume that the true underlying data generating process follows
the CRMO, (5.12) tells us that for (i, j, k) ∈A0, the ODP moment assump-
tion will hold for the CRM as well. But, the over-dispersion parameter in the
CRM, here denoted ϕ̃, will not correspond to the correct parametric relation-
ship, since from (5.12) it is clear that ϕ̃ also depends on pijk:s and qijk:s, hence
not being of the form (5.3). That is, when estimating ϕ̃ directly using the CRM
based on data generated by the CRMO, unless there are no claim closings or
re-openings, the CRM will not be consistent with the data generating process.
Moreover, (5.12) also tells us that the variance of the CRMO, when only con-
ditioning on Nij information, will be greater than the corresponding variance
of the CRM, when using the true, unobservable, parameters. This is expected,
since an additional source of variation has been introduced.

Remark 6 In Wahl et al. (2019), the relationship between the CRM and the VNJ
model is discussed w.r.t. computable reserve predictors and their corresponding
variances. This comparison was possible due to that the parameter estimates in
the VNJ model can be made identical to those for the CRM. This is not the case
for the CRMO, and this type of comparison is, hence, omitted.

5.3 Comments on the computation of the mean squared error of prediction of
reserves

The CRMO is an extension of the CRM, and consequently the basic steps in
the computation of the mean squared error of prediction closely follow those
from the CRM, which is described in Wahl et al. (2019) and Lindholm et al.
(2020). This procedure can be thought of as a parametric bootstrap making use
of explicit moment calculations, including the process variance, and the only
qualitative difference with the CRM is the introduction of claim closings and
re-openings, which is only an addition of a binomial structure to the modelling.
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This added complexity, however, exactly follows the same procedures concern-
ing the split in terms of RBNS and IBNR reserves and is, hence, omitted.

Alternatively, as in, for example, Buchwalder et al. (2006), Diers et al.
(2016), Lindholm et al. (2020), one could Taylor approximate the estimation
error part of the MSEP calculation directly, making use of the Hessian from
the QMLE-fitting. This results in a semi-analytical MSEP approximation, but
since bootstrapping is straightforward (and quick), we will use the bootstrap
MSEP-procedure in Section 6.

6 NUMERICAL ILLUSTRATIONS

In order to illustrate the usefulness of the model in a reserving setting, the
following section tests the models’ reserve prediction accuracy on simulated
individual claims data from the algorithm described in Gabrielli and Wüthrich
(2018), which allows us to compare reserve predictions with true simulated out-
comes, that are not simulated in accordance with the assumedmodel structure.
In particular, we will use the same simulated data set as used in Gabrielli et al.
(2020) and Lindholm et al. (2020), which consists of 6 individual portfolios,
or Lines of Business (LoBs), each having roughly 100,000–250,000 individual
claims equipped with reporting, payment and claim openness history. By using
simulated data on the individual claim level, it is straightforward to aggregate
data to obtain X0,N0 andN+

0 .
Concerning properties of the simulated data, apart from the data explo-

ration already described for this particular simulated data set that can be
found in Gabrielli andWüthrich (2018), Gabrielli et al. (2020), Lindholm et al.
(2020), we briefly want to highlight additional aspects that are of interest for
the CRMO.

The CRMO allows for the amount paid in a period to depend not only on
accident year and reporting delay but also on payment delay. For the simulated
data used in the numerical illustration, it is seen that this type of dependence
is present in every LoB, see Figure 1. Further, the CRMO allows for dynamic
closings and re-openings of claims. In Figure 2, the average ratio of open claims
per reported claim for every year after being reported can be seen for different
reporting delays for each respective LoB. As can be seen, the majority of claims
close within a few years since reporting. But, interestingly, the average number
of open claims are occasionally higher than in the previous development year,
which is especially noticeable at k= 2 years since reporting. This would prove
a problem for a model using qijk = 0, that is, assuming no re-openings.

Moreover, a closer look into re-openings is provided by Figure 3, which
shows the average ratio of open claims that were open at the end of the pre-
vious year, Nstay-open

ijk /Nopen
ijk . From Figure 3, it is seen that re-openings are

primarily occurring during the first few years after reporting, but can make up
a non-negligible fraction of the open claims and should hence be modelled.
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FIGURE 1: Average cumulative payment per payment delay for different reporting delays in all LoBs.

FIGURE 2: Average ratio of open claims to reported claims for different reporting delays in all LoBs.

Continuing, the definition of the CRMO is a theoretical construction, and
for estimation purposes, we need to make assumptions concerning the form
of the regression functions. In this short numerical illustration, the CRMO
is fitted to the 6 LoBs (respectively) using the following (canonical) GLM
formulations

log νij = ανi + βνj , (6.1)

logψijk = α
ψ
i + β

ψ
j + γ

ψ

k , (6.2)

sigm−1 (
pijk

) = α
p
i + β

p
j + γ

p
k , (6.3)
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FIGURE 3: Average ratio of open claims that were also open in the end of the previous year,
Nstay-open
ijk /Nopen

ijk .

and

sigm−1 (
qijk

) = α
q
i + β

q
j + γ

q
k , (6.4)

where

sigm (x)= 1
1+ e−x

.

Moreover, the νij:s and the ψijk:s will be estimated using quasi-likelihood the-
ory, and it will be assumed that ϕijk ≡ ϕ, an assumption that will be discussed
further below, also recall Remark 4 in Section 5.

As pointed out in Section 5, for the purpose of reserve prediction, only
data in N0 is needed. Still, N+

0 is needed for direct estimation when assuming
non-zero re-opening probabilities and pijk 	= qijk. The model fitted using this
data is denoted CRMO(1) in the numerical illustration. The alternative model,
only requiringN0 for parameter estimation by assuming pijk = qijk, is denoted
CRMO(2). Both CRMO(1) and CRMO(2) can handle net re-openings, that is,
situations where Nopen

ijk >Nopen
i,j,k−1, which is the case with the data being studied

here, see Figure 2.
The different CRMOmodels are also benchmarked against the chain-ladder

technique and the CRM using (6.1) and (6.2). In Table 1, the relative reserve
residuals, R/R̂− 1, for the models are presented. The best performing model
for every individual LoB is marked with a box.

From Table 1, it is seen that the CRMO model outperforms the CL and
CRM models on all the data sets. Moreover, the model assuming pijk = qijk,
CRMO(2), outperforms the model fitted to the granular data sets, CRMO(1),
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TABLE 1

RESERVE PREDICTIONS TOGETHER WITH RELATIVE MODEL PERFORMANCE DEFINED AS
R/R̂− 1, WHERE CRMO(1) IS FITTED USING N+

0 , THAT IS USING DETAILED OPENNESS

INFORMATION, AND CRMO(2) ASSUMES pijk = qijk FOR ALL (i, j, k), AND ESTIMATION IS
BASED ON N0. THE SMALLEST ABSOLUTE RESIDUAL IS MARKED WITH A BOX.

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6

True 39,689 37,037 16,878 71,630 72,548 31,117
CL 38,569 35,460 15,692 67,574 70,166 29,409

−2.82% −4.26% −7.02% −5.66% −3.28% −5.49%
CRM 38,321 35,144 15,456 67,051 69,480 29,174

−3.45% −5.11% −8.43% −6.39% −4.23% −6.24%
CRMO(1) 39,464 36,124 15,902 69,468 71,146 30,729

−0.57% −2.47% −5.79% −3.02% −0.55% −1.25%
CRMO(2) 39,392 36,163 15,944 69,207 72,123 30,391

−0.75% −2.36% −5.53% −3.38% −0.59% −2.33%

on two LoB’s, which could be a result of the full model overfitting to in-sample
data.

When taking a closer look into the predicted dynamics of the different
CRMO models, it becomes clear that the CRMO(2) on average tends to pro-
duce better predictions of the total number of open claims than the granular
fit, at least for low k. An example of this is given in Figure 4, which illus-
trates predictions of the ratio of open to reported claims for the last accident
year and reporting delay 1 in LoB 1. Since it is the number of open claims
that set the basis for the prediction of future payments, it does not matter that
the CRMO(2) model formulation does not produce more granular claim open-
ness predictions, as its prediction of number of open claims still seems to be
sufficiently accurate.

In order to assess the model accuracy for different combinations of i, j, k,
the relative residual, R/R̂− 1, for the CRMO(1)-model for aggregated pay-
ments stemming from accident years i= 1, ...,m and reporting plus payment
delay j+ k= 0, ...,m− 1 for LoB 1 is shown in Figure 5. Here one can note a
slight tendency towards underestimating the reserves in the lower right triangle
(out-of-sample), even though the overall pattern looks very good. Still, the ten-
dency of diagonal effects could be a result of inflation, that is that payments or
the number of open claims increases with calendar year i+ j+ k – something
considered in Lindholm et al. (2020), where the results indicated that taking
such effects into account could improve accuracy.

Concerning the assumption of ϕijk ≡ ϕ, this does not seem to be a too
troublesome assumption for the data being analysed: Let

ϕ̂ijk =
(
Xijk − ψ̂ijkN

open
i,j,k−1

)2
ψ̂ijkN

open
i,j,k−1

, (6.5)
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FIGURE 4: Ratio of open to reported claims for accident year 12 and reporting delay 1, outcome versus
predictions from the models fitted using granular data (CRMO(1)) and the model assuming pijk = qijk

(CRMO(2)), respectively, in LoB 1. (Note that CRMO(2) cannot distinguish between claims that have been
re-opened or that have stayed open.)

FIGURE 5: Average relative model performance defined as Xijk
X̂ijk

− 1 for the CRMO(1) for different lags in

LoB 1, where model parameters are fitted using N+
0 .

which can be compared with the overall estimate calculated using (5.5). In
Figure 6 (6.5) is compared with (5.5) for LoB 1 for different combinations
of i and j+ k for the first 5 development years. The reason for only using the
first 5 development years is due to the scarcity in payments leading to extreme
values for later years, and the fact that 90% of payments stem from the first 5
development years in all LoBs. It is obvious that while the assumption is not
completely fulfilled, it here serves as a viable approximation.
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TABLE 2.

ROOT MEAN SQUARED ERROR OF PREDICTION.

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6

CL 1112 1321 476 2200 1957 980
CRM 1070 1188 623 1747 2374 1193
CRMO(1) 1156 1374 636 2615 2255 1880
CRMO(2) 1168 1351 620 2586 2235 1866

FIGURE 6: Relative overdispersion ϕ̂/ϕ̂ijk − 1 calculated using (5.5) and (6.5) for LoB 1, using the
CRMO(1).

Following the algorithm for calculating the conditional mean squared error
of prediction as presented in Lindholm et al. (2020), using 10,000 bootstrap
simulations for all LoBs, the (root)MSEP for the model is presented in Table 2.
Note that even though the GLM formulations of the CRMO introduce addi-
tional parameters compared with the simpler CRM, the (rooted) MSEP values
are of the same order as the CRM and often not too far off from the far simpler
ODP CL model.

6.1 Comparisons to machine learning techniques and individual claims modelling

As mentioned in the beginning of Section 6, the simulated data used here are
also used in Gabrielli et al. (2020), Lindholm et al. (2020) where machine learn-
ing techniques are used to learn a general representation of the ψijk:s and νij:s
(or corresponding quantities) using feed-forward neural networks (NNs) and
gradient boosting machines (GBMs). In Table 4, the CRMO(1) is compared
with an NN version and a GBM version of the CRM, see Lindholm et al.
(2020) for details concerning the NN andGBMmodels. From Table 4 it is seen
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TABLE 3

RESERVE PREDICTIONS TOGETHER WITH RELATIVE MODEL PERFORMANCE FOR
DATA AND MODEL USED IN BETTONVILLE et al. (2020). CRMO(1) IS FITTED USING N0

AND X0 DATA, WHILE CRMO(∗) USES OUT-OF-SAMPLE PAYMENT DATA FOR
PARAMETER ESTIMATION, BUT USES OBSERVED COUNTS FROM N0 FOR PREDICTION.

True CL CRMO(1) CRMO(∗) Bettonville et al. (2020)

27,223 33,842 34,857 27,386 24,707
– +24.31% +28.04% +0.60% −9.24%

TABLE 4.

RESERVE PREDICTIONS TOGETHER WITH RELATIVE MODEL PERFORMANCE DEFINED AS
R
R̂

− 1 FOR THE MODEL FITTED TO N+
0 (CRMO(1)), AS COMPARED TO CRM MODELS FITTED

USING GRADIENT BOOSTING MACHINES (GBMS) AND NEURAL NETWORKS (NNS) FROM
LINDHOLM et al. (2020). THE SMALLEST ABSOLUTE RESIDUAL IS MARKED WITH A BOX. THE

GBM AND NN RESULTS ARE FOUND IN 4 IN LINDHOLM et al. (2020), TOGETHER WITH
DETAILED MODEL DESCRIPTIONS.

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6

True 39,689 37,037 16,878 71,630 72,548 31,117
GBM 38,324 37,053 16,327 73,386 70,486 32,100

−3.44% +0.04% −3.26% +2.45% −2.84% +3.16%
NN 41,587 37,587 15,680 71,155 71,309 28,984

+4.78% +1.48% −7.10% −0.66% −1.71% −6.86%
CRMO(1) 39,464 36,124 15,902 69,468 71,146 30,729

−0.57% −2.47% −5.79% −3.02% −0.55% −1.25%

that by using the CRMO with canonical link-functions and the parametrisa-
tions (6.1)–(6.4), not using any interactions, the CRMO results are not too far
off from those obtained using more flexible machine learning techniques.

Further, the present modelling approach builds on that from, for example,
Verrall et al. (2010), Wahl et al. (2019), which makes use of that the underlying
stochastic processes allows for preserving various desirable properties when
aggregating claim payments and claim counts. Another approach is to instead
consider individual claims modelling directly, which naturally allows for clos-
ing of claims. One such model that has been evaluated on publicly available
data generated using the procedure from Gabrielli and Wüthrich (2018) is the
semi-Markov model introduced in Bettonville et al. (2020), which allows for
claim closings, but no re-openings. The data used in Bettonville et al. (2020)
differ from the previously used six LoBs, here a single LoB with approximately
50,000 claims is used, but we refer to Bettonville et al. (2020) for more details.
The results for the model from Bettonville et al. (2020) are given in Table 3
together with the CRMO(1) model.

It is here seen that both models perform rather poorly (including standard
chain-ladder), but as commented on in Bettonville et al. (2020), a closer
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inspection of the data reveals a number of large outliers. Without going into
details concerning outliers, by instead of estimating θ based on future data,
but making predictions based on the observed number of open claims, the
CRMO performance is greatly improved. This model is denoted CRMO(∗)
in Table 3, and the results for CRMO(∗) indicate that the underlying model
structure of the CRMO is sufficiently flexible and accurate in this situation
as well. It should, however, be stressed that the result for CRMO(∗) is not to
be compared to the Bettonville et al. (2020) model results, since the former is
fitted to out-of-sample data and the latter is not. This model is merely included
to illustrate that the underlying model structure is reasonable, even though the
parameter estimates in this application are poor. A final comment concerns
the fact that we use a rather large number of parameters in the above GLM
formulation of the CRMO. In practice, it would be reasonable to try to reduce
the number of parameters by using regularisation techniques.

7 CONCLUDING REMARKS

The CRMO model is a generalisation of the CRM presented in Wahl et al.
(2019), allowing for individual claim openness dynamics, but which can be
estimated using aggregated payment and count data. Further, the constructive
nature of the modelling allows for explicit and interpretable RBNS and IBNR
reserve calculations. In the present paper, estimation of different GLM formu-
lations of the model based on data availability and re-opening assumptions is
presented and tested.

The model performs well in the numerical illustrations, with reserve resid-
uals that outperform both the standard CL model and the generalised CRM
model. It is also seen that for several simulated LoBs the CRMO performance
is on par with machine learning versions of the CRM presented in Lindholm
et al. (2020), see Table 4. A benefit with the CRMO in this comparison is that
the CRMO is transparent, that is the structure is completely known, while the
machine learning techniques will always contain “black box” elements. Still,
similarly as in Lindholm et al. (2020), it is straightforward to combine the
CRMO with NNs or GBMs directly if using N+

0 data or by using N0 data
together with pijk = qijk. For the situationwhere pijk 	= qijk and onlyN0 data are
available bespoke loss functions are needed, which makes a machine learning
technique implementation somewhat more involved.

In order to assess the CRMO model strength compared to other models
considering claim openness, a small numerical comparison was made using
the data from Bettonville et al. (2020). However, the CRMO model fell short
to the model presented in Bettonville et al. (2020), due to that the realised
payment and openness structure in the out-of-sample data was too far off
from the data used for parameter estimation. Still, by estimating parameters
based on out-of-sample data, something not possible to do in practice, but
producing RBNS and IBNR predictions using the actual observed counts,
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the reserve predictions became close to perfect, see CRMO(∗) in Table 3.
This artificial construction can be seen as an indication of that the underlying
model structure for claim openness is reasonable even for this data.
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