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Abstract

Extending the idea of Dabrowski [‘On the proportion of rank 0 twists of elliptic curves’, C. R. Acad. Sci.
Paris, Ser. I 346 (2008), 483–486] and using the 2-descent method, we provide three general families of
elliptic curves overQ such that a positive proportion of prime-twists of such elliptic curves have rank zero
simultaneously.
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1. Introduction

Let E be an elliptic curve over Q given by the Weierstrass equation y2 = x3 + ax2 +

bx + c (a, b, c ∈ Z). For any square-free integer d, the dth quadratic twist Ed of E is the
elliptic curve given by the equation y2 = x3 + a dx2 + b d2x + c d3. Denote by rEd the
rank of the Mordell–Weil group Ed(Q).

Statistics of rank-zero quadratic twists of elliptic curves have been an interesting
subject of study for some time. It is known from the work of Waldspurger [19]
(combined with the work of Kolyvagin [15], and of Wiles and others [2]) that
rEd = 0 for infinitely many square-free ds. Hoffstein and Luo [10] proved that, for
any fixed E, there exist infinitely many odd square-free d with no more than three
prime factors such that rEd = 0. Ono and Skinner [16] proved that, for any fixed E,
|{|d| ≤ X : rEd = 0}| � X/log X. On the other hand, it is believed [9] that a positive
proportion of twists Ed have rank zero, and this was proved by Iwaniec and Sarnak [12]
under the Riemann hypothesis. Unconditionally, such positive proportion results are
only known for a few specific curves [13, 14, 18, 20]. Ono and Skinner [16] proved
that, when E has conductor less than or equal to 100, Ep or E−p has rank zero for a
positive proportion of primes p.
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In an interesting and beautiful paper [4] Dabrowski proved the following result.

Theorem 1.1. For any positive integer k there are pairwise nonisogenous elliptic
curves E1, . . . , Ek such that rE1

p = · · · = rEk
p = 0 for a positive proportion of primes p.

The ingenious idea of the proof of Theorem 1.1 [4] is based on the 2-descent method
applied to the explicit family of elliptic curves EA,−B : y2 = x(x + A)(x − B) where A is
a prime, and B is a prime or a product of two primes such that A + B = 22m for some
positive integer m. Chen’s theorem [3] is required here to show that there are infinitely
many such elliptic curves EA,−B. As was remarked by Dabrowski [4], Theorem 1 can
be also be proved by using the 2-descent method on the Setzer–Neumann curves, and
the existence of infinitely many such elliptic curves was guaranteed by a result of
Iwaniec [11]. Previously Dabrowski and Wieczorek [5] proved Theorem 1.1 by using
the 2-descent method on the specific elliptic curves y2 = x(x − 2m)(x + q − 2m) and by
assuming the twin prime conjecture.

The purpose of this paper is to show that there is an abundance of elliptic curves
which could be used to prove Theorem 1.1. Define

EA,B : y2 = x(x + A)(x + B). (1.1)

Let
( ·
·

)
denote the Legendre symbol. We first prove the following theorem.

Theorem 1.2. Let |A|, |B| be primes such that

(1) A ≡ 1 mod 8, B ≡ 3 mod 8,
(2) A + B ≥ 0 or AB < 0.

Let r be any prime number coprime to AB(A − B) and satisfying the following three
conditions:

(i) r ≡ 7 mod 8;
(ii) (A/r) = (B/r) = −1;
(iii) for any odd prime p|(A − B), we have (−Br/p) = −1.

Then rEA,B
r

= 0.

Now Theorem 1.1 can be proved easily: take distinct primes p1, . . . , pr and q with
pi ≡ 1 mod 8 for all i and q ≡ 5 mod 8, and consider the r-twist of elliptic curves Epi,q.
Let r be a prime number coprime to piq(pi − q) for all i and satisfying:

(i) r ≡ 7 mod 8;
(ii) (q/r) = −1 and (pi/r) = −1 for all i;
(iii) for any odd prime p|

∏
i(pi − q), we have (−qr/p) = −1.

Then rEpi ,q
r

= 0 for all i. The Chinese remainder theorem and Dirichlet’s theorem
on primes in arithmetic progressions clearly show a positive proportion of primes r
satisfying the above conditions.

The proof of Theorem 1.2 is also based on the 2-descent method. Consider the 2-
isogeny φ : EA,B

r → ÊA,B
r : Y2 = X3 − 2(A + B)rX2 + (A − B)2r2X, defined by φ((x, y)) =
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(y2/x2,−y(x2 − ABr2)/x2), and let φ̂ denote the dual isogeny. Under the assumptions of
Theorem 1.2, we actually prove that the Selmer groups satisfy Sel(φ)(EA,B

r /Q) ' {0} and
Sel(φ̂)(ÊA,B

r /Q) ' (Z/2Z)2. Then Theorem 1.2 follows from the fundamental formula
[17, page 314]

rEA,B
r

= dim2 Sel(φ)(EA,B
r /Q) + dim2 Sel(φ̂)(ÊA,B

r /Q)

− dim2 X(EA,B
r /Q)[φ] − dim2 X(ÊA,B

r /Q)[φ̂] − 2.

Theorem 1.2 is about rank-zero r-twists of EA,B for |A| and |B| being primes. If A, B
are some integers in general, it is still possible to find rank-zero r-twists of EA,B, given
the elementary nature of the 2-descent method, however, the conditions on such rs are
too complicated to write down. On the other hand, we prove the following result.

Theorem 1.3. Let A, B be integers such that A ≡ 1 mod 8, B ≡ 3 mod 8, and for EA,B,
we assume that

Sel(φ)(EA,B/Q) ' {0}, Sel(φ̂)(ÊA,B/Q) ' (Z/2Z)2. (1.2)

Then for any prime number r coprime to AB(A − B) such that:

(i) r ≡ 7 mod 8; and
(ii) (r/p) = 1 for any odd prime p|AB(A − B),

we have rEA,B
r

= 0.

We remark that condition (1.2) is natural and easy to check for EA,B. It also implies
that rEA,B = 0. Many families of rank-zero elliptic curves have been found by this
way (see, for example, [4–6, 8]). Moreover, via infinitely many elliptic curves EA,B

satisfying condition (1.2), Theorem 1.1 can be proved easily.
The elliptic curve EA,B given in (1.1) can be characterized as having full 2-torsion

points over Q, that is, EA,B(Q)[2] ' (Z/2Z)2. Now we consider elliptic curves with
one nontrivial 2-torsion point over Q, that is, elliptic curves Ea,b (a, b ∈ Z) given by the
equation

Ea,b : y2 = x(x2 + ax + b). (1.3)

Consider the 2-isogeny φ : Ea,b
r → Êa,b

r : Y2 = X3 − 2arX2 + (a2 − 4b)r2X, defined by
φ((x, y)) = (y2/x2,−y(x2 − br2)/x2), and let φ̂ denote the dual isogeny. We also have
the fundamental formula [17, page 314]

rEa,b
r

= dim2 Sel(φ)(Ea,b
r /Q) + dim2 Sel(φ̂)(Êa,b

r /Q)

− dim2 X(Ea,b
r /Q)[φ] − dim2 X(Êa,b

r /Q)[φ̂] − 2.

We assume that neither a2 − 4b nor b is a perfect square, because otherwise either Ea,b

or Êa,b would have full 2-torsion points over Q, hence reducing to elliptic curves we
have considered before. We prove the following theorem.
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Theorem 1.4. Let a, b ∈ Z such that neither a2 − 4b nor b is a perfect square. For Ea,b

given in (1.3), we assume that

Sel(φ)(Ea,b/Q) ' Z/2Z, Sel(φ̂)(Êa,b/Q) ' Z/2Z. (1.4)

Then for any prime number r coprime to b(a2 − 4b) such that:

(i) r ≡ 7 mod 8;
(ii) (r/p) = 1 for any odd prime p|b(a2 − 4b);
(iii) either (b

r

)
=

(a2 − 4b
r

)
= −1 (1.5)

or (b
r

)
=

(a2 − 4b
r

)
= −

(a +
√

b
r

)
= −

(a +
√

a2 − 4b
r

)
= 1,

we have rEa,b
r

= 0.

We remark that if a = 2a′, b = 2b′ and a′ ≡ b′ ≡ 3 mod 4, then condition (1.5) is
satisfied. On the other hand, condition (1.4) is natural and easy to check for Ea,b as
well, and many rank-zero elliptic curves have been found in this way [7]. Theorem 1.1
can also be proved via infinitely many elliptic curves Ea,b satisfying the conditions of
Theorem 1.4.

The main ingredient of the proofs of Theorems 1.2–1.4 is the 2-descent method
applied to the elliptic curves considered above. We prove Theorems 1.2 and 1.3 in
Section 2, and prove Theorem 1.4 in Section 3.

2. Proof of Theorems 1.2 and 1.3

The 2-descent method is explained in the last chapter of Silverman’s book [17] (see
also [1, 4]). For clarity we specify the 2-descent method for elliptic curves EA,B given
by (1.1) below.

2.1. 2-descent and EA,B. For any integer M, let Σ(M) be the set of prime numbers
dividing M, and let 4(M) be set of (positive or negative) square-free divisors of M.
Let

C(r)
d : dw2 = t4 − 2(A + B)

r
d

t2z2 + (A − B)2 r2

d2 z4,

C′(r)
d : dw2 = t4 + (A + B)

r
d

t2z2 + AB
r2

d2 z4

be the principal homogeneous spaces under the actions of the elliptic curves EA,B
r and

ÊA,B
r previously defined. Using [17, Proposition 4.9, page 302], we have the following

identifications:

Sel(φ)(EA,B
r /Q) '

{
d ∈ 4((A − B)r) : C(r)

d (Qv) , ∅ ∀v ∈ Σ(2AB(A − B)r) ∪ {∞}
}
,

Sel(φ̂)(ÊA,B
r /Q) '

{
d ∈ 4(ABr) : C′(r)

d (Qv) , ∅ ∀v ∈ Σ(2AB(A − B)r) ∪ {∞}
}
,
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where C(r)
d (Qv) , ∅ (or C′(r)

d (Qv) , ∅) means that C(r)
d (or C′(r)

d ) has nontrivial solutions
(w, t, z) , (0, 0, 0) in Qv. We know that

{1} ⊆ Sel(φ)(EA,B
r /Q), {1, AB,−Ar,−Br} ⊆ Sel(φ̂)(ÊA,B

r /Q),

since each of the corresponding homogeneous spaces has nontrivial solutions in Q.

Proof of Theorem 1.2. Let |A|, |B| and r be primes under the conditions of
Theorem 1.2. We first prove that Sel(φ)(EA,B

r /Q) = {1}. For any d ∈ 4((A − B)r), if
d < 0, since A + B ≥ 0 or AB < 0, clearly C(r)

d (R) = ∅. If 2|d, let (w, t, z) , (0, 0, 0) be a
solution of C(r)

d in Q2. Since A ≡ 1 mod 8, B ≡ 5 mod 8, considering C(r)
d , at least two

numbers in the set {1 + 2v2(w), 4v2(t), 1 + 2v2(t) + 2v2(z), 2 + 4v2(z)} reach the same
minimal value, where for any prime p we denote by vp the standard p-adic exponential
valuation. Clearly these two numbers must be 1 + 2v2(w) and 1 + 2v2(t) + 2v2(z),
which is impossible. Now we need to consider d > 1 such that there is an odd prime
p|(A − B) with p|d. Let (w, t, z) , (0, 0, 0) be a solution of C(r)

d in Qp. Then at least two
numbers in the set {1 + 2vp(w), 4vp(t),−1 + 2vp(t) + 2vp(z), 2vp(A − B) − 2 + 4vp(z)}
reach the same minimal value. These two numbers must be 1 + 2vp(w) and −1 +

2vp(t) + 2vp(z). Hence the equation

d
p

w2 ≡ −2(A + B)
r

d/p
t2z2 mod p

must be solvable in Zp
∗ := Zp − pZp, where Zp is the set of p-adic integers. By

Hensel’s lemma, this implies that

1 =

(
−2(A + B)r

p

)
=

(
−2(A − B + 2B)r

p

)
=

(
−rB

p

)
,

which contradicts condition (iii) of Theorem 1.2.
Finally, if d = r, let (w, t, z) , (0, 0, 0) be a solution of C(r)

d in Qr. Then at least two
numbers in the set {1 + 2vr(w), 4vr(t), 2vr(t) + 2vr(z), 4vr(z)} reach the same minimal
value. We may assume that vr(t) = vr(z) = 0 and vr(w) ≥ 0, hence

t4 − 2(A + B)t2z2 + (A − B)2z4 ≡ 0 mod r

is solvable in Zr
∗. That is,

(t2 − (A + B)z2)2 ≡ 4ABz4 mod r.

Since (AB/r) = 1,
t2 − (A + B − 2

√
AB)z2 ≡ 0 mod r

or
t2 − (A + B + 2

√
AB)z2 ≡ 0 mod r.

This is not possible by Hensel’s lemma and by conditions (i) and (ii) of Theorem 1.2,
since (A + B ± 2

√
ABr

r

)
=

(
−1
r

)( (
√
−A ±

√
−B)2

r

)
= −1.

This shows that Sel(φ)(EA,B
r /Q) = {1}.
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Next we prove that Sel(φ̂)(ÊA,B
r /Q) = {1,AB,−Ar,−Br}. For d ∈ 4(ABr), for d = −1,

C′(r)
−1 : −w2 = t4 − (A + B)rt2z2 + ABr2z4.

Since (−1/r) = −1 and (−AB/r) = −1, by Hensel’s lemma, we find that C′(r)
−1 (Qr) = ∅.

For d = A,

C′(r)
A : Aw2 = t4 + (A + B)

r
A

t2z2 +
Br2

A
z4.

Since (A/r) = (B/r) = −1, by Hensel’s lemma, we find that C′(r)
A (Qr) = ∅. For d = r,

C′(r)
r : rw2 = t4 + (A + B)t2z2 + ABz4.

Solving this in Q2, at least two numbers in the set {2v2(w), 4v2(t), 1 + 2v2(t) + 2v2(z),
4v2(z)} reach the same minimal value, which may be assumed to be zero. This implies
that at least one of the equations

rw2 ≡ t4 mod 8,

rw2 ≡ ABz4 mod 8,

rw2 ≡ t4 + (A + B)t2z2 + ABz4 = (t2 + Az2)(t2 + Bz2) mod 8

is solvable in Z2
∗. This is impossible by conditions (1) and (i) of Theorem 1.2. Since

Sel(φ̂)(ÊA,B
r /Q) ⊂ 4(ABr) is a group, we conclude that Sel(φ̂)(ÊA,B

r /Q) = {1, AB,
−Ar,−Br}. This shows rEA,B

r
= 0, completing the proof of Theorem 1.2. �

Proof of Theorem 1.3. For any d′ ∈ 4(A − B), let d = d′ or d = d′r. If d ∈
Sel(φ)(EA,B

r /Q), then C(r)
d (Qv) , ∅ for any v ∈ Σ(2AB(A − B)) ∪ {∞}. Since, by (i)

and (ii) of Theorem 1.3, r is a square in any such Qv, we find d′ ∈ Selφ(EA,B/Q).
Hence d′ = 1 from condition (2) of Theorem 1.3. For d = r, since AB ≡ 3 mod 4 and
by (ii) of Theorem 1.3, (AB

r

)
= −1.

From the proof of Theorem 1.2, we find C(r)
r (Qr) = ∅. Hence Sel(φ)(EA,B

r /Q) = {1}.
For any d′ ∈ 4(AB), let d = d′ or d = d′r. If d ∈ Sel(φ̂)(ÊA,B

r /Q), since r is a
square in Qv for any v ∈ 4(2AB(A − B)), by condition (2) of Theorem 1.3 we find
d′ ∈ {1, AB,−A,−B}. Hence Sel(φ̂)(ÊA,B

r /Q) ⊆ {1, AB,−A,−B, r, ABr,−Ar,−Br}.
For d = r, from the proof of Theorem 1.2, we find C′(r)

r (Q2) = ∅. Using the fact that
Sel(φ̂)(ÊA,B

r /Q) is a group, we conclude that Sel(φ̂)(ÊA,B
r /Q) = {1, AB,−Ar,−Br}. This

shows that rEA,B
r

= 0, which completes the proof of Theorem 1.3. �

3. Proof of Theorem 1.4

For clarity we specify the 2-descent method for elliptic curves Ea,b given by (1.3)
below (see [1, 17]).
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3.1. 2-descent and Ea,b. Let

C(r)
d : dw2 = t4 − 2a

r
d

t2z2 + (a2 − 4b)
r2

d2 z4,

C′(r)
d : dw2 = t4 +

ar
d

t2z2 + b
r2

d2 z4

be the principal homogeneous spaces under the actions of the elliptic curves Ea,b
r and

Êa,b
r previously defined. Using [17, Proposition 4.9, page 302], we have the following

identifications:
Sel(φ)(Ea,b

r /Q) '
{
d ∈ 4((a2 − 4b)r) : C(r)

d (Qv) , ∅ ∀v ∈ Σ(2b(a2 − 4b)r) ∪ {∞}
}
,

Sel(φ̂)(Êa,b
r /Q) '

{
d ∈ 4(br) : C′(r)

d (Qv) , ∅ ∀v ∈ Σ(2b(a2 − 4b)r) ∪ {∞}
}
,

where C(r)
d (Qv) , ∅ ( or C′(r)

d (Qv) , ∅) means that C(r)
d (or C′(r)

d ) has nontrivial solutions
(w, t, z) , (0, 0, 0) in Qv. We know that

{1, a2 − 4b} ⊆ Sel(φ)(Ea,b
r /Q), {1, b} ⊆ Sel(φ̂)(Êa,b

r /Q),
since each of the corresponding homogeneous spaces has nontrivial solutions in Q.

Proof of Theorem 1.4. Similar to the proof of Theorem 1.3, since r is a square in Qv
for any v ∈ 4(2b(a2 − 4b)), by condition (4) of Theorem 1.4,

Sel(φ)(Ea,b
r /Q) ⊆ {1, a2 − 4b, r, (a2 − 4b)r}, Sel(φ̂)(Êa,b

r /Q) ⊆ {1, b, r, br}.
It suffices to prove that

r < Sel(φ)(Ea,b
r /Q), r < Sel(φ̂)(Êa,b

r /Q).
For

C(r)
r : rw2 = t4 − 2at2z2 + (a2 − 4b)z4,

let (w, t, z) , (0, 0, 0) be a solution of C(r)
r in Qr. Then at least two numbers in the set

{1 + 2vr(w), 4vr(t), vr(a) + 2vr(t) + 2vr(z), 4vr(z)} reach the minimal value, which we
may assume to be zero. Hence vr(t) = vr(z) = 0, vr(w) ≥ 0. So

(t2 − az2)2 ≡ 4bz4 mod r
is solvable in Zr

∗. This requires that (b/r) = 1. Moreover, it implies that at least one
of the equations

t2 ≡ (a + 2
√

b)z2 mod r,
t2 ≡ (a − 2

√
b)z2 mod r,

is solvable in Zr
∗. This means, by Hensel’s lemma, that(a + 2

√
b

r

)
= 1 or

(a − 2
√

b
r

)
= 1.

It is easy to see that this contradicts (iii) of Theorem 1.4.
For

C′(r)
r : rw2 = t4 + at2z2 + bz4,

similarly to the argument before, we see that C′(r)
r (Qr) = ∅. This concludes the proof

of Theorem 1.4. �
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