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ON THE HOMOLOGY OF THE »n-SPECIAL
REDUCED PRODUCT SPACE OF A
EUCLIDEAN SPACE

BY
M. WAKAE(*) AND O. HAMARA

§1. Introduction. In [2] and [3] the homology of reduced product spaces of
certain type of polyhedra was studied. Let X"=XXx XX+ - X X be the Cartesian
product of n copies of a topological space X. Let T={1,¢, ¢2,..., "'} be the
cyclic group of order n acting on X" as:

(X1, Xg5 oo o5 Xp) = (Xg + + o 5 Xy Xy)-
Let us denote a point in X” by X%. The fat diagonal F,(X) of X" is defined as:
F,(X)={xeX" | t'x=x for some i #0 mod n}. The n-special reduced product space
Xy=X"—F,(X).
In this paper we investigate the homology of X, where X= R¥, the k-dimensional
Euclidean space.

§2. The main theorem. Let n be an integer such that n = P,P, - - - P,, where P’s
are distinct prime numbers. We consider Ry=R"—F,(R). Let ¢: R"—~R" be con-
sidered as an orthogonal linear transformation. Because ¢ has a cyclic vector
[1, p. 199] the minimal polynomial of ¢ is the characteristic polynomial. Hence
from the primary decomposition theorem and rational decomposition theorem we
may find invariant subspaces W, W, ..., W,, ¥V such that

R = W, oW, oW, - oW, &V,
where W, is one-dimensional and ¢ | W, is the identity. W, is (P,—1)-dimensional
with zero as the only fixed point with respect to {z, %, . . ., P71y, and W,® W@
W)@ * @ Wiy, Where {i(1),i(2), ..., i(k)}is a subset of {1,2,...,m]}, is the
set of vectors fixed under t7#®Fi@ - Pia) and finally, ¥ is an invariant subspace
of even dimension 2/=n—>;", (P;—1)—1 for which zero is the only fixed point.
If P, is odd, then W, may be further decomposed into a direct sum of planes
Hi’j,j=1, 2,...,m(i), on each of which ¢ is a rotation of order P;, and if P; is
even, W, is a line. Decompose V into a direct sum of planes K, h=1,2,...,1,
on each of which ¢ is a rotation of order n. Then R" may be mapped homeo-
morphically into the compact polyhedron C in R" where each H; ;, K, goes onto
the interior of a (P,—1)-gon H, ; (if P, is even for some i, let f; ; denote the closed
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(1)Added in proof. Using the results in this paper, one of the authors has obtained the
homology of R¥ completely in [M. Wakae, On the homology of the n-special reduced product
space of a Euclidean space, II, Kaigaku Kinen Ronbunshu, Soka Univ. (1971), 642-645].
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interval I=[—1, 1] so that W, goes into H, ;) and an n-gon K. Thus, R" is mapped
homeomorphically onto the interior of C=IxT]; ; A, ;x K*. Let A,=T17% A, ,,
so C=Ix]Ir, H;x K. The set of fixed points in C with respect to T is denoted
by F, and consists of the vectors of the form %=(x,, x;, X, . . . , X,,,0) where
xo€[—1,11, x,€ H,, i=1,2,...,m, with at least one x;=0, and 0 € K. Notice
that R} is mapped homeomorphically into C—F, and that

H(Ry; G) = H, (C—F,; G).

Let C* be the cell complex formed from C by taking those faces of C which do
not intersect F,.

LEMMA 1. C* is a deformation retract of C — F,.

Proof. Assume that H, ;, and K are given obvious simplicial structure with 0 as
a vertex in each except I. The vertices of I are v;;=(—1,0,...,0) and v, ,=
(1,0,...,0) and index the vertices of C in F, as follows: Firstly, we divide the
set of the vertices of Cin F, into m categories. In the following sentences Cat stands
for category. Cat(1)={vy;, v1,}. The vertices of Cat(k), k=2, 3, ..., m, are those
vertices % in F, (i.e., X= (X, X1, X, + + . » Xy, 0), Where x,=—1 or 1, x, € A, for
i>0, 0 € K*) which have exactly k components x, nonzero in the decomposition
Ix Hyx Hyx -+ -x H,,x K'. Order the vertices in F, such that the vertices of Cat(k)
preceed those of Cat(k+1). Let {7, <" - - <, } be the vertices of Cat(k). Define
for each x € C—F, the cell C(X) containing ¥ which is minimal with respect to
this property of containing X, that is, if D is a cell containing X, then C(%) is a
face of D. Let P, ,:(C—F,)—(C—F,) be defined as follows:

(i) if 7, ¢ C(%), then P, (X)=x%

(i) if 5, € C(%), then P, ,(x) is the foot of the projection of % along the radius
ray |X, o,| into the face of C(X) not containing o,

Let r,=Ppy©**°Py; and r=r,o---or;. By the construction of P, ,,
C(rgory_y o+ oryx)) does not contain the vertices of Cat(j) for j<k. Hence r
takes C—F, into C*. Notice that if C(Py,q 0o Pyqq0 o * o ry(¥)) contains
vertices of Cat(k+-1), they are all such that their nonzero components lie in
precisely the same /,’s because, if not, the above cell would contain at least one
vertices of Cat(q) where g <k, which is a contradiction. Hence we may define a

homotopy
hk.q:(c_Fc)XI - (C_Fc)
by
hy (X, 1) = (1_t)(Pk,q—1 et Py 00 ry(X)
where k, q22° +t(Pk'q C4eaO Pk,l o r]c—l O¢ v O rl)()—f)

hyi(X, 1) = (1—=)X+1tP; (%)

hyo(X, 1) = (1—=1)Py1(X)+1(Py,5 0 Py 1)(X)

By (%, ) = (1—=)(ry_y® -+ ° 1R+ (P © 13y © -« © P(X)
where k>2.
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Then we define a homotopy %:(C—F,) x I—(C—F,) by

h = hpgmy * " "+ * By % % hy oy % - %hyy%hyox hy1,

where # refers to the path product. It is clear that # is the desired homotopy from
the identity to r. This completes the proof of the Lemma.

Let us denote K' by K, x - - - x K, where each K;=K. Since dim C*=n—1 and
l .
C* = (UIxﬁlx oo XH XK X e XKy x xl?,)
i=1

UUXH,x - xH,x&)

where dot stands for the boundary, we have C*=Ix C**, where C** is a sub-
complex of A, x - - - x H,,x K* of dimension n—2. Hence

H{(C*) = H(D)@H(C**) = H,(C**).
Let

A=A x - xH,x& and B=Hx - xH,xk
Then

C*=AUB and ANB=H,x - xH, xk
It is clear that H(4 N B; G)=0 for i> >, (P;—2)+2l and H,(A N B)7#0 for
i=>7, (P;—2)+2I—1. Also we have

H(4) ~ H(K") and H,(B) ~ H,(H,x---x H,).
Thus by the Mayer-Vietoris sequence

-+—>H(A N B)— H(A)®H(B)—> H(A YB)—>H, (ANB)— -
we have
H(A N B)= H;1,(A Y B)
for i>max(2I—1, D7, (P;—2))+1=2l.

Hence
H{(C*) >~ H(C**) =0 for (p —2)+21+1
H(CH 2 H(C*) %0 for i=3(P=2)+2l
Using 2l=n—>7", (P;—1)—1, Lemma 1 and the fact H,(R}; G)~H,(C—F,; G),

we have the followmg theorem:

THEOREM 1.
H(R:;G) =0 for i>n—m
H(R:;G)#0 for i=n—m—1.
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§3. Some remarks. Let X = R* and let T act on X™ as in §1 where
n=PP,--P,

as in §2. Then by a similar argument as that in §2, we may prove the following

theorem.
THEOREM 2.
H(X3% G)=0 for i>kn—k+1—m.
H(X% G)#0 for i=kn—k—m.
Let n=PPg---P"  n"=PP,---P,, and n'=njn".

Let T={1,¢t,...,t"}and T'={1, t*, 2", ..., ™ -D"} If T actson X" as in
§1, then 7" acts on Y” where Y=X".

LEMMA 2. Let o be the smallest positive integer in {1,2,...,n—1} such that
t*(X)=x for some X € X", then o divides n.

Proof. Suppose a does not divide #. Then there exists positive integers a and b
with «>b such that n=a«+b. Then ¥=1"(x)=1t°(%). This is a contradiction to
the assumption that o is the smallest positive integer such that #*(%)=x.

LEMMA 3. F(X)=F,.(X") as subspaces of X™.

Proof. That F,(X)2F,.(X") is trivial since T'<T.

Let x € F,(X). Then there exists « in {1, 2,...,n—1} such that *(x)=x. We
may assume that « is the smallest integer satisfying the above condition. Then by
Lemma 2, a=P}, ... , pum where b;<a; for i=1,...,m. If b;<a;—1 for i=
1,2,...,m, then « divides n’. Thus ¢”(¥)=x%. Hence % € F,.(X™). In the other
case, by rearranging the order of Py, ..., P, if necessary, we may assume that

bj=0(j j=1,...,l
b;<a;—1 j=I14+1,...,m

where [ is strictly less than m since « <n—1. Thus

— p%.,.. pupbi+i,, ., pbm
o = P} PIPH 9

. P’

Therefore ¢71*- (X¥)=2x. Since [ is strictly less than m,

P,... P

t #1 and Hr-Per,

Hence x € F,.(X").
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THEOREM 3. If n=P{*- - - P,", then
H(R3;G) =0 for i>n—n"+1—m
H(R: G)#0 for i=n—n"—m.

Proof. Let Y=N". Then by Lemma 2, R;= Y, . Hence by Theorem 2

H(R?;G) = H(YY;G) =0 for i=nn"—n'+1—m=n—n'+1—m
and

H(R®;G) = H(YY;G)# 0 for i=n'n"—n'—m=n—n"—m
COROLLARY 1. If X=R¥, n=P{*- -+ Py, n"=P, - -+ P,,, and n'=n[n" then

H(X%;G) =0 for i>nk—nk—m+1
and

H(X%;G) #0 for i=nk—nk—m
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