
Exact confidence limits for prevalence of a disease with an

imperfect diagnostic test

J. REICZIGEL 1*, J. FÖLDI 2 AND L. ÓZSVÁRI 3
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SUMMARY

Estimation of prevalence of disease, including construction of confidence intervals, is essential in

surveys for screening as well as in monitoring disease status. In most analyses of survey data it is

implicitly assumed that the diagnostic test has a sensitivity and specificity of 100%. However, this

assumption is invalid in most cases. Furthermore, asymptotic methods using the normal

distribution as an approximation of the true sampling distribution may not preserve the desired

nominal confidence level. Here we proposed exact two-sided confidence intervals for the

prevalence of disease, taking into account sensitivity and specificity of the diagnostic test. We

illustrated the advantage of the methods with results of an extensive simulation study and real-life

examples.
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INTRODUCTION

Estimation of prevalence is a basic requirement in

epidemiological studies. Authors usually accompany

their observed sample prevalence with a 95% confi-

dence interval (CI) for the population prevalence, to

give an impression of the precision of the estimate

[1, 2]. In most cases, however, the diagnostic test is

imperfect, i.e. it has a sensitivity and/or specificity less

than 100% [3, 4]. When the sensitivity and specificity

of the test are known, the adjusted prevalence, also

called true prevalence, is calculated according to

the formula

prevadj=( prevobs+Spx1)=(Se+Spx1), (1)

where prevadj, prevobs, Se, and Sp denote adjusted

prevalence, observed prevalence (also called apparent

prevalence), sensitivity, and specificity, respectively

[5, 6].

CIs are given in most papers only for the observed

prevalence without adjustment for sensitivity and

specificity. Usually the simplest asymptotic method,

the Wald method is used [7, 8], but sometimes

Wilson’s score method [9] or the exact Clopper–

Pearson method is applied [10–12].

CIs adjusted for sensitivity and specificity are rarely

given, although Rogan & Gladen [5] described an

appropriate modification of the asymptotic Wald

method, which is also included in some textbooks [6],

and implemented in some computer programs [13].

In spite of this, some authors calculate CIs naively,
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adjusting the observed prevalence by the Rogan &

Gladen formula, and then calculating a CI using the

adjusted prevalence as if that were observed directly,

i.e. without the necessary correction in the variance

formula [14, 15]. This method results in incorrect CIs,

whose actual coverage at a nominal level of 95% can

be as low as 60%, even for large samples. The exact

Clopper–Pearson CI has been applied with adjust-

ment for sensitivity and specificity in some papers,

although infrequently [16]. The problem regarding

exact CIs for the adjusted prevalence is well illustrated

by papers applying the exact Clopper–Pearson meth-

od for the observed and an asymptotic method for the

adjusted prevalence [17].

Here we apply the approach proposed by Cameron

& Baldock [18] to calculate exact two-sided CIs ad-

justed for sensitivity and specificity. As the Clopper–

Pearson method is known to be too conservative for

two-sided intervals [19, 20], we use Blaker’s and

Sterne’s methods [20–22] providing shorter exact two-

sided CIs.

METHODS

Both Blaker’s and Sterne’s CIs are derived by invert-

ing the corresponding tests. Therefore we first defined

how these tests can be adjusted for sensitivity and

specificity. Both of them test for

H0: p=phyp against H1: plphyp,

where p and phyp denote the unknown true population

prevalence and its hypothesized value, respectively.

Assuming H0 and binomial sampling distribution,

the probability that a random sample of size n con-

tains k subjects with the disease (k=0, 1, …, n) is

n
k

� �
pkhyp(1xphyp)

nxk: (2)

Given that the sample contains k subjects with the

disease, and assuming that the diagnostic procedure

has sensitivity Se and specificity Sp, we can calculate

the probability that the number of subjects in the

sample found to be positive is equal to m

(m=0, 1, … , n). The formula for this is as follows:

Xm
i=0

k

i

� �
Sei(1xSe)kxi nxk

mxi

� �

r(1xSp)mxiSpnxkxm+i:

(3)

Combining equations (2) and (3), we observe that

under H0 the probability that the number of test

positives in the sample is equal to m (m=0, 1, … , n)

can be written as

PH0(m)=
Xn
k=0

n

k

� �
pkhyp(1xphyp)

nxk

r
Xm
i=0

k

i

� �
Sei(1xSe)kxi

 

r
nxk

mxi

� �
(1xSp)mxiSpnxkxm+i

�
:

(4)

The principle of Sterne’s method is that we order the

sample space (i.e. the values 0, 1, …, n) according

to their probabilities under H0. From this it follows

that the p value belonging to an observed number j of

positives in the sample is

pj,H0=
X

PH0 (i)fPH0 (j)

PH0(i), (5)

where PH0(i) denotes the probability defined by

equation (4). In Blaker’s test, we order the sample

space according to a so-called acceptability function

AH0(m)=min
X
ifm

PH0(i),
X
iom

PH0(i)

 !
, (6)

resulting in a p value of

pj,H0=
X

AH0 (i)fAH0 ( j )

PH0 (i): (7)

Inversion of these tests results in exact two-sided CIs

for prevalence. Test inversion means that observing j

positives in the sample, the level 1xaCI runs from the

smallest to the largest such phyp value, for which the

test results in a p value Pj,H0 greater than a. Blaker’s

CI has the advantage that it is always contained in the

Clopper–Pearson interval, whereas Sterne’s CI, in

spite of being slightly more narrow on average than

Blaker’s CI, may sometimes deliver intervals even

wider than the Clopper–Pearson CI.

It should be noted that the proposed CIs do not

have equal error probabilities in the two tails, thus

one-sided intervals cannot be calculated from the two-

sided ones in the usual way. For an exact one-sided CI

the Clopper–Pearson method [23] should be used.

SIMULATION RESULTS

An extensive simulation study was performed to ex-

plore the coverage properties of the different methods

and to compare the length of resulting 95% CIs. In

the simulation we varied sensitivity and specificity
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50%, 70%, 90%, 95%, 100%; true population

prevalence 1%, 5%, 10%, 30%, 50%, 70%, and

sample size 50, 100, 200, 500. From each combination

of sensitivity, specificity, prevalence, and sample size,

we generated 10000 random samples and determined

95% CIs by the Wald, Wilson, Clopper–Pearson,

Sterne, and Blaker methods. [Detailed results of the

simulation study with respect to actual coverage (ac-

tual confidence level) and average length can be found

on the website of the first author, http://www.univet.

hu/users/jreiczig/prevalence-with-se-sp.html.] Simu-

lation with 10 000 replications implies that the stan-

dard error of the obtained coverage probabilities is

about 0.2%.

The actual coverage of the 95% Wald interval was

often <90%, in particular when prevalence was

<30%. In the worst cases, with low prevalence (1%),

low sensitivity (50%), and high specificity (100%),

the coverage was as low as 22.3% (n=50), 38.5%

(n=100), 62.6% (n=200), and 85.9% (n=500). The

actual coverage of the 95% Wilson interval was con-

siderably better (worst case coverage was 90.8%,

91.5%, 92.1%, 93.9% for n=50, 100, 200, 500, re-

spectively). Similarly to the Wald method, lowest

coverage occurred in the case of low prevalence and

sensitivity, combined with high specificity.

Exact methods produced in general longer intervals

than the Wilson CI. In case of low prevalence, low

sensitivity and high specificity the Sterne CI turned

out to be even longer than the Clopper–Pearson

interval. In these cases, Blaker’s CI was the shortest,

it was even shorter than the Wilson interval, in

spite of the lower coverage of the latter (Table 1).

If true prevalence was between 30% and 70%, the

Sterne interval was the shortest among exact inter-

vals.

EXAMPLE

Coelho et al. [12] conducted a survey to estimate the

prevalence of ovine paratuberculosis in sheep flocks

in the northeast of Portugal. Presence of antibodies

against Mycobacterium avium subspecies para-

tuberculosis was investigated using a commercial

enzyme-linked immunosorbent assay (ELISA) test.

According to the manufacturer, the kit has sensitivity

between 50% and 65% and specificity >99.5%.

These authors [12] present the seroprevalence values

obtained by ELISA for each region, and also give

exact Clopper–Pearson CIs for the apparent preva-

lence. However, they do not correct for test sensitivity

and specificity. Table 2 illustrates that exactness of

the CI does not prevent bias due to ignoring test im-

perfectness. The upper confidence limit adjusted for

sensitivity and specificity turns out to be twice as high

as the unadjusted one. Results without adjustment

may lead to over-optimistic estimates of the infection

status. Comparing the last three columns of Table 2,

Table 1. Examples in which Blaker’s CI proved to be narrower than Wilson’s CI while its coverage probability

was higher at the same time

Sample
size

True
prevalence Sensitivity Specificity

95% Wilson’s score interval 95% Blaker’s interval

Coverage Average length Coverage Average length

50 1% 95% 100% 91.6% 0.090 98.8% 0.085
100 1% 50% 100% 91.5% 0.089 98.9% 0.085

200 1% 50% 100% 92.1% 0.052 98.2% 0.051

Table 2. Seroprevalence estimates of ovine paratuberculosis in sheep in selected regions in Portugal by Coelho et al.

[12]. Seropositivity was determined using an ELISA test with sensitivity and specificity of 50% and 99.5%,

respectively

Apparent
prevalence

95% Clopper–
Pearson CI

Estimated true
prevalence

95% Clopper–
Pearson CI

95% Sterne
CI

95% Blaker
CI

Boticas 2/78=2.6% 0.3–9.0% 4.2% 0–17.1% 0–16.8% 0–16.3%
Carrazeda e Vila Flor 4/130=3.1% 0.8–7.7% 5.2% 0.7–14.5% 1.1–14.3% 1.1–14.0%
Moimenta da Beira 8/78=10.3% 4.5–19.2% 19.7% 8.1–37.8% 8.7–37.6% 8.2–37.2%

Mogadouro 12/260=4.6% 2.4–7.9% 8.3% 3.9–15.0% 4.3–15.2% 4.1–15.0%
Vila Pouca 27/650=4.2% 2.8–6.0% 7.4% 4.6–11.1% 4.7–11.1% 4.6–11.0%
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it can be seen that the Sterne interval is somewhat

(by about 2.5%), and the Blaker interval slightly

more (by about 3.5%) shorter than the Clopper–

Pearson interval.

Further examples are available at the first author’s

website (see Simulation Results section).

DISCUSSION

Here we focused on CI construction, although the

proposed methods can also be applied to two-tailed

testing, leading to more powerful exact tests. It should

be noted that the principles can also be applied to

hypergeometric distribution as, i.e. to estimate pre-

valence in a finite population, adjusted for sensitivity

and specificity.

It can be proved that transforming the exact lower

and upper confidence limits obtained for apparent

prevalence by the Rogan & Gladen formula (1) re-

sults in an exact CI for the true prevalence. This leads

to an easy implementation of the method. Trans-

formation of asymptotic confidence limits results of

course in an asymptotic interval for the true preva-

lence with coverage comparable to that of the CI for

the apparent prevalence. However, the naive method,

in which the CI is calculated using the adjusted

prevalence as if that value had been actually ob-

served, turns out to be inappropriate. For example,

simulating with sensitivity=85%, specificity=90%,

and prevalence=3% demonstrates that a 95% two-

sided CI constructed in this way has an actual

coverage probability of<60%, regardless of whether

an asymptotic or an exact CI calculation method is

applied.

Computer programs (R functions as well as stand-

alone programs for Microsoft Windows) for the

described methods are available on the first author’s

website (see Simulation Results section), together

with programs for sample size calculations to the

proposed procedures. Note that the Sterne method is

also worked out for the difference and ratio of two

prevalences from independent samples, including tests

and CIs [24]. A future task is to extend this to the case

of imperfect tests allowing for different sensitivities

and specificities.

How much more narrow the proposed CIs could be

than the Clopper–Pearson interval depends on sensi-

tivity, specificity, sample size and true prevalence.

According to the simulation results, if true prevalence

is between 30% and 70%, Sterne’s CI is more narrow

than Blaker’s CI, whereas for<20% and >80% it is

wider. Therefore, if we have prior information about

the prevalence, we can choose between the methods.

Note that here the expected true population preva-

lence is meant, not the observed sample prevalence.

Choosing the method according to the observed sam-

ple prevalence will result in a CI worse than any one of

the two methods.

Wilson’s score interval, although asymptotic, per-

formed much better than the Wald interval. It can be

regarded as appropriate for sample sizes >500. The

92% worst case coverage for samples off200 cannot

be compensated by its length. It was surprising that in

some cases Blaker’s CI was more narrow on average

than Wilson’s CI while its coverage was higher at the

same time. A few illustrative examples are given in

Table 1.

In extreme cases (prevalence=0.01 or 0.02, sensi-

tivity=0.50, specificity=1, n=50), Sterne’s CI was

longer than the Clopper–Pearson interval. Blaker’s CI

has the advantage that this cannot occur. As its length

never exceeds that of Sterne’s CI, and that sometimes

it is even narrower than Wilson’s asymptotic interval,

we propose Blaker’s CI for general use.

It should be noted that the proposed methods

assume that sensitivity and specificity are known ex-

actly. These values are used in the procedure as fixed

numbers known without any uncertainty. If they are

estimated from an experiment of comparable size,

then the uncertainty in sensitivity and specificity esti-

mates should be accounted for in the CI construction,

finally resulting in wider CIs. Rogan & Gladen [5]

described how this can be done for the Wald interval,

but currently it has not been developed for exact

intervals.

CONCLUSION

Estimates of disease prevalence may be seriously

biased if sensitivity and specificity of the diagnostic

test are disregarded. In case of known sensitivity and

specificity CIs are easy to adjust by applying the

Rogan & Gladen transformation to the CI endpoints.

Since asymptotic methods may not maintain the pre-

scribed confidence level, we propose calculating

exact CIs, in particular for sample sizes of f200.

Without any prior information on the true population

prevalence we propose Blaker’s method, as the re-

sulting CI is always contained in the Clopper–Pearson

CI. Note that if one-sided exact CIs are needed,

the Clopper–Pearson interval is the only available

option.
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