CONTRACTION PROPERTY OF THE OPERATOR OF INTEGRATION

BY

LUDVIK JANOS

ABSTRACT. It is shown that the operator of integration $Fy(x) = \int_0^\infty y(t) dt$ defined on the space $C(-\infty, \infty)$ of all continuous real valued functions on $(-\infty, \infty)$ is a contraction relative to a certain family of seminorms generating the topology of uniform convergence on compacta. However, as a contrast to this it is proved that F is not contractive with respect to any metric on $C(-\infty, \infty)$ inducing the above topology on $C(-\infty, \infty)$.

1. Introduction. Let X be a metrizable topological space and $F:X \rightarrow X$ a continuous selfmapping of X into itself. We say F is a topological contraction if there is a suitable metric ρ on X inducing the topology of X and a constant $q \in (0, 1)$ such that $\rho(Fx, Fy) \leq q\rho(x, y)$ for all $x, y \in X$.

Assume now X is a Fréchet linear topological space and $F: X \rightarrow X$ a linear operator on X satisfying the following condition:

There exists a sequence of seminorms $\{p_n \mid n \ge 1\}$ on X inducing the topology of X and a number $q \in (0, 1)$ such that $p_n(Fx) \le qp_n(x)$ for all $x \in X$ and all n=1, 2, ... It is natural to call such a linear operator F a generalized contraction on X. In [1] has been investigated a more general case where X is a completely regular not necessarily metrizable topological space and $F: X \to X$ a contraction with respect to a suitable family of pseudometrics inducing the topology of X.

Since the Fréchet space X is a metrizable topological space a question arises whether a generalized contraction on X is also a topological contraction in the sense of the first definition. The main purpose of this note is to show that the answer is "no", exhibiting at the same time a contraction property of the operator of integration $y(x) \rightarrow \int_0^{\infty} y(t) dt$ in the Fréchet space $C(-\infty, \infty)$. We prove the following.

THEOREM. Let $C=C(-\infty, \infty)$ denote the linear space of all continuous real valued functions on $(-\infty, \infty)$ endowed with the topology of uniform convergence on compacta, and let $F: C \rightarrow C$ be defined by $Fy(x) = \int_0^x y(t) dt$ for $y \in C$. Then the operator F is a generalized contraction on C but it is not a topological contraction on C.

Received by the editors December 5, 1973 and, in revised form, June 10, 1974.

2. Proof of the theorem.

LEMMA. Let X be a metrizable topological space and $F: X \rightarrow X$ a self-mapping on X such that the following conditions are satisfied:

(i) there is a fixed point $x_0 \in X$ of F, i.e., $F(x_0) = x_0$

(ii) there is a metric ρ on X inducing the topology of X relative to which F is a contraction, i.e., there exists a constant $q \in (0, 1)$ such that $\rho(Fx, Fy) \leq q\rho(x, y)$ for all $x, y \in X$.

Then there exists an open neighbourhood $U(x_0)$ of x_0 such that for any neighbourhood $V(x_0)$ of x_0 there is an integer $k_0 \ge 1$ for which the following implication holds: $k \ge k_0 \Rightarrow F^k(U(x_0)) \subseteq V(x_0)$, showing that the iterated images $F^k(U(x_0))$ of $U(x_0)$ under F shrink into any prescribed neighbourhood $V(x_0)$ of x_0 for sufficiently large values of k.

Proof. This is a standard argument.

We are now in the position to prove our theorem. First of all we observe that the topology of C can be induced by the sequence of seminorms defined by

 $\sup_{-n \le x \le n} |f(x)| \text{ for any } n = 1, 2, \dots, \text{ and } f \in C.$

However, the operator F is not contractive with respect to this family. As was done by S. C. Chu and J. B. Diaz in [2] in a different setting, we achieve our end by an elementary modification of the seminorms. Indeed one finds easily that the equivalent family $\{p_n \mid n \ge 1\}$ of seminorms defined by

$$p_n(f) = \sup_{-n \le x \le n} e^{-2|x|} |f(x)|$$

for $f \in C$ and $n=1, 2, \ldots$ satisfies the relations

$$p_n(Fy) \le \frac{1}{2}p_n(y)$$

for all $n=1, 2, \ldots$ and $y \in C$, proving thus that F is a generalized contraction.

Suppose now that our operator $F: C \rightarrow C$ is a topological contraction. As the constant $0 \in C$ is the fixed point of F it follows that F would satisfy the conditions of our Lemma for some metric ρ inducing the topology of C. Let U(0) be the neighbourhood of $\{0\}$ in C existing according to the Lemma and consider the fundamental system of neighbourhoods $\{U(n, a) \mid n \ge 1, a > 0\}$ of $\{0\}$ defined by

$$U(n, a) = \{ f \in C : p_n(f) < a \}.$$

It follows that there is some $n \ge 1$ and a > 0 such that $U(n, a) \subset U(0)$ so that the neighbourhood U(n, a) also would satisfy the conclusion of our Lemma. Choosing V(0) to be U(n+1, 1) we consider the function $y_n \in C$ defined by $y_n(x)=0$ for $x \le n$ and $y_n(x)=x-n$ for x>n. Then obviously $b \cdot y_n \in U(n, a)$ for any constant b but on the other hand for every x>n and any $k \ge 1$ we have $F^k y_n(x) > 0$. Thus for any k we can choose b_k in such a way that

$$b_k F^k y_n(n+1) \cdot e^{-2(n+1)} \ge 1$$

https://doi.org/10.4153/CMB-1975-066-0 Published online by Cambridge University Press

[August

368

showing that the sets $F^k(U(n, a))$ do not shrink into the set U(n+1, 1) as would follow from the Lemma and the contradiction thus obtained completes the proof of our theorem.

REMARK. If X is a metrizable topological space and $F: X \rightarrow X$ a continuous selfmapping then the sufficient and necessary conditions for F to be a topological contraction have been found by Ph. Meyers ([3]). It is an open problem to establish a similar characterization for generalized contractions dropping at the same time the hypothesis of metrizability of the space X. The question is:

Given a completely regular topological space X, how to characterize those continuous selfmappings $F: X \to X$ for which there exists a family $\{\rho_i \mid i \in I\}$ of pseudometrics ρ_i on X inducing the topology of X and a constant $q \in (0, 1)$ such that

$$\rho(_iFx, Fy) \le q\rho_i(x, y)$$

for all $x, y \in X$ and all $i \in I$?

References

1. L. Janos, *Topological homotheties on compact Hausdorff spaces*, Proceedings of the A.M.S. Vol. 21, No. 3, June 1969. pp. 562–568.

2. Sherwood C. Chu and J. B. Diaz, A fixed point theorem for "in large" application of the contraction principle, Atti della Accademia delle Scienze di Torino Vol. 99, 1964-65. pp. 351-363. 3. Ph. R. Meyers, A converse to Banach's contraction theorem, J. Res. Nat. Bur. Standards

5. Ph. R. Meyers, A converse to Banach's contraction theorem, J. Res. Nat. Bur. Standards Ser. B71B, 1967. pp. 73–76.