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1. Introduction. For regular semigroups, the appropriate analogue of the concept
of a variety seems to be that of an e(xistence)-variety, developed by Hall [6,7,8]. A class
V of regular semigroups is an e-variety if it is closed under taking direct products, regular
subsemigroups and homomorphic images. For orthodox semigroups, this concept has
been introduced under the term "bivariety" by Kadourek and Szendrei [12]. Hall showed
that the collection of all e-varieties of regular semigroups forms a complete lattice under
inclusion. Further, he proved a Birkhoff-type theorem: each e-variety is determined by a
set of identities. For e-varieties of orthodox semigroups a similar result has been proved
by Kadourek and Szendrei. At variance with the case of varieties, prima facie the free
objects in general do not exist for e-varieties. For instance, there is no free regular or free
orthodox semigroup. This seems to be true for most of the naturally appearing e-varieties
(except for cases of e-varieties which coincide with varieties of unary semigroups such as
the classes of all inverse and completely regular semigroups, respectively). This is true if
the underlying concept of free objects is denned as usual. Kadourek and Szendrei
adopted the definition of a free object according to e-varieties of orthodox semigroups by
taking into account generalized inverses in an appropriate way. They called such
semigroups bifree objects. These semigroups satisfy the properties one intuitively expects
from the "most general members" of a given class of semigroups. In particular, each
semigroup in the given class is a homomorphic image of a bifree object, provided the
bifree objects exist on sets of any cardinality. Concerning existence, Kadourek and
Szendrei were able to prove that in any class of orthodox semigroups which is closed
under taking direct products and regular subsemigroups, all bifree objects exist and are
unique up to isomorphism. Further, similar to the case of varieties, there is an order
inverting bijection between the fully invariant congruences on the bifree orthodox
semigroup on an infinite set and the e-varieties of orthodox semigroups. Recently, Y. T.
Yeh [22] has shown that suitable analogues to free objects exist in an e-variety V of
regular semigroups if and only if all members of V are either E-solid or locally inverse.

The purpose of the present paper is to construct concrete realizations of the bifree
objects in certain e-varieties of strict orthodox semigroups. This will be done in Section 3
after having introduced several definitions and results in Section 2. The method of
description of the respective bifree objects is the same as used by the author for the
description of free strict inverse semigroups [2,3]. Several of the so obtained bifree
objects can be interpreted as the relatively free objects in certain varieties of strict
orthodox *-semigroups. This motivates the study of the lattice of strict orthodox
•-semigroup varieties which will be done in Section 4. This lattice will be completely
described modulo the lattice of all group varieties. It turns out that each relatively free
strict orthodox *-semigroup is the bifree object in some e-variety whereas the converse
does not hold.
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2. Preliminaries. For all undefined notions and unproved statements not explicitly
marked, the reader is referred to the books of Howie [11] and Petrich [18] (semigroups),
Gratzer [4,5] (universal algebras, lattices) and Harary [10] (graphs).

A semigroup 5 is strict regular if it is a regular subdirect product of completely
0-simple and/or completely simple semigroups. These semigroups have been studied
extensively by Lallement and Petrich [12,13,17]. Some recent results can be found in the
papers of Hall [6,7]. The author [2,3] studied free objects in certain unary semigroup
varieties all of whose members are strict regular semigroups. Similarly as for the inverse
case (see [18, Chap. XII]), e-varieties of strict regular semigroups form the "bottom" of
the lattice of all e-varieties of regular semigroups. By some reformulation of a result of
Petrich [17, Theorem 3.4] the following can be obtained (see [3, Theorem 2.3]).

THEOREM 2.1. Let X be a partially ordered set. For all a eX let la denote completely
0-simple semigroups whose non-zero parts /* are disjoint for distinct a, /?. For each pair
a > /3 e X let fa p: /*-»1% be a partial homomorphism subject to the following conditions:

(1) fa.a = idn for all ateX,
(2) fa.pfp,Y=fc.Y whenever a> 0 ^ y,
(3) for any aelt,belp the set

D(a, b) = {Y^a,P\ « , y ) ( ^ , y ) * 0 in IY}

has a greatest element, to be denoted by d(a,b).
On S = U^eA-'a define a multiplication by

ab = {afa,6(a,b)){bfPMoM)

where a e/*, b e 1% and the product is computed in /a(a,ft). Then the groupoid S, to be
denoted by (X;la,fap), is a strict regular semigroup. Conversely, every strict regular
semigroup can be so constructed.

As a consequence of this description, each strict regular semigroup is a subdirect
product of its principal factors.

As already mentioned, a class V of regular semigroups which is closed under taking
direct products, regular subsemigroups and homomorphic images is an e(xistence)-variety
of regular semigroups. The following concepts have been introduced by Kadourek and
Szendrei [12]. Let / be a non-empty set, /* = {i* | i e /} be a disjoint copy of / with /•->/*
being a bijection. Let V be a class of orthodox semigroups. The bifree object in V on / is a
pair (5, (p) where S ef and <f>:I U/*-*S is a mapping such that i*<p is an inverse of i(f>
for each i e I which satisfies the following universal property. For any T e V and any
mapping i/>:/U/*—»T such that i*%p is an inverse of ixp for each iel, there exists a
unique homomorphism xp.S—* T which extends xp, that is, satisfying ($>xp = %p. In each
class of orthodox semigroups there is, up to isomorphism, at most one bifree object on a
non-empty set /. Concerning existence, Kadourek and Szendrei have proved the
following.

THEOREM 2.2. In any class T of orthodox semigroups which is closed under taking
regular subsemigroups and direct products, the bifree object exists on any non-empty set I.
This semigroup, to be denoted by FV,, is generated by (I U I*)4>.

By the following result, also proved by Kadourek and Szendrei, the particular
nearness to the theory of varieties can be observed.
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THEOREM 2.3. Let F6, be the bifree orthodox semigroup on an infinite set I. There is
an order inverting bijection between the lattice of all fully invariant congruences on FO, and
the lattice of all e-varieties of orthodox semigroups. Further, if pv is the fully invariant
congruence corresponding to the e-variety Y then the relatively bifree object in Y is given
by FT, = F6J/PY- The congruence p r is determined by all "identities" which hold in Y.

The precise definition of "an identity holds in an orthodox semigroup 5" is given in
Section 3. The bifree object F6, is isomorphic to the free orthodox *-semigroup F6*
which has been described by Szendrei [20,21]. By Nordahl and Scheiblich [16], a
semigroup S, endowed with a unary operation s>-+s* is a regular ^-semigroup if the
following laws are satisfied:

(1) (xy)*=y*x*,
(2) (x*)*=x,
(3) xx*x = x.

An operation * satisfying (1) and (2) is an involution. Nordahl and Scheiblich showed the
following.

THEOREM 2.4. A regular *-semigroup is orthodox if and only if it satisfies the identity

(4) xx*yy*zz* = (xx*yy*zz*)2.

Consequently, the class of all orthodox *-semigroups forms a subvariety of the variety of
all regular *-semigroups.

We call a regular (orthodox) *-semigroups which is in addition strict a strict regular
(orthodox) *-semigroup. Finally we give some more definitions. A regular semigroup S is
Sft/J£-unipotent if each ^/j^-class of S contains only one idempotent; 5 is combinatorial if
$?is the identical relation, or equivalently, all subgroups are trivial. We finish the present
section by giving a list of symbols which will be used in the following. In general,
e-varieties will be denoted by script letters V whereas V* is the variety of regular
•-semigroups all of whose members belong to Y. For instance, 9238 is the class of all
rectangular bands and £%38* denotes the class of all rectangular bands which are equipped
with an involution. These classes do not coincide and not even the respective classes of
underlying semigroups do. On the other hand, if Y is an e-variety consisting entirely of
inverse semigroups then Y and Y* can be identified by the mutual inverse mappings
(S, •)>-*(S, •, *), (5, •, *)>-»(5, •) since the involution * is uniquely determined in each
inverse semigroup (5, •).

0 the class of all orthodox semigroups
3 the class of all inverse semigroups

y$l the class of all strict regular semigroups
SPO the class of all strict or thodox semigroups
5P31 the class of all strict inverse semigroups

5" the class of trivial semigroups
$ the class of all groups
if the class of all semilattices
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the class of all rectangular bands
the class of all combinatorial strict inverse semigroups
the class of all right zero semigroups
the class of all left zero semigroups
the class of all strict 3$-unipotent semigroups
the class of all strict J^-unipotent semigroups
the class of all normal bands

•2WS8 the class of all left normal bands
3?-A"33 the class of all right normal bands

%Y the combinatorial members of Y
££(¥) the lattice of all sub-e-varieties of the e-variety Y

the lattice of all subvarieties of V*
FT, the bifree object in the e-variety Y on /

FY* the free object in the variety Y* on /
(5) the e-variety generated by S

(S)* the variety generated by the involutorial semigroup S
C2 the five element non-orthodox 0-simple semigroup
£/ the identical relation on /

u>i the universal relation on /
E(A) the set of all idempotents of A c S
V(x) the set of inverses of the element x
9),jp Green's relations

3. Bifree objects in e-varieties of strict orthodox semigroups. In this section we first
shall consider the lattice of e-varieties of strict orthodox semigroups. Then we shall derive
models of the bifree objects in certain of the e-varieties under study. This also will lead to
solutions of the word problem for the bifree objects in the respective e-varieties. The next
two results are essentially contained in the papers of Hall [7,8].

THEOREM 3.1. Let si be an e-variety of groups and y6(si) denote the e-variety of all
strict orthodox semigroups all of whose subgroups belong to si. Then y6(si) = 38 v si v

In particular, &>€= 38 v <S v 9?58 and %^0 = 38 v

THEOREM 3.2. The lattice of all e-varieties of combinatorial strict regular semigroups
is as shown in Figure 1.

REMARK. Notice that the combinatorial strict right (left) unipotent semigroups are
precisely the combinatorial strict left (right) generalized inverse semigroups. By [7,
Theorem 4.4] it follows that 2(<rO) = SEi^iSfO) x # («) . Therefore we have a description
of the lattice ££(yG) modulo the lattice of all group varieties i?($). Further, each of the
e-varieties of combinatorial strict regular semigroups is generated by a single member.
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CSV.

Figure 1

We now consider the bifree objects in orthodox e-varieties of strict regular
semigroups. Let FC, be the bifree orthodox semigroup on / for an infinite set /. Let pm

and pgja denote the fully invariant congruences on FC, associated with the e-varieties 58
and 3?S8, respectively. These fully invariant congruences are determined by the
"biidentities" which hold in the respective e-varieties (for details see Kaciourek and
Szendrei [12]). By Theorems 2.2 and 2.3, p®v&® = Pm ^Pmse- In particular, F(9i v £%58)/
is isomorphic to the subdirect product of F@S, X FS?S8, = FC,lpm x FC,/pxm which is
generated by all pairs

{(ipm, ipmm), (i*Pm, i*Pmss) | i e / } •

Here ID I* is considered as a subset of FC,. A model of F($% v 012&), now can be
determined in terms of F$fo, and F@t98,. Since the bifree objects are uniquely determined
up to isomorphism, the following construction also applies for finite sets /. Further, since
in a rectangular band any two elements are mutual inverses, the bifree rectangular band
on / can be shown to be the free rectangular band on / U /*. This is the recu.ngular band
on (/ U /*) x (/ U /*) which is freely generated by {(i, i), (i*, /*) | i e I}. For convenience
of the further development, we give a slightly different model of the bifree rectangular
band on /.

LEMMA 3.3. Let I be a non-empty set and R, = {r, | i e /} and L, = {/, | i e 1} be two
disjoint sets of cardinality \I\. Let Y = R,UL, and <j) :/•-»(/,, r,-), j*>->(r,, /,). Then
(Y X y, 0) is the bifree rectangular band on I.

Proof. The mapping 0 can be uniquely extended to a homomorphism of the free
rectangular band on / U / * into the rectangular band YxY. Since (IL)I*)<f> generates
Y x y, this extension is onto. Further, it is routine to verify that the extension of (f> is
one-to-one.

Let a unary operation * on Y x Y be defined by (x,y)* = {y,x)\ then (YxY,-,*) is
the free rectangular *-band, freely generated by {(/,, rt) \ iel}. In order to present a
model of FS8, we need the following definitions.
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DEFINITION 1 ([2]). Let / be a non-empty set, R, = {r, | i e /} and L, = {/, | / e /} be
two disjoint sets of cardinality |/|. Let SPI denote the set of all finite non-empty subsets of
/. For A e 91 let YA = {/,-, r,,\ i e A} and Y = L, U R,. For Z c Y let c(Z) = {/ e / | /, e Z or
r, e Z} and c(/,) = c(r,) = i for all i e I. An equivalence relation a on YA is admissible if for
any x,y e 1C there exist *,-,,>-,,,. . . , xin,yin e y,,, xik, yik e {/,-,, r,k), such that

Let ^ be the set of all admissible equivalence relations ff on YA. Further, let
X = {JA69lXA. For each a e X let da = {x e Y \xax} and Y/a = {xa \ x e Y} =da/a.

In [2] the following has been proved about F3&,.

THEOREM 3.4. Let Y,X, Y/a etc. be as in Definition 1 and

5 = U Y/aX{a}x Y/a,

endowed with multiplication

(xa, a,ya)(ufi, /3, v/3) = (xd, 8, v8)

where 8 = 8(a,y, u, /J) = a v (o{y u) v /3 and the join is taken in the lattice of all symmetric
and transitive relations on Y, and also endowed with inversion

{xa, a,ya)~l = (ya, a,xa).

Then (S, •, ~') is the free object in the unary semigroup variety 5ft, with free generators
{(/,£,, e,, r,e,) I i e 1} where e, = e{,.M.

Different interpretations of FS8/ have been obtained by Reilly [19] by means of "strict
graphs" and by Margolis, Meakin and Stephen [15] by means of "inverse automata".

For convenience of notation, the elements of F% x F5&58, will be realized as follows:

{(u,xa, a,ya, v) \ (xa, a,ya)eF%,(u,v)eY x Y},

endowed with multiplication

(u,xa, a, ya, v)(a, CJ8, /?, d/3, b) = (u,x8,8, d8, b)

where 8 = 8(a,y, c, /?) = a v (0{yiC) v /3. Denote by 5 the subsemigroup of FS9, x
which is generated by the set

{(/,, /,£,, £,, /•,•£,-, r,), (rt, r,£,, £,-, /,£,, /,) | / € / } .

Let aeX and x,y eda. Then (xa, a,ya) e F3ft,. Since F38; is generated as a semigroup
by the elements

{(/,£,-, £,, r,£,), (r,£,, £,, /,£,) I / 6 /}

there are u exa, v e y a such that (w, -car, a,ya, v)eS. Since the elements
(*,*£,, Ej,xEhx) and (y,y£;, £/, y£,-,y) are contained in 5 provided c(x) = / and c(y) =j,
by multiplication from the left and the right we get (x,xa, a,ya,y) eS. On the other
hand, suppose that (u,xa, a,ya, v) eS. This element is a product of elements of the
form (/,,/,£,, £,,r,£,,r,) and (r,, r,£,, £,,/,£,,/,) so that u,veda and ua-;c,ua'.y.
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Consequently,

S = {(x,xa, a,ya,y) \ aeX,x,y eda}.

The entries xa,ya are redundant and may be omitted. In other words, the mapping
(x,xa, a,ya,y)>-^(x, a,y) is a bijection between 5 and {JAe»tYA *XAx YA. We thus
have obtained the following model of the bifree combinatorial strict orthodox semigroup

THEOREM 3.5. Let I be a non-empty set and &I, YA, XA etc. be as in Definition 1. Let
S = LJ/te*/ YA

 X XA X YA > endowed with multiplication

(x, a,y)(u, 0, v) = (x,av w{y_u) v /3, v).

Let 0: / •-> (/,, £,, r,), /* •-» (rh £,, /,). Then (5, (p) is the bifree combinatorial strict orthodox
semigroup on I.

Using the fact that the bifree left/right zero semigroup on / is the left/right zero
semigroup on /U/* , the same procedure as above yields models of the bifree objects in
the e-varieties of all strict combinatorial irrespectively £%-unipotent semigroups.

THEOREM 3.6. Let I be a non-empty set and Y,X etc. be as in Definition 1. Let
S = VJaex da X {a} X da Ia, endowed with multiplication

(x, a,ya)(u,p,vP) = (x,6,vd)

where 6 = a v W(y,u} v /3. Let <f>:i*-^>(/,, e,, /-,•£,•), i*•-»(/-,, e,, /,e,). Then ( 5 , 0 ) is the bifree
object on I in the e-variety ^ S ^ = 38 v £%.. The bifree object F<$y%% is constructed
dually.

For si e {3?2£, 3l2£, 9t$fo) let si~x denote the unary semigroup variety consisting of all
semigroups of si which in addition are equipped with the unary operation x~l = x. Let
ST1 denote the variety of all combinatorial strict inverse (unary) semigroups. With
respect to this notation, the free objects in the unary semigroup varieties M~l v S8~' have
been constructed by the author in [3].

The following important definition is due to Kadourek and Szendrei [12]. Let
w =xx . . . xn and v = _y, . . . ym be two words in the alphabet / U /*. Let 5 be an orthodox
semigroup. Then the identity w = v holds in 5 if for any mapping xp :I U I*—*S such that
i*\p e V{ity) for all i e I,xxxj). . . xntp =y\ty. . . ymty. The identity w = v holds in the class
Y of orthodox semigroups if it holds in each member of V.

Denote by <t> the mapping / U /*'̂ > F^SfO, mentioned in Theorem 3.5. If
(uueuvi),. . . , (un,en,vn)e (I U/*)0 then

(u,, £,, u,). . . (un, £„, vn) = («,, a, vn)

where a is the equivalence relation on {«,, v i,. . . , un, vn) which is generated by the
pairs {(vl,u2), • • • ,(vn-uun)}. Similarly as in [2, section 4] we now may identify
('/» £i, rd w»th (/, £,, i*) and (r,, £,, /,) with (i*, eh i). This yields the following solutions to
the problem of deciding which biidentities hold in the e-varieties WfG, ^^Se^, <#SP$%,
respectively (see also [2, Theorem 4.1]). In the following, x* = y el whenever x =y* el*.

THEOREM 3.7. Let I be a non-empty set and w =x, . . . xn and v —yx . . . ym be two
words in the alphabet ID I*. Let a denote the equivalence relation on {xux*,. . . , xn, x *}

https://doi.org/10.1017/S0017089500009538 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009538


32 KARL AUINGER

which is generated by the pairs {(**, x2), • • • , (**-i, xn)} and let /3 be defined analogously
for the word v. Then the identity w = v holds in <$S/>0 (<€9>9laU, <€S/'£eaU) if and only if

(1) a = fS
(2) Xi=yi (xl=yl,x1a = yla),
(3) xn = ym (x*a = y*ma,xn = y m ) .

Notice that in (3) we have written xn - ym instead of x * = y%, since these conditions
are equivalent. However, xna = yma is not equivalent to x*a =y%la.

Finally we shall give a model of the bifree object F^fO, which arises from FS'J'i and
F3L®, similarly as F^&'O, arises from F% and FW.%. Since <f3> = 38 v % FSfffi, is a
subdirect product of F%, and F%. We first present a description of FiP3,.

DEFINITION 2 ([3]). Let / be a non-empty set and Y, X etc. be as in Definition 1. The
directed edge-labelled pseudograph dg(a) associated with a is defined to be the following:

V(dg(a)) = Yla,

E(dg(a)) = {((/,«, r,a), i), ((r,a, /,«), i~l) \ i e c(rfor)}.

That is, the vertices of dg(a) are the equivalence classes modulo a and the directed edge
(having label) i starts at lta and ends at rta and conversely for i~K With each di-edge
ie, e 6 {1, —1}, we now associate two vertices of dg(a), the starting vertex s(iE) and the
end vertex t(ie), to be defined as

s(i) = li<x, t(i) = na, s(rl) = na, t(rl) = ltd.

Recall that the (bi)free group F% can be realized as the set of all reduced words in the
alphabet / U / " 1 together with the empty word 1. A word w is reduced if it does not
contain subwords of the form ii~l or i~li, i e I. A walk w on the graph dg(a) is a finite
sequence ixi2 • • • in of edges ik e E(dg(a)) such that t(ik) = s(ik+l) for k = 1,. . . , n — 1.
A walk w is admissible if the associated sequence of labels is a reduced word in IUI~\
For w = / , . . . /„ put s(w) = s(ii) and t(w) = /(/„). The trivial walk on xa, that is, a walk
starting and ending at xa and having no labels will be also called admissible and will be
associated with the empty word 1 on the alphabet / U /" ' . The set of all admissible walks
on dg(a) will be denoted by W(a).

The free strict inverse semigroup which coincides with the bifree strict inverse
semigroup F!?$, now can be constructed as follows (see [3]).

THEOREM 3.8. Let I be a non-empty set, Y, X etc. be as in Definition 1 and dg(a)
be as in Definition 2. Let

S = {(xa, a, g, ya) \ (xa, a, ya) e F%, g e W(a) c F%, s(g) = xa, t(g) = ya},

endowed with multiplication

(xa, a,g,ya)(up, p,h, vfi) = (xd, 8, r(gh), vd)

where 8 = a v (o^yu} v )3 and r(gh) is the reduced form of gh. Let ^>:/*->
(/,£,, £,, i, r,£,), i* i-» (r,£,, £,, i"1, /,£,). Then (S, <p) is the (bi)free strict inverse semigroup on
I.

In the same way as for the combinatorial case the following model of the bifree
object F&'Ci can be obtained. All we have to do is to find the subsemigroup S of
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F% x F9l% x F% which is generated by all elements of the form

{(/,, /,£,-, £,-, i, r,£,, />), (r,, r,£,, £,, i~', /,£,, /,) | i e I}.

The proof of the following result can be done in the same way as for the combinatorial
case (Theorem 3.5). One has to take into account that (/,,/,£,,£,, 1,/,£,,/,),
(/•,, /•,£,, £,, 1, r,£,, r,) eS for all iel. Further, from Theorem 4.4 in [7], 9'Z£aH =
\<f£°U. D 3>) v (#£% n ^38) = SW v 3?3f = 98 v « v 3?2? = •gtfSf'tt v « and dually for the
3£-unipotent case.

THEOREM 3.9. Let I be a non-empty set and Y,X,dg(a) etc. be as in Theorem 3.8.
Let

S = {(x, a,g,y) | (x, oc,y) e F<€V>O,,gz W(a)<=F%,s(g)=xa, t(g) =

endowed with multiplication

(x, a,g,y)(u, fi,h, v) = (x, a v co{yyU) v )8, r(gh), v).

Let (p:11-> (/,, £,, i, r,), /* >-» (r,, £,, /"' , /,). T/zen (S, #) w fAe 6//ree strict orthodox semi-
group on I. The bifree strict 3?-unipotent semigroup can be obtained by replacing the entry
x in (x, <x,g,y) by xa and dually for the bifree strict Sfc-unipotent semigroup.

By [7, Theorem 4.4], g(y€) = g^VG) x %{<g) = Z£(®) x i?(5?S8) x %(<$). We now
describe the fully invariant congruences on FS'G,.

THEOREM 3.10. Let j ^ e i ? (^ ) and o^ denote the fully invariant congruence on F%
such that F%loS4 = Fsd,. For V e ££{Sf6) denote by pv the fully invariant congruence on
FyGt corresponding to V. Let (x,a,g,y), (u, /5,h,v) e FifO,. Then the following
assertions hold.

(1) (x,a,g,y) p^ovsi (u,fi,h,v) if and only if a = /3, x = u, y = v and go^h.
(2) (x,a,g,y) pjraBVSl(u,p,h,v) if and only if da = d$, x = u, y = v, go^h.
(3) (x,a,g,y) Pmnvsi (u,fi,h,v) if and only if x = u, y = v, go^h.
(4) (x, a,g,y) Pwxvvs* (u,/3,h,v) if and only if a = /3, xa = u/3, y = v, go^h.
(5) (x,a,g,y) pmjf36vsl (u,p,h,v)ifandonlyifda = dp,y = v,go^h.
(6) (x,a,g,y) p&Zvsi (u,fi,h,v) if and only if y = v, go^h.
(7) (x, a,g, y) pmvsl (u,p,h,v) if and only if a = fi,xa = u/S, ya = vfi, ga^h.
(8) (x,a,g,y) p<,vsJ (u,fi,h,v) if and only if da = dp", go^h.
(9) (x,a,g,y) psi (u,fi,h,v) if and only if go^h.

The di-unipotent congruences are described by the duals of (4,5,6).

Proof. We give a detailed proof only for the case (2). The remaining cases can be
proved in the same fashion. We consider the following mappings: (p-.FS'O,-^ F&*,,
\i)\F9'OI-*F0l^l and ^.FSfO/^Fsd,, defined by (x, a,g,y)(j> = c(da), (x, a, g, y)ip
= (x,y) and (x, a,g,y)t; = go^. These mappings are the canonical homomorphisms of
FyO, onto the relatively bifree objects in 5 ,̂ £%38 and d, respectively, which induce the
congruences py, p®® and p^ , respectively. Since p^vsi = pyvSnmv^ = py <^Pmm H p^
the assertion follows.

Defining an involution x>-^x* on FS'O, by (x, a,g,y)* = (y, a,g~\x) we get a strict
orthodox *-semigroup. Similarly, if si e X(^§) and T is any one of the self dual e-varieties
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5\ Sf, 38, 9?S8, N®, %$€, then on FyO,/pVvjil a *-operation can be defined in a canonical
way by interchanging the outer entries and inverting the group entry so that the resulting
semigroup becomes a strict orthodox *-semigroup. In this case, the congruence pVwat

respects the involution. In particular, having shown that FifG^ endowed with the
mentioned involution, is the free strict orthodox *-semigroup then each congruence pw^
defines a variety of strict orthodox *-semigroups. In the next section we shall see that all
varieties of strict orthodox *-semigroups are thereby obtained.

4. Varieties of strict orthodox ^-semigroups. In this section we shall consider
i?(5W*), the lattice of all strict orthodox *-semigroup varieties. The following important
results concerning the ©-classes of a regular *-semigroup have been obtained by Nordahl
and Scheiblich [16].

THEOREM 4.1. Let S be a regular *-semigroup and aeS. Then the mapping x*-^x*
(x e Ra) is a bijection between Ra and La* which preserves idempotents and dK-classes.

THEOREM 4.2. The involution * on a regular ^-semigroup fixes one and only one
idempotent per @L-class.

The dual assertions for the ^-classes of course also hold. Similarly as for the case of
the e-variety of all strict orthodox semigroups we have the following.

THEOREM 4.3. SfG* = ®* v 5238* v <S*.

Proof. Let / be a non-empty set. Let FSfO, and FSfOf denote the bifree strict
orthodox and the free strict orthodox *-semigroups, respectively. In the realization of
Theorem 3.9, FS'O, is generated as a semigroup by the elements {(/,, e,, /, r,),
(r,, e,, /"',/,) | i el}. As pointed out in Section 3, FSfO, admits an
involution *:(x, a,g,y)^(y, a,g~\x) so that F^O, becomes a strict orthodox *-
semigroup. Now consider / as a subset of F^O*. Let / : (/,, £,, /, r,) >-»i, (r,, e,, i~\ /,) >-»i*.
The mapping / extends uniquely to a homomorphism / : FSf6, —»FSf6? which, in addition,
respects involution. On the other hand, since F^O, is a strict orthodox *-semigroup, the
mapping g:i^(lhehi,ri) extends uniquely to a *-homomorphism g:FZfG*-»FSfO,.
Then gf: FS'G* —> F^6* is a *-homomorphism satisfying igf = i for all i e I. Uniqueness of
gf implies gf = idFSf0.. Dually also fg = idFyOl. Consequently, F&'G* = F¥G,. Remember
that the semigroup FtfC, consists of the following elements (in redundant form):

{(x, xa, a, g, ya, y) \ (xa, a, ya) e F@,, g e W(a) c F%, s(g) = xa, t{g) = ya).

From this it is obvious that FSPCf = F^O, is a subdirect product of the relatively free
•-semigroups FS8*, F9l%* and F%, respectively. Consequently, 5W* c S8* v $98* v <§*
and the converse inclusion is trivial.

Similarly it can be seen that SfC* = %ifG* v ^* by showing that
The following result can be obtained from [9, Theorem 6].

THEOREM 4.4. Let I be a non-empty set, P be an equivalence relation on I, G be a
group and M°(I, G; P) = / X G X / U {0} where 0 $ I X G X /. Define a multiplication on
M°(I,G;P)by

,gh,l) if(j,k)eP
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and an involution by

Then M\l,G,P) is a completely 0-simple orthodox *-semigroup. Conversely, every
completely 0-simple orthodox *-semigroup (=£ {0}) can be so constructed.

Let A and B be two completely (O-)simple semigroups. Let I = (A x {0B}) U ({0^} x
B)c.AxB. Here 0^ and 0fl denote the zeros of A and B, respectively, provided these
zeros exist. Otherwise the respective set is taken to be empty. The semigroup
A®B = A xB/I is completely (O-)simple. A Rees matrix representation of A®B by
means of the respective representations of A and B can be obtained easily (see [7]). Let
S = M°(I, G; P) be a completely 0-simple orthodox *-semigroup. Then M°{1; P) = IxlL)
{0}, equipped with multiplication

'l) if ^ * > e P

0 if (/,*)«/>,

and involution

(/,/)* = (/,O,o* = o,

is the combinatorial part of M\l, G; P).
By Theorem 4.4, S = Ji\l,G;P)^M°{I;P)®G for each completely 0-simple

orthodox *-semigroup 5. Denote by B(I/P) the combinatorial Brandt semigroup on
/ / P x / / P U { 0 } and let RB(I) be the rectangular *-band on I x I. The semigroup
B(I/P) <8> RB(I) can be realized as follows:

B(I/P) <g> RB(I) = I/PxIxIxI/PU {0},

endowed with multiplication iP'h k'J'P) if (/' ° 6 P
ftP i k IPMi'P V k' I'P) =
{ip,j,k,in{ip,],k,ip)

and all other products are taken to be zero, and also endowed with involution

The mapping <t>:M°(I;P)^>B(I/P)® RB(I), defined by {i,j)^>{iP,i,j,jP), 0 ^ 0 is an
injective *-homomorphism. In particular, JU?{I;P) is isomorphic to a *-subsemigroup of
B(l/P) <8> RB(I). We have thus proved the following. Given a completely 0-simple
orthodox *-semigroup 5 with maximal subgroup G, then S e ( G ) * v S 8 * v S?S8*. Further,
5 e ( G ) * v S 8 * if and only if 5 contains no non-trivial rectangular band, that is, if and
only if 5 is inverse. Also, Se (G)* v Sf* v 9238* if and only if 5 contains no $f-class
which is null. Precisely in this case, P is the universal relation, or equivalently, 5 is a
rectangular (*-)group with a zero adjoined.

LEMMA 4.5. Let S be a strict regular *-semigroup and let S = (X;la,fa p) be
represented as in Theorem 2.1. Then the partial homomorphisms fap respect the
involution.
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Proof. Let a>fleX and x e /*. Then by construction, (xfa,<p)(xfa,li)* = x(xfafl)* and
(xfa p)x* = (xfa p)(x*fa p). Since (xfa.f))(xfap)* is fixed under the involution, we have
(xfa,p)(xfa,Pr = x(xfa,p)* = [x(xfa,pri* = (xf^x* = (xfaJ,)(x*fa,f,) = (xx*)fa,p. In par-
ticular, [{xx*)fa,fi]* = {xx*)fa,ti. Now we have (xfa,p)* = [(xx*)fa,li(xfa,p)]* =
[(xx*)fa,px]* = x*[(xx*)fa^]* = x*(xx*)fa,p = (x*UP)(xx*)fa,li = / / , p .

COROLLARY 4.6. Lef T* e ££(¥€*) be a variety of strict orthodox *-semigroups. Then

r* = (T* n <§*) v (r* n %*) v (r* n s?sr).
Proof. Let T* e ^(^0*) and ^ e T . Each S-class of S = (X;Ia,fayP) is invariant

under the involution. Hence each principal factor Ia of 5 in fact is a completely (O-)simple
orthodox *-semigroup contained in V*. As shown above, Ia e (V* n W) v (T* n S3*) v
(¥* D 3?S8*) for each Ia. By [3, Theorem 2.3], S is a subdirect product of the semigroups
/„.. Since the mappings faP respect the involution, by the proof of [3, Theorem 2.3], S is
also isomorphic to a *-subsemigroup of the direct product of its principal factors.
Consequently, 5 e (T* D <$*) v (T* n 38*) v (V* n $53*).

This yields a decomposition of the lattice ££(^0*). Taking into account that
( I T . f ^ r v F v f is also an injective mapping of <£(«*) x ^(S8*) x
i?(S?S8*) into %(yO*) then in fact we have obtained the following.

THEOREM 4.7. %{&€*) = g^S*) X ^(38*) x i?(g?S8*). More precisely, the mappings
Y*^(yn(S*,r*nS8*,r*ngi5&*) and (%*,V*,W*)^<U*vr*vW* are mutual
inverse isomorphisms between ^(^6*) and if(^*) x ^(53*) x i?(^S3*).

At variance with the case of the e-variety £%38 or the completely regular variety
i^ST1, 5£{9t^*) is the two element chain rather than the four element diamond lattice
(see for instance Adair [1]). Each variety of strict orthodox *-semigroups now
corresponds to a self dual e-variety of strict orthodox semigroups. Also, the relatively free
objects in the varieties of strict orthodox *-semigroups coincide with the bifree objects in
the associated e-varieties. But the bifree objects in the Z£- and £%-unipotent e-varieties
which are not inverse do not have an interpretation as relatively free strict orthodox
•-semigroups.

Finally we give a basis of identities for the varieties ^6* and ^yo*.

THEOREM 4.8. The unary semigroup variety !?G* is defined by the following laws.
(1) (xy)z=x(yz)
(2)(x*)*=x
(3) (xy)*=y*x*
(4) xx*x =x
(5) xx*yy*zz* = (xx*yy*zz*)2

(6) xyx*(xyx*)* =(xyx*)*xyx*
Addition of the law

(7) xyx* = (xyx*)2

yields a basis of identities for ^SfO*. In this case, (6) may be replaced by
(6') xyx* = (xyx*)*.

Proof. By Theorems 3.7, 3.9 and 4.3 the laws (1-6) hold in every strict orthodox
•-semigroup. Conversely, let S be a unary semigroup satisfying (1-6). By Theorem 2.4, 5
is orthodox. Hall [6] has pointed out that a regular semigroup S is strict if and only if each
local submonoid eSe, eeE(S), is a semilattice of groups. Let e e E(S). The regular
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semigroup eSe is isomorphic (as a semigroup) to the regular semigroup ee*See* = eSe*
via the mapping x>-*xe*. Further, eSe* is invariant under the involution *. In particular,
eSe* is a regular *-semigroup which by (6) satisfies the identity x*x = xx*. A fortiori, eSe*
satisfies the law xx*x*x =x*xxx* so that eSe* is an inverse semigroup with inversion
JC •"-»**. The identity xx* = x*x then implies that eSe* is a semilattice of groups. By
Theorem 3.7 each combinatorial strict orthodox *-semigroup satisfies (7) and (6'). On the
other hand, (7) implies that the Clifford semigroups eSe* are inverse semigroups
satisfying the law x=x2. Consequently, as above, each local submonoid eSe is a
semilattice and thus 5 is a combinatorial strict regular semigroup.
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