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Abstract

Given an elliptic curve E over Q, a celebrated conjecture of Goldfeld asserts that a positive
proportion of its quadratic twists should have analytic rank 0 (respectively 1). We show that this
conjecture holds whenever E has a rational 3-isogeny. We also prove the analogous result for
the sextic twists of j-invariant 0 curves. For a more general elliptic curve E , we show that the
number of quadratic twists of E up to twisting discriminant X of analytic rank 0 (respectively 1)
is � X/ log5/6 X , improving the current best general bound toward Goldfeld’s conjecture due to
Ono–Skinner (respectively Perelli–Pomykala). To prove these results, we establish a congruence
formula between p-adic logarithms of Heegner points and apply it in the special cases p = 3 and
p = 2 to construct the desired twists explicitly. As a by-product, we also prove the corresponding
p-part of the Birch and Swinnerton–Dyer conjecture for these explicit twists.

2010 Mathematics Subject Classification: 11G05 (primary); 11G40 (secondary)

1. Introduction

1.1. Goldfeld’s conjecture. Let E be an elliptic curve over Q. We denote
by ran(E) its analytic rank. By the theorem of Gross–Zagier and Kolyvagin, the
rank part of the Birch and Swinnerton–Dyer (BSD) conjecture holds whenever
ran(E) ∈ {0, 1}. One can ask the following natural question: how is ran(E)
distributed when E varies in families? The simplest (1-parameter) family is given
by the quadratic twist family of a given curve E . For a fundamental discriminant d ,
we denote by E (d) the quadratic twist of E by Q(

√
d). The celebrated conjecture
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of Goldfeld [21] asserts that ran(E (d)) tends to be as low as possible (compatible
with the sign of the function equation). Namely in the quadratic twist family
{E (d)
}, ran should be 0 (respectively 1) for 50% of d’s. Although ran > 2 occurs

infinitely often, its occurrence should be sparse and accounts for only 0% of d’s.
More precisely,

CONJECTURE 1.1 (Goldfeld). Let

Nr (E, X) = {|d| < X : ran(E (d)) = r}.

Then for r ∈ {0, 1},

Nr (E, X) ∼
1
2

∑
|d|<X

1, X →∞.

Here d runs over all fundamental discriminants.

Goldfeld’s conjecture is widely open: we do not yet know a single example E
for which Conjecture 1.1 is valid. One can instead consider the following weaker
version (replacing 50% by any positive proportion):

CONJECTURE 1.2 (Weak Goldfeld). For r ∈ {0, 1}, Nr (E, X)� X.

REMARK 1.3. Heath-Brown [30, Theorem 4] proved Conjecture 1.2 conditional
on the Generalized Riemann Hypothesis. Recently, Smith [76] has announced
a proof (conditional on BSD) of Conjecture 1.1 for curves with full rational 2-
torsion by vastly generalizing the works of Heath-Brown [29] and Kane [35].

REMARK 1.4. Katz–Sarnak [40] conjectured the analogue of Conjecture 1.1 for
the 2-parameter family {E A,B : y2

= x3
+ Ax + B} of all elliptic curves over

Q. The weak version in this case is now known unconditionally due to the recent
work of Bhargava–Skinner–Zhang [7]. However, their method does not directly
apply to quadratic twists families.

In the next two subsections, we describe our unconditional theorems
concerning Goldfeld’s conjecture for both special and general elliptic curves.

1.2. Goldfeld’s conjecture for special E. The curve E = X0(19) is the first
known example for which Conjecture 1.2 is valid (see James [32] for r = 0
and Vatsal [82] for r = 1). Later, many authors have verified Conjecture 1.2 for
infinitely many curves E (see [11, 83] and [42]) using various methods. However,
all these examples are a bit special as they are all covered by our first main result:
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THEOREM 1.5. The weak Goldfeld conjecture is true for any E with a rational
3-isogeny.

REMARK 1.6. Theorem 1.5 gives so far the most general results for
Conjecture 1.2. There is only one known example for which Conjecture 1.2
is valid and is not covered by Theorem 1.5: the congruent number curve
E : y2

= x3
− x (due to the recent work of Smith [75] and Tian–Yuan–

Zhang [80]).

REMARK 1.7. For explicit lower bounds for the proportion in Theorem 1.5,
see the more precise statements in Theorems 9.4 and 9.5, Proposition 9.7 and
Example 9.9.

For an elliptic curve E of j-invariant 0 (respectively 1728), one can also
consider its cubic or sextic (respectively quartic) twists family. The weak Goldfeld
conjecture in these cases asserts that for r ∈ {0, 1}, a positive proportion of
(higher) twists should have analytic rank r . Our second main result verifies the
weak Goldfeld conjecture for the sextic twist family. More precisely, consider the
elliptic curve

E = X0(27) : y2
= x3

− 432

of j-invariant 0 (isomorphic to the Fermat cubic X 3
+Y 3

= 1). For a sixth-power-
free integer d, we denote by

Ed : y2
= x3

− 432d

the dth sextic twist of E .

THEOREM 1.8 (Corollary 10.8). The weak Goldfeld conjecture is true for the
sextic twist family {Ed}. In fact, Ed has analytic rank 0 (respectively 1) for at
least 1/6 of fundamental discriminants d.

REMARK 1.9. For a wide class of elliptic curves of j-invariant 0, we can
also construct many (in fact � X/ log7/8 X ) cubic twists of analytic rank 0
(respectively 1). However, these cubic twists do not have positive density. See
the more precise statement in Theorem 11.1 and Example 11.3.

REMARK 1.10. In a recent work, Bhargava–Elkies–Shnidman [6] prove the
analogue of Theorem 1.8 for 3-Selmer ranks 0, 1 by determining the exact average
size of 3-isogeny Selmer groups (its boundness was first proved by Fouvry [20]).
The same method also works for quadratic twist family of any elliptic curve with
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a 3-isogeny [8]. We remark that their method however does not have the same
implication for analytic rank r = 0, 1 (or algebraic rank 1) since the p-converse
to the theorem of Gross–Zagier and Kolyvagin is not known for p, an additive
and Eisenstein prime.

REMARK 1.11. Recently, Browning [9] has used Theorem 1.8 as a key input
in his argument to show that a positive proportion (when ordered by height) of
smooth projective cubic surfaces of the form f (x0, x1) = g(x2, x3), where f, g
are binary cubic forms over Q, have a Q-rational point. This result drastically
increases the set of known cases of cubic surfaces which have a Q-rational point
and gives a very uniform family of such examples.

1.3. Goldfeld’s conjecture for general E. When r = 0, the best general
result toward Goldfeld’s conjecture is due to Ono–Skinner [59]: they showed that
for any elliptic curve E/Q,

N0(E, X)�
X

log X
.

When E(Q)[2] = 0, Ono [58] improved this result to

N0(E, X)�
X

log1−α X

for some 0 < α < 1 depending on E . When r = 1, even less is known. The
best general result is due to Perelli–Pomykala [60] using analytic methods: they
showed that for any ε > 0,

N1(E, X)� X 1−ε.

Our third main result improves both bounds under a technical assumption on the
2-adic logarithm of the associated Heegner point on E .

Let us be more precise. Let E/Q be an elliptic curve of conductor N .
Throughout this article, we will use K = Q(

√
dK ) to denote an imaginary

quadratic field of fundamental discriminant dK satisfying the Heegner hypothesis
for N :

each prime factor ` of N is split in K .

We denote by P ∈ E(K ) the corresponding Heegner point, defined up to sign
and torsion with respect to a fixed modular parametrization πE : X0(N ) → E
(see [25]). Let

f (q) =
∞∑

n=1

an(E)qn
∈ Snew

2 (Γ0(N ))
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be the normalized newform associated with E . Let ωE ∈ Ω
1
E/Q := H 0(E/Q,Ω1)

such that
π∗E(ωE) = f (q) · dq/q.

We denote by logωE
the formal logarithm associated with ωE . Note that ωE may

differ from the Néron differential by a scalar when E is not the optimal curve in
its isogeny class.

Now we are ready to state our third main result.

THEOREM 1.12. Suppose E/Q is an elliptic curve with E(Q)[2] = 0. Suppose
there exists an imaginary quadratic field K by satisfying the Heegner hypothesis
for N such that

2 splits in K and
|Ẽns(F2)| · logωE

(P)
2

6≡ 0 (mod 2). (F)

Then for r ∈ {0, 1}, we have

Nr (E, X)�


X

log5/6 X
, if Gal(Q(E[2])/Q) ∼= S3,

X
log2/3 X

, if Gal(Q(E[2])/Q) ∼= Z/3Z.

REMARK 1.13. Assumption (F) imposes certain constraints on E/Q (for
example, its local Tamagawa numbers at odd primes are odd; see Section 5.1),
but it is satisfied for a wide class of elliptic curves. See Section 6 for examples
and also Remark 6.6 on the wide applicability of Theorem 1.12.

REMARK 1.14. Mazur–Rubin [48] proved similar results for the number of twists
of 2-Selmer rank 0, 1. Again we remark that it however does not have the same
implication for analytic rank r = 0, 1 (or algebraic rank 1) since the p-converse
to the theorem of Gross–Zagier and Kolyvagin for p = 2 is not known.

REMARK 1.15. For certain elliptic curves with E(Q)[2] = Z/2Z, the work
of Coates–Li–Tian–Zhai [15] also improves the current bounds using a
generalization of the classical method of Heegner and Birch for prime twists.

1.4. Congruences between p-adic logarithms of Heegner points. The
starting point of the proof of Theorem 1.12 is the simple observation that
quadratic twists do not change the mod 2 Galois representations: E[2] ∼= E (d)

[2].
More generally, suppose p is a prime and E, E ′ are two elliptic curves with
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isomorphic semisimplified Galois representations E[pm
]

ss ∼= E ′[pm
]

ss for some
m > 1, one expects that there should be a congruence mod pm between the
special values (or derivatives) of the associated L-functions of E and E ′. It is
usually rather subtle to formulate such congruence precisely. Instead, we work
directly with the p-adic incarnation of the L-values – the p-adic logarithm of
Heegner points – and we prove the following key congruence formula.

THEOREM 1.16. Let E and E ′ be two elliptic curves over Q of conductors N
and N ′, respectively. Suppose p is a prime such that there is an isomorphism of
semisimplified GQ := Gal(Q/Q)-representations

E[pm
]

ss ∼= E ′[pm
]

ss

for some m > 1. Let K be an imaginary quadratic field satisfying the Heegner
hypothesis for both N and N ′. Let P ∈ E(K ) and P ′ ∈ E ′(K ) be the Heegner
points. Assume that p is split in K . Then we have( ∏

`|pN N ′/M

|Ẽns(F`)|
`

)
· logωE

P

≡ ±

( ∏
`|pN N ′/M

|Ẽ ′,ns(F`)|
`

)
· logωE ′

P ′ (mod pmOK p).

Here,
M =

∏
`|(N ,N ′)

a`(E)≡a`(E ′) (mod pm )

`ord`(N N ′).

REMARK 1.17. Recall that Ẽns(F`) denotes the number of F`-points of the
nonsingular part of the mod ` reduction of E , which is `+1−a`(E) if ` - N , `±1
if `||N and ` if `2

|N . The factors in the above congruence can be understood as
the result of removing the Euler factors of L(E, 1) and L(E ′, 1) at bad primes.

REMARK 1.18. The link between the p-adic logarithm of Heegner points and
p-adic L-functions dates back to Rubin [66] in the Complex Multiplication case
and was recently established in great generality by Bertolini–Darmon–Prasanna
(BDP) [5] and Liu–Zhang–Zhang [45]. However, our congruence formula is
based on direct p-adic integration and does not use this deep link with p-adic
L-functions.

REMARK 1.19. Since there is no extra difficulty, we prove a slightly more general
version (Theorem 3.9) for Heegner points on abelian varieties of GL2-type. The
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same type of congruence should hold for modular forms of weight k > 2 (in a
future work), where the p-adic logarithm of Heegner points is replaced by the
p-adic Abel–Jacobi image of generalized Heegner cycles defined in [5].

Note that Theorem 1.16 allows us to propagate the nonvanishing (mod p) of
the p-adic logarithm of Heegner points through congruences as long as the extra
Euler factors are p-adic units. As a first application, we apply to the case p = 2
and E ′ = E (d) and construct an explicit set of d’s such that the p-adic logarithm
of P (d)

∈ E (d)(K ) is nonzero. Combining with the Gross–Zagier formula (P (d)

is nontorsion if and only if ran(E (d)/K ) = 1), we can then deduce Theorem 1.12.
Further applications of Theorem 1.16 will be given in a future work.

1.5. Heegner points at Eisenstein primes. The proof of Theorems 1.5
and 1.8 also relies on a congruence formula involving the p-adic logarithm of
Heegner points. Now suppose p is an Eisenstein prime for E (that is, E[p] is a
reducible GQ-representation, or equivalently, E admits a rational p-isogeny). In
this case, we have congruence between the modular form f and an Eisenstein
series. The Eisenstein series side of the congruence formula can be evaluated
explicitly and gives rise to a product of two Bernoulli numbers.

More precisely, for a finite order Galois character ψ : GQ → Q×, we abuse
notation and denote byψ : (Z/ f Z)×→ C× the corresponding Dirichlet character,
where f is its conductor. The generalized (first) Bernoulli number is defined to
be

B1,ψ :=
1
f

f∑
m=1

ψ(m)m. (1)

Let εK be the quadratic character associated with K . We consider the even
Dirichlet character

ψ0 :=

{
ψ if ψ is even,
ψεK if ψ is odd.

THEOREM 1.20 (Theorem 7.1). Let E/Q be an elliptic curve of conductor N.
Suppose p is an odd prime such that E[p] is a reducible GQ-representation. Write
E[p]ss ∼= Fp(ψ) ⊕ Fp(ψ

−1ω) for some character ψ : GQ → Aut(Fp) ∼= µp−1

and the mod p cyclotomic character ω. Assume that

(1) ψ(p) 6= 1 and (ψ−1ω)(p) 6= 1;

(2) E has no primes of split multiplicative reduction;

(3) If ` 6= p is an additive prime for E, then ψ(`) 6= 1 and (ψ−1ω)(`) 6= 1.
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Let K be an imaginary quadratic field satisfying the Heegner hypothesis for N.
Let P ∈ E(K ) be the associated Heegner point. Assume p splits in K . Assume

B1,ψ−1
0 εK
· B1,ψ0ω−1 6= 0 (mod p).

Then
|Ẽns(Fp)|

p
· logωE

P 6= 0 (mod p).

In particular, P ∈ E(K ) is of infinite order and E/K has analytic and algebraic
rank 1.

REMARK 1.21. When E/Q has CM by Q(
√
−p) (of class number 1), Rubin [64]

proved a mod p congruence formula between the algebraic part of L(E, 1) and
certain Bernoulli numbers. Note that E admits a p-isogeny (multiplication by
√
−p), and Theorem 1.20 specializes to provide a mod p congruence between

the p-adic logarithm of the Heegner point on E and certain Bernoulli numbers,
which can be viewed as a generalization of Rubin’s formula from the rank-0 case
to the rank-1 case.

Note that the two odd Dirichlet charactersψ−1
0 εK andψ0ω

−1 cut out two abelian
CM fields (of degree dividing p− 1). When the relative p-class numbers of these
two CM fields are trivial, it follows from the relative class number formula that
the two Bernoulli numbers in Theorem 1.20 are nonzero mod p (see Section 8);
hence, we conclude that ran(E/K ) = 1. When p = 3, the relative p-class numbers
becomes the 3-class numbers of two quadratic fields. Our final ingredient to
finish the proof of Theorems 1.5 and 1.20 is Davenport–Heilbronn’s theorem
[18] (enhanced by Nakagawa–Horie [55] with congruence conditions), which
allows one to find a positive proportion of twists such that both 3-class numbers
in question are trivial.

1.6. A by-product: the p-part of the BSD conjecture. The BSD conjecture
predicts the precise formula

L (r)(E/Q, 1)
r !Ω(E/Q)R(E/Q)

=

∏
p cp(E/Q) · |Ш(E/Q)|

|E(Q)tor|
2

(2)

for the leading coefficient of the Taylor expansion of L(E/Q, s) at s = 1 (here
r = ran(E)) in terms of various important arithmetic invariants of E (see [26] for
detailed definitions). When r 6 1, both sides of the BSD formula (2) are known
to be positive rational numbers. To prove that (2) is indeed an equality, it suffices
to prove that it is an equality up to a p-adic unit for each prime p. This is known
as the p-part of the BSD formula (BSD(p) for short).
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REMARK 1.22. Much progress for BSD(p) has been made recently, but only in
the case p > 3 is semistable and non-Eisenstein (for r = 0: [36, 74, 77, 84];
for r = 1: [4, 13, 34, 73, 77, 90]). For the case p = 2, very little (beyond
numerical verification) is known. Gonzalez-Avilés [22] establishes BSD(2) for the
quadratic twists of X0(49)when r = 0. Tian’s breakthrough [81] on the congruent
number problem establishes BSD(2) for many quadratic twists of X0(32) when
r 6 1. Coates outlined a program [14, page 35] generalizing Tian’s method for
establishing BSD(2) for many quadratic twists of a general elliptic curve when
r 6 1, which has succeeded for two more examples X0(49) [15] and X0(36) [12].
All these three examples are CM with rational 2-torsion.

As a by-product of our congruence formulas for Heegner points, we establish
new results on BSD(2) for the explicit twists of a general E constructed in
Theorem 1.12 (see Theorem 5.1). We also establish the following new results
on BSD(3) for many sextic twists Ed : y2

= x3
− 432d , in the case p = 3 is

additive and Eisenstein.

THEOREM 1.23 (Theorem 10.10). Suppose K is an imaginary quadratic field
that satisfies the Heegner hypothesis for 3d. Assume that

(1) d is a fundamental discriminant.

(2) d ≡ 2, 3, 5, 8 (mod 9).

(3) If d > 0, h3(−3d) = h3(dK d) = 1. If d < 0, h3(d) = h3(−3dK d) = 1.

(4) The Manin constant of Ed is coprime to 3.

Then ran(Ed/K ) = 1 and BSD(3) holds for Ed/K . (Here, h3(D) denotes the 3-
class number of Q(

√
D).)

REMARK 1.24. Since the curve Ed has complex multiplication by Q(
√
−3), we

already know that BSD(p) holds for Ed/Q if p 6= 2, 3 (when r = 0) and if p 6= 2,
3 is a prime of good reduction or potentially good ordinary reduction (when r = 1)
thanks to the works [41, 44, 61, 62, 65]. When r = 0, we also know BSD(3) for
some quadratic twists of the two curves X0(27) and X0(36) of j-invariant 0, using
explicit weight 3/2 modular forms [33, 56, 57]).

1.7. Comparison with previous methods establishing the weak Goldfeld
conjecture.

(1) The work of James [32] on weak Goldfeld for r = 0 uses Waldspurger’s
formula relating coefficients of weight 3/2 modular forms and quadratic
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twist L-values (see also [56, 59]). Our proof does not use any half-integral
weight modular forms.

(2) When N is a prime different from p, Mazur, in his seminal paper [47],
proved a congruence formula at an Eisenstein prime above p, between
the algebraic part of L(J0(N ), χ, 1) and a quantity involving generalized
Bernoulli numbers attached to χ , for certain odd Dirichlet characters χ .
This was later generalized by Vatsal [83] for more general N and used to
prove weak Goldfeld for r = 0 for infinitely many elliptic curves.

(3) When N is a prime different from p, Mazur [47] also constructed a point of
infinite order on the Eisenstein quotient of J0(N ), when certain quadratic
class number is not divisible by p. This was later generalized by Gross
[25, II] to more general N and became the starting point of the work of
Vatsal [82] and Byeon–Jeon–Kim [11] on weak Goldfeld for r = 1.

(4) Our main congruence at Eisenstein primes (see Section 7.5) through which
Theorem 1.20 is established can be viewed as a vast generalization of
Mazur’s congruence from J0(N ) to any elliptic curve with a p-isogeny and
to both rank-0 and rank-1 cases. To achieve this, instead of working with
L-functions directly, we use the p-adic logarithm of Heegner points as the
p-adic incarnation of L-values (or L-derivatives).

(5) The recent work [42] also uses p-adic logarithm of Heegner points. As
we have pointed out, the crucial difference is that our proof uses a direct
method of p-adic integration and does not rely on the deep p-adic Gross–
Zagier formula of [5]. This is the key observation to remove all technical
hypotheses that appeared in previous works, which in particular makes the
application to the sextic twist family possible.

(6) Although the methods are completely different, the final appearance of the
Davenport–Heilbronn-type theorem is a common feature in all previous
works [11, 32, 42, 82, 83] and also ours.

1.8. Structure of the paper. The main congruence (Theorem 1.16) is proved
in Section 3. We explain the ideal of the proof in Section 3.1. In Section 4, we
prove the application to Goldfeld’s conjecture for general E (Theorem 1.12). In
Section 5, we prove the application to BSD(2) (Theorem 5.1). In Section 6, we
include numerical examples illustrating the wide applicability of Theorems 1.12
and 5.1. In Section 7, we establish the nontriviality criterion for Heegner
points at Eisenstein primes in terms of p-indivisibility of Bernoulli numbers
(Theorem 1.20). In Section 8, we recall the relation between the Bernoulli
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numbers and relative class numbers. In Section 9, we combine our criterion
and the Nakagawa–Horie theorem to prove the weak Goldfeld conjecture for
curves with a 3-isogeny (Theorem 1.5). In Section 10, we give applications
to Goldfeld’s conjecture and BSD(3) for the sextic twist family (Theorems 1.8
and 1.23). Finally, in Section 11, we give an application to cubic twist families
(Theorem 11.1).

2. Notations and conventions

In this section, we define some notation and fix some conventions that will be
used throughout the paper.

Fix an algebraic closure Q of Q and view all number fields L as embedded
L ⊂ Q. Let hL denote the class number of L and let Z denote the integral closure
of Z in Q. Fix an algebraic closure Qp of Qp (which amounts to fixing a prime
of Q above p). Let Cp be the p-adic completion of Qp and let L p denote the
p-adic completion of L ⊂ Cp. For any integers a, b, let (a, b) denote their
(positive) greatest common divisor. Given ideals a, b ⊂ OL , let (a, b) denote their
greatest common divisor.

All Dirichlet (that is, finite order) characters ψ : A×Q → Q× will be primitive,
and we denote the conductor by f (ψ), which is an ideal in Z identified with
its unique positive generator. We may equivalently view ψ as a character ψ :
(Z/ f (ψ))×→ Q× via

ψ(x mod f (ψ)) =
∏
`- f (ψ)

ψ`(x) =
∏
`| f (ψ)

ψ−1
` (x),

where ψ` : Q×` → Q× is the local character at `. Following convention, we
extend ψ to Z/ f (ψ)→ Q, defining ψ(a) = 0 if (a, f (ψ)) 6= 1. Given Dirichlet
characters ψ1 and ψ2, we let ψ1ψ2 denote the unique primitive Dirichlet character
such that ψ1ψ2(a) = ψ1(a)ψ2(a) for all a ∈ Z with (a, f (ψ)) = 1. Given a
prime p, let f (ψ)p denote the p-primary part of f (ψ) and let f (ψ)(p) denote the
prime-to-p part of f (ψ).

We define the Gauss sum g(ψ) of ψ and local Gauss sums g`(ψ) as in [42,
Section 1]. We will often identify a Dirichlet character ψ : A×Q → Q× with

its associated Galois character ψ : Gal(Q/Q) → Q× via the (inverse of the)
Artin reciprocity map Gal(Q/Q) → Gal(Q/Q)ab ∼

−→ Ẑ×, using the arithmetic
normalization (that is the normalization where Frob`, the Frobenius conjugacy
class at `, gets sent to the idéle which is ` at the place of Z corresponding to ` and
1 at all other places). Throughout, for a given p, let ω : Gal(Q/Q)→ µp−1 denote
the mod p cyclotomic character. Let NQ : A×Q → C× denote the norm character,
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normalized to have infinity type−1. For a number field K , let NmK/Q : A×K → A×Q
denote the idèlic norm and let NK := NQ ◦ NmK/Q : A×K → C×. Suppose we
are given an imaginary quadratic field K with fundamental discriminant dK . Let
εK : (Z/dK )

×
→ µ2 be the quadratic character associated with K . For any

Dirichlet character ψ over Q, let

ψ0 :=

{
ψ, if ψ even,
ψεK , if ψ odd.

Throughout, let E/Q be an elliptic curve of conductor N = Nsplit Nnonsplit Nadd,
where Nsplit is only divisible by primes of split multiplicative reduction, Nnonsplit

is only divisible by primes of nonsplit multiplicative reduction and Nadd is only
divisible by primes of additive reduction.

Finally, for any number field L , let hL denote its class number. For any
nonsquare integer D, we denote by h3(D) := |Cl(Q(

√
D))[3]| the 3-class number

of the quadratic field Q(
√

D).

3. Proof of the main congruence

3.1. The strategy of the proof. We first give the idea of the proof of
Theorem 1.16. From the congruent Galois representations, we deduce that the
coefficients of the associated modular forms are congruent away from the bad
primes in pN N ′/M . After applying suitable stabilization operators (Section 3.3)
at primes in N N ′/M , we obtain p-adic modular forms whose coefficients are all
congruent. This congruence is preserved when applying a power θ j of the Atkin–
Serre operator θ . Letting j→−1 (p-adically) and using Coleman’s theorem on p-
adic integration (generalized in [45], see Section 3.5), we can identify the values
of θ−1 f and logω f

at CM points. The action of stabilization operators at CM
points (Section 3.4) gives rise to the extra Euler factors. Summing over the CM
points finally proves the main congruence between p-adic logarithms of Heegner
points (Section 3.6). This procedure is entirely parallel to the construction of
anticyclotomic p-adic L-functions of [5], but we stress that the congruence itself
(without linking to the p-adic L-function) is more direct and does not require
the main result of [5]. In particular, we work on X0(N ) directly (as opposed
to working on the finite cover X1(N )) and we do not require E to have good
reduction at p.

The proof of Theorem 1.20 (and the more general version, Theorem 7.1) relies
on a similar congruence identity (Section 7.5) between the p-adic logarithm of
Heegner points and a product of two Bernoulli numbers. The starting point is that
the prime p being Eisenstein produces a congruence between the modular form
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f and a weight 2 Eisenstein series g, away from the bad primes. The rest of the
argument is similar, applying stabilization operators to get an exact congruence
and moving the congruence through a p-adic family in order to arrive at a
congruence involving a p-adic logarithm of a Heegner point times Euler factors
corresponding to the stabilization operators and a special value of a stabilized
Katz p-adic L-function. The latter Katz L-value involves a product of two
Bernoulli numbers by Gross’s factorization. We finally arrive at the congruence
identity in Section 7.5.

3.2. p-adic modular forms. Henceforth, it will be useful to adopt Katz’s
viewpoint of p-adic modular forms as rules on the moduli space of isomorphism
classes of ‘ordinary test triples’. (For a detailed reference, see for example
[38, Ch. V].)

DEFINITION 3.1 (Ordinary test triple). Let R be a p-adic ring (that is, the natural
map R→ lim

←−
R/pn R is an isomorphism). An ordinary test triple (A,C, ω) over

R means the following:

(1) A/R is an elliptic curve which is ordinary (that is, A is ordinary over
R/pR),

(2) (level N structure) C ⊂ A[N ] is a cyclic subgroup of order N over R such
that the p-primary part C[p∞] is the canonical subgroup of that order (that
is, letting Â be the formal group of A, we have C[p∞] = Â[p∞] ∩ C),

(3) ω ∈ Ω1
A/R := H 0(A/R,Ω1) is a differential.

Given two ordinary test triples (A,C, ω) and (A′,C ′, ω′) over R, we say there is
an isomorphism (A,C, ω)

∼

−→ (A′,C ′, ω′) if there is an isomorphism i : A→ A′

of elliptic curves over R such that φ(C) = C ′ and i∗ω′ = ω. Henceforth, let
[(A,C, ω)] denote the isomorphism class of the test triple (A,C, ω).

DEFINITION 3.2 (Katz’s interpretation of p-adic modular forms). Let S be a fixed
p-adic ring. Suppose F is a rule which, for every p-adic S-algebra R, assigns
values in R to isomorphism classes of test triples (A,C, ω) of level N defined
over R. As such a rule assigning values to isomorphism classes of ordinary test
triples, consider the following conditions:

(1) (Compatibility under base change) For all S-algebra homomorphisms i :
R→ R′, we have

F((A,C, ω)⊗i R′) = i(F(A,C, ω)).
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(2) (Weight k condition) Fix k ∈ Z. For all λ ∈ R×,

F(A,C, λ · ω) = λ−k
· F(A,C, ω).

(3) (Regularity at cusps) For any positive integer d|N , letting Tate(q) =
Gm/qZ denote the Tate curve over the p-adic completion of R((q1/d)) and
letting C ⊂ Tate(q)[N ] be any level N structure, we have

F(Tate(q),C, du/u) ∈ R[[q1/d
]],

where u is the canonical parameter on Gm .

If F satisfies conditions (1) and (2), we say it is a weak p-adic modular form over
S of level N . If F satisfies conditions (1)–(3), we say it is a p-adic modular form
over S of level N . Denote the space of weak p-adic modular forms over S of level
N and the space of p-adic modular forms over S of level N by M̃ p-adic

k (Γ0(N ))
and M p-adic

k (Γ0(N )), respectively. Note that M p-adic
k (Γ0(N )) ⊂ M̃ p-adic

k (Γ0(N )).

Let Tate(q) be the Tate curve over the p-adic completion of S((q)). If
F ∈ M̃ p-adic

k (Γ0(N )), one defines the q-expansion (at infinity) of F as F(q) :=
F(Tate(q), µN , du/u) ∈ S[[q]], which defines a q-expansion map F 7→ F(q).
The q-expansion principle (see [23, Theorem I.3.1] or [37]) says that the q-
expansion map is injective for F ∈ M p-adic

k (Γ0(N )).
From now on, let N denote the minimal level of F (that is, the smallest N such

that F ∈ M̃ p-adic
k (Γ0(N ))). For any positive integer N ′ such that N |N ′, we can

define
[N ′/N ]∗F(A,C, ω) := F(A,C[N ], ω)

so that [N ′/N ]∗F ∈ M̃ p-adic
k (Γ0(N ′)). When the larger level N ′ is clear from

context, we will often abuse notation and simply view F ∈ M̃ p-adic
k (Γ0(N ′)) by

identifying F and [N ′/N ]∗F .
We now fix N #

∈ Z>0 such that N |N # so that we can view F ∈ M̃ p-adic
k (Γ0(N #))

and further suppose `2
|N #, where ` is a prime (not necessarily different from p).

Take the base ring S = OCp . Then the operator on M̃ p-adic
k (Γ0(N #)) given on q-

expansions by
F(q) 7→ F(q`)

has a moduli-theoretic interpretation given by ‘dividing by `-level structure’.
That is, we have an operation on test triples (A,C, ω) defined over p-adic OCp -
algebras R given by

V`(A,C, ω) = (A/C[`], π(C), π̌∗ω),

where π : A → A/C[`] is the canonical projection and π̌ : A/C[`] → A is its
dual isogeny.
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Thus, V` induces a form V ∗` F ∈ M̃ p-adic
k (Γ0(N #)) defined by

V ∗` F(A,C, ω) := F(V`(A,C, ω)).

For the Tate curve test triple (Tate(q), µN #, du/u), one sees that (µN #)[`] = µ`

and π : Tate(q) → Tate(q`). Since π : Ĝm = T̂ate(q) → T̂ate(q`) = Ĝm is
multiplication by `, we have π∗du/u = ` · du/u, and so π̌∗du/u = du/u. Thus,
one sees that V` acts on q-expansions by

V ∗` F(q) = V ∗` F(Tate(q), µN #, du/u) = F(Tate(q`), µN #/`, du/u) = F(q`).

If F ∈ M p-adic
k (Γ0(N #)), then V ∗` F ∈ M p-adic

k (Γ0(N #)), and the q-expansion
principle then implies that V ∗` F is the unique p-adic modular form of level N #

with q-expansion F(q`).

3.3. Stabilization operators. In this section, we define the ‘stabilization
operators’ alluded to in Section 3.1 as operations on rules on the moduli space
of isomorphism classes of test triples. Let F ∈ M̃ p-adic

k (Γ0(N )) and henceforth
suppose N is the minimal level of F . View F ∈ M̃ p-adic

k (Γ0(N #)), and let a`(F)
denote the coefficient of the q` term in the q-expansion F(q). Then up to
permutation, there is a unique pair of numbers (α`(F), β`(F)) ∈ C2

p such that
α`(F) + β`(F) = a`(F), α`(F)β`(F) = `k−1. We henceforth fix an ordered pair
(α`(F), β`(F)).

DEFINITION 3.3. When ` - N , we define the (`)+-stabilization of F as

F (`)+
= F − β`(F)V ∗` F, (3)

the (`)−-stabilization of F as

F (`)−
= F − α`(F)V ∗` F (4)

and the (`)0-stabilization for F as

F (`)0
= F − a`(F)V ∗` F + `k−1V ∗` V ∗` F. (5)

We have F (`)∗
∈ M p-adic

k (Γ0(N #)) for ∗ ∈ {+,−, 0}. Observe that on q-expansions,
we have

F (`)+(q) := F(q)− β`(F)F(q`),
F (`)−(q) := F(q)− α`(F)F(q`),

F (`)0(q) := F(q)− a`(F)F(q`)+ `k−1 F(q`
2
).
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It follows that if F is a Tn-eigenform where ` - n, then F (`)∗ is still an eigenform
for Tn . If F is a T`-eigenform, one verifies by direct computation that a`(F (`)+) =

α`(F), a`(F (`)−) = β`(F) and a`(F (`)0) = 0.
When `|N , we define the (`)0-stabilization of F as

F (`)0
= F − a`(F)V ∗` F. (6)

Again, we have F (`)0
∈ M p-adic

k (Γ0(N #)). On q-expansions, we have

F (`)0(q) := F(q)− a`(F)F(q`).

It follows that if F is a Un-eigenform where ` - n, then F (`)0 is still an eigenform
for Un . If F is a U`-eigenform, one verifies by direct computation that a`(F (`)0) =

0.
Note that for `1 6= `2, the stabilization operators F 7→ F (`1)

∗ and F 7→ F (`2)
∗

commute. Then for pairwise coprime integers with prime factorizations N+ =∏
i `

ei
i , N− =

∏
j `

e j , N0 =
∏

m `
em
m , we define the (N+, N−, N0)-stabilization of

F as
F (N+,N−,N0) := F

∏
i (`i )

+
∏

j (` j )
−
∏

m (`m )
0
.

3.4. Stabilization operators at CM points. Let K be an imaginary quadratic
field satisfying the Heegner hypothesis with respect to N #. Assume that p splits
in K , and let p be prime above p determined by the embedding K ⊂ Cp. Let
N#
⊂ OK be a fixed ideal such that O/N#

= Z/N #, and if p|N #, we assume
that p|N#. Let A/OCp be an elliptic curve with CM by OK . By the theory of
complex multiplication and Deuring’s theorem, (A, A[N#

], ω) is an ordinary test
triple over OCp .

A crucial observation is that at an ordinary CM test triple (A, A[N#
], ω), one

can express V`(A, A[N#
], ω) and thus (`)-stabilization operators in terms of the

action of C`(OK ) on A coming from Shimura’s reciprocity law. First, we recall
the Shimura action: given an ideal a ⊂ OK , we define Aa = A/A[a], an elliptic
curve over OCp which has CM by OK , whose isomorphism class depends only
on the ideal class of a. Let φa : A → Aa denote the canonical projection. Note
that there is an induced action of prime-to-N# integral ideals a ⊂ OK on the set
of triples (A, A[N#

], ω), given by

a ? (A, A[N#
], ω) = (Aa, Aa[N

#
], ωa),

where ωa ∈ Ω
1
Aa/Cp

is the unique differential such that φ∗aωa = ω. Note that
this action descends to an action on the set of isomorphism classes of triples
[(A, A[N#

], ω)] given by a ? [(A, A[N#
], ω)] = [a ? (A, A[N#

], ω)]. Letting
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N = (N#, N ), also note that for any N′ ⊂ OK with norm N ′ and N|N′|N #, the
Shimura reciprocity law also induces an action of prime-to-N′ integral ideals on
CM test triples and isomorphism classes of ordinary CM test triples of level N ′.

The following calculation relates the values of V`, F (`) and F at CM test triples.

LEMMA 3.4. For a prime `, let v|N# be the corresponding prime ideal of OK

above it, let v denote the prime ideal which is the complex conjugate of v and let
a ⊂ OK be an ideal prime to N#. Then for any ω ∈ Ω1

A/OCp
, we have

[V`(aN# ? (A, A[N#
], ω))] = [v−1aN# ? (A, A[N#v−1

], ω)] (7)

and

[V`(V`(aN# ? (A, A[N#
], ω)))] = [v−2aN# ? (A, A[N#v−2

], ω)]. (8)

As a consequence, if F ∈ M̃ p-adic
k (Γ0(N #)), when ` - N, we have

F (`)+(aN# ? (A, A[N#
], ω))

= F(aN# ? (A, A[N#
], ω))− β`(F)F(v−1aN# ? (A, A[N#

], ω)), (9)

F (`)−(aN# ? (A, A[N#
], ω))

= F(aN# ? (A, A[N#
], ω))− α`(F)F(v−1aN# ? (A, A[N#

], ω)), (10)

F (`)0(aN# ? (A, A[N#
], ω))

= F(aN# ? (A, A[N#
], ω))− a`(F)F(v−1aN# ? (A, A[N#

], ω))

+ `k−1 F(v−2aN# ? (A, A[N#
], ω)), (11)

and when `|N,

F (`)0(aN# ? (A, A[N#
], ω))

= F(aN# ? (A, A[N#
], ω))− a`(F)F(v−1aN# ? (A, A[N#

], ω)). (12)

Proof. Note that (AaN#[N#
])[`] = AaN#[v]. Hence,

[V`(aN# ? (A, A[N#
], ω))] = [aN# ? V`(A, A[N#

], ω)]

= [aN# ? (Av, Av[N#v−1
], φ̌∗vω)]

= [v−1aN# ? (Avv, Avv[N#v−1
], (φ̌∗vω)v)]

= [v−1aN# ? (A(`), A(`)[N#v−1
], (φ̌∗vω)v)]

= [v−1aN# ? (A, A[N#v−1
], ω)],

where the last equality and, hence, (7) follows, once we prove the following.
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LEMMA 3.5. Under the canonical isomorphism i : A(`)
∼

−→ A sending an
equivalence class x + A[`] ∈ A(`) to [`]x, where [`] : A → A denotes
multiplication by ` in the group law, we have

(φ̌∗vω)v = i∗ω. (13)

Proof. By definition of ωv for a given differential ω, (13) is equivalent to the
identity

φ̌∗vω = φ
∗

v (i
∗ω) = (i ◦ φv)∗ω.

To show this, it suffices to establish the equality

φ̌v = i ◦ φv

of isogenies Av → A. Since φv ◦ φv = φ(`) = A→ A(`), we have

i ◦ φv ◦ φv = i ◦ φ(`) : A
φ(`)
−→ A(`)

i
−→
∼

A,

where the first arrow maps x 7→ x+ A[`] and the second arrow maps x+ A[`] 7→
[`]x . Hence, this composition is, in fact, just the multiplication by ` map [`].
Hence, i ◦ φv is the dual isogeny of φv, that is φ̌v = i ◦ φv, and the lemma follows.

The identity (8) follows by the same argument as above, replacing N# with
N#v−1. Viewing F as a form of level N # and using (7) and (8), then (9), (10), (11)
and (12) follow from (3), (4), (5) and (6), respectively.

Finally, we relate the CM period sum of F (`)∗ for ∈ {+,−, 0} to that of F
by showing that they differ by an Euler factor at ` associated with F ⊗ χ−1. This
calculation will be used in the proof of Theorem 3.9 to relate the values at Heegner
points of the formal logarithms logωF(`)

and logωF
associated with F (`)∗ and F .

LEMMA 3.6. Suppose F ∈ M̃ p-adic
k (Γ0(N #)), and let χ : A×K → C×p be a p-adic

Hecke character such that χ is unramified (at all finite places of K ), and χ∞(α) =
αk for any α ∈ K×. Let {a} be a full set of integral representatives of C`(OK )

where each a is prime to N#. If ` - N, we have∑
[a]∈C`(OK )

χ−1(a)F (`)+(a ? (A, A[N#
], ω))

= (1− β`(F)χ−1(v))
∑

[a]∈C`(OK )

χ−1(a)F(a ? (A, A[N#
], ω)),
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∑
[a]∈C`(OK )

χ−1(a)F (`)−(a ? (A, A[N#
], ω))

= (1− α`(F)χ−1(v))
∑

[a]∈C`(OK )

χ−1(a)F(a ? (A, A[N#
], ω)),

∑
[a]∈C`(OK )

χ−1(a)F (`)0(a ? (A, A[N#
], ω))

=

(
1− a`(F)χ−1(v)+

χ−2(v)

`

) ∑
[a]∈C`(OK )

χ−1(a)F(a ? (A, A[N#
], ω))

and if `|N, we have∑
[a]∈C`(OK )

χ−1(a)F (`)0(a ? (A, A[N#
], ω))

= (1− a`(F)χ−1(v))
∑

[a]∈C`(OK )

χ−1(a)F(a ? (A, A[N#
], ω)).

Proof. First, note that by our assumptions on χ , for any G ∈ M̃ p-adic
k (Γ0(N #)), the

quantity
χ−1(a)G(a ? (A, A[N#

], ω))

depends only on the ideal class [a] of a. Since {a} is a full set of integral
representatives. of C`(OK ), {aN#} is also a full set of integral representatives
of C`(OK ). By summing over C`(OK ), the lemma follows from Lemma 3.4.

3.5. Coleman integration. In this section, we recall Liu–Zhang–Zhang’s
extension of Coleman’s theorem on p-adic integration. We will use this theorem
later in order to directly realize (a pullback of) the formal logarithm along the
weight 2 newform f ∈ Snew

2 (Γ0(N )) as a rigid analytic function F on the ordinary
locus of X0(N )(Cp) (viewed as a rigid analytic space) satisfying θF = f .

First, we recall the theorem of Liu–Zhang–Zhang, closely following the
discussion preceding in [45, Appendix A, Proposition A.1]. Let R ⊂ Cp be a
local field. Suppose X is a quasiprojective scheme over R, X rig

= X (Cp)
rig is its

rigid analytification and U ⊂ X rig an affinoid domain with good reduction.

DEFINITION 3.7. Let X and U be as above and let ω be a closed rigid analytic
1-form on U . Suppose there exists a locally analytic function Fω on U as well
as a Frobenius endomorphism φ of U (that is, an endomorphism reducing to an
endomorphism induced by a power of Frobenius on the reduction of U ) and a
polynomial P(X) ∈ Cp[X ] such that no root of P(T ) is a root of unity, satisfying:
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• d Fω = ω;

• P(φ∗)Fω is rigid analytic;

and Fω is uniquely determined by these conditions up to additive constant. We
then call Fω the Coleman primitive of ω on U . It turns out that Fω, if it exists, is
independent of the choice of P(X) [16, Corollary 2.1(b)].

Given an abelian variety A over R of dimension d , recall the formal logarithm
defined as follows. Choosing a ω ∈ Ω1

A/Cp
, the p-adic formal logarithm along ω

is defined by formal integration

logω(T ) :=
∫ T

0
ω

in a formal neighborhood Â of the origin. Since A(Cp) is compact, we may extend
by linearity to a map logω : A(Cp)→ Cp (that is, logω(x) := (1/n) logω(nx) if
nx ∈ Â).

Liu–Zhang–Zhang prove the following extension of Coleman’s theorem.

THEOREM 3.8 (See [45, Proposition A.1]). Let X and U be as above. Let A be
an abelian variety over R which has either totally degenerate reduction (that is,
after base changing to a finite extension of R, the connected component of the
special fiber of the Néron model of A is isomorphic to Gd

m) or potentially good
reduction. For a morphism ι : X → A and a differential form ω ∈ Ω1

A/F , we have

(1) ι∗ω|U admits a Coleman primitive on U, and in fact

(2) ι∗ logω|U is a Coleman primitive of ι∗ω|U on U, where logω : A(Cp)→ Cp

is the p-adic formal logarithm along ω.

3.6. The main congruence. Let f ∈ M2(Γ0(N )) and g ∈ M2(Γ0(N ′)) be
normalized eigenforms defined over the ring of integers of a number field with
minimal levels N and N ′, respectively. Let K be an imaginary quadratic field with
Hilbert class field H and suppose K satisfies the Heegner hypothesis with respect
to both N and N ′, with corresponding fixed choices of ideals N,N′ ⊂ OK such
that OK/N = Z/N , OK/N

′
= Z/N ′ and such that `|(N , N ′) implies (`,N) = (`,

N′); hence, OK/lcm(N,N′) = Z/lcm(N , N ′).
Recall the moduli-theoretic interpretation of X0(N ), in which points on X0(N )

are identified with isomorphism classes [(A,C)] of pairs (A,C) consisting of
an elliptic curve A and a cyclic subgroup C ⊂ A[N ] of order N . Throughout
this section, let A/OCp be a fixed elliptic curve with CM by OK , and note that
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as in Section 3.4, the Shimura reciprocity law induces an action of integral ideals
prime to N on (A, A[N]), which descends to an action of C`(OK ) on [(A, A[N])].
Let χ : Gal(H/K ) → Q× be a character and let L be a finite extension of K
containing the Hecke eigenvalues of f, g, the values of χ and the field cut out
by the kernel of χ . For any full set of prime-to-N integral representatives {a} of
C`(OK ), define the Heegner point on J0(N ) attached to χ by

P(χ) :=
∑

[a]∈C`(OK )

χ−1(a)([a ? (A, A[N])] − [∞]) ∈ J0(N )(H)⊗Z L ,

where [∞] ∈ X0(N )(Cp) denotes the cusp at infinity. Similarly, for any full set of
prime-to-N′ integral representatives {a} of C`(OK ), define the Heegner point on
J0(N ′) attached to χ by

P ′(χ) :=
∑

[a]∈C`(OK )

χ−1(a)([a ? (A, A[N′])] − [∞′]) ∈ J0(N ′)(H)⊗Z L ,

where [∞′] ∈ X0(N ′)(Cp) denotes the cusp at infinity.
Let ι : X0(N ) → J0(N ) denote the Abel–Jacobi map sending [∞] 7→ 0 and

let ι′ : X0(N ′) → J0(N ′) denote the Abel–Jacobi map sending [∞′] 7→ 0. Let
A f and Ag be the abelian varieties over Q of GL(2)-type associated with f and
g. Fix modular parametrizations π f : J0(N ) → A f and πg : J0(N ′) → Ag. Let
P f (χ) := π f (P(χ)) and Pg(χ) := πg(P ′(χ)). Letting

ω f ∈ Ω
1
J0(N )/OCp

such that ι∗ω f = f (q) · dq/q

and
ωg ∈ Ω

1
J0(N ′)/OCp

such that ι′,∗ωg = g(q) · dq/q,

we choose ωA f ∈Ω
1
A f /Q and ωAg ∈Ω

1
Ag/Q such that π∗fωA f = ω f and π∗gωAg = ωg.

We define

logω f
P(χ) :=

∑
[a]∈C`(OK )

χ−1(a) logω f
([a ? (A, A[N])] − [∞]) ∈ L p

and

logωg
P ′(χ) :=

∑
[a]∈C`(OK )

χ−1(a) logωg
([a ? (A, A[N′])] − [∞′]) ∈ L p.

The fact that these are values in L p follows from the fact P(χ) ∈ J0(N )(H) ⊗Z

Q is in the χ -isotypic component of Gal(Q/K ), and similarly for P ′(χ).
We similarly define logωA f

P f (χ) ∈ L p and logωAg
Pg(χ) ∈ L p, and note
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that by functoriality of the p-adic logarithm, logω f
P(χ) = logωA f

P f (χ) and
logωg

P ′(χ) = logωAg
Pg(χ).

Let λ be the prime of OL above p determined by the embedding L ↪→ Qp. We
will now prove a generalization of Theorem 1.16 for general weight 2 forms.

THEOREM 3.9. In the setting and notations described above, suppose that
the associated semisimple mod λm representations ρ̄ f , ρ̄g : Gal(Q/Q) →
GL2(OL p/λ

m) satisfy ρ̄ f
∼= ρ̄g. For each prime `|N N ′, let v|NN′ be the

corresponding prime above it. Then we have( ∏
`|pN N ′/M,`-N

`− a`( f )χ−1(v)+ χ−2(v)

`

)

×

( ∏
`|pN N ′/M,`|N

`− a`( f )χ−1(v)

`

)
logωA f

P f (χ)

≡

( ∏
`|pN N ′/M,`-N ′

`− a`(g)χ−1(v)+ χ−2(v)

`

)

×

( ∏
`|pN N ′/M,`|N ′

`− a`(g)χ−1(v)

`

)
logωAg

Pg(χ) (mod λmOL p),

where
M =

∏
`|(N ,N ′),a`( f )≡a`(g) mod λm

`ord`(N N ′).

Proof of Theorem 3.9. We first transfer all differentials and Heegner points on
J0(N ) and J0(N ′) to the Jacobian J0(N #) of the modular curve X0(N #), where
N #
:= lcm`|N N ′(N , N ′, p2, `2). Note that for the newforms f and g, the minimal

levels of the stabilizations f (`) and g(`) divide N # since if `2
|N , then a`( f ) = 0

and f (`) = f and, similarly, if `2
|N ′, then g(`) = g. By assumption, K satisfies

the Heegner hypothesis with respect to N #, and let N#
:= lcmv|NN′(N,N

′, p2, v2).
For any full set of prime-to-N# integral representatives {a} of C`(OK ), define

P#(χ) :=
∑

[a]∈C`(OK )

χ−1(a)([a ? (A, A[N#
])] − [∞#

]) ∈ J0(N #)(H)⊗Z L ,

where [∞#
] ∈ X0(N #)(Cp) denotes the cusp at infinity. Letting π [ : J0(N #) →

J0(N ) and π ′,[ : J0(N #) → J0(N ′) denote the natural projections, one sees that
π [(P#(χ)) = P(χ) and that π ′,[(P#(χ)) = P ′(χ). Let ι# : X0(N #) → J0(N #)

denote the Abel–Jacobi map sending [∞#
] 7→ 0. Viewing f and g as having level
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N #, we define their associated differential forms by

ω#
f ∈ Ω

1
J0(N #)/OCp

such that ι#,∗ω#
f = f (q) · dq/q ∈ Ω1

X0(N #)/OCp

and similarly define ω#
g ∈ Ω

1
J0(N #)/OCp

. One sees that π [,∗ω f = ω
#
f and π ′,[,∗ωg =

ω#
g. Finally, define

logω#
f

P#(χ) :=
∑

[a]∈C`(OK )

χ−1(a) logω#
f
([a ? (A, A[N#

])] − [∞#
]) ∈ L p

and similarly for logω#
g

P#(χ).
Let N #

0 denote the prime-to-p part of N #. Let X denote the canonical smooth
proper model of X0(N #

0 ) over Zp and let XFp denote its special fiber. There is
a natural reduction map red : X0(N #

0 )(Cp) = X (OCp) → XFp(Fp). Viewing
X0(N #

0 )(Cp) as a rigid analytic space, the inverse image in X0(N #
0 )(Cp) of an

element of the finite set of supersingular points in XFp(Fp) is conformal to an
open unit disc and is referred to as a supersingular disc. Let D0 denote the
affinoid domain of good reduction obtained by removing the finite union of
supersingular discs from the rigid space X0(N #

0 )(Cp). In the moduli-theoretic
interpretation, D0 consists of points [(A,C)] over OCp of good reduction such
that A ⊗OCp

Fp is ordinary. The canonical projection X0(N #) → X0(N #
0 ) has a

rigid analytic section on D0 given by ‘increasing level N #
0 structure by the order

N #/N #
0 canonical subgroup’. Namely, given [(A,C)] ∈ D0, the section is defined

by [(A,C)] 7→ [(A,C × Â[N #/N #
0 ])]. We identify D0 with its lift D, which is

called the ordinary locus of X0(N #)(Cp); one sees from the above construction
that D is an affinoid domain of good reduction.

A p-adic modular form F of weight 2 (as defined in Section 3.2) can be
equivalently viewed as a rigid analytic section of (Ω1

X0(N #)/Cp
)|D (viewed as an

analytic sheaf). Under this identification, the exterior differential is given on
q-expansions by d = θ(dq/q) where θ is the Atkin–Serre operator on p-adic
modular forms acting via q(d/dq) on q-expansions. Thus, for each j ∈ Z>0, θ j F
is a rigid analytic section of (Ω1+ j

X0(N #)/Cp
)|D . The collection of p-adic modular

forms θ j( f (p)) varies p-adic continuously in j ∈ Z/(p− 1)×Zp (as one verifies
on q-expansions), and so

θ−1( f (p)) := lim
j→(−1,0)

θ j( f (p))

is a rigid analytic function on D and a Coleman primitive for ι#,∗ω f (p) since

dθ−1( f (p)) = f (p)(q) · dq/q = ι#,∗ω f (p) .
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Also note that ι#,∗ω f (restricted to D) has a Coleman primitive Fι#,∗ω#
f

by part (1) of
Theorem 3.8 (applied to R = Qp, X = X0(N #), U = D and A = J0(N #)), which
we can (and do) choose to take the value 0 at [∞#

]. As a locally analytic function
on D, Fι#,∗ω#

f
can be viewed as an element of M̃ p-adic

0 (Γ0(N #)) (see Definition 3.2).
By the moduli-theoretic definition of (p)-stabilization in terms of the operators
Vp defined in Section 3.3, we have

dθ−1( f (p)) = d(Fι#,∗ω#
f
)(p),

and so
θ−1( f (p)) = (Fι#,∗ω#

f
)(p)

by uniqueness of Coleman primitives. The same argument shows that θ−1(g(p)) =
(Fι#,∗ω#

g
)(p).

Since ρ̄ f
∼= ρ̄g, we have

θ j( f (pN N ′/M))(q) ≡ θ j(g(pN N ′/M))(q) (mod λmOCp)

for all j > 0. Letting j → (−1, 0) ∈ Z/(p − 1)× Zp, we find that

θ−1( f (pN N ′/M))(q) ≡ θ−1(g(pN N ′/M))(q) (mod λmOCp).

Let N0 denote the prime-to-p part of N N ′/M . One sees directly from the
description of stabilization operators on q-expansions that θ−1( f (pN N ′/M))(q) =
(θ−1( f (p)))(N0)(q) and θ−1(g(pN N ′/M))(q) = (θ−1(g(p)))(N0)(q). Thus, the above
congruence becomes

(θ−1( f (p)))(N0)(q) ≡ (θ−1(g(p)))(N0)(q) (mod λmOCp).

Using the identities θ−1( f (p)) = (Fι#,∗ω#
f
)(p) and θ−1(g(p)) = (Fι#,∗ω#

g
)(p) and the

equality of stabilization operators (pN0) = (pN N ′/M), we have

(Fι#,∗ω#
f
)(pN N ′/M)(q) ≡ (Fι#,∗ω#

g
)(pN N ′/M)(q) (mod λmOCp).

Thus, applying the q-expansion principle (that is, the fact that the q-expansion
map is injective), we have that

(Fι#,∗ω#
f
)(pN N ′/M)

≡ (Fι#,∗ω#
g
)(pN N ′/M) (mod λmOCp) (14)

as weight 0 p-adic modular forms on D over OCp . In particular, for an ordinary
CM test triple (A, A[N#

], ω), we have

(Fι#,∗ω#
f
)(pN N ′/M)(a ? (A, A[N#

], ω))

≡ (Fι#,∗ω#
g
)(pN N ′/M)(a ? (A, A[N#

], ω)) (mod λmOCp). (15)
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Applying Lemma 3.6 inductively to Ft = F (
∏r−t

i=1 `i )

ι#,∗ω#
f

for 1 6 t 6 r , where
∏r

i=1 `i

is the square-free part of pN N ′/M (so that F0 = F (pN N ′/M)
ι#,∗ω#

f
, Fr = Fι#,∗ω#

f
and

F (`t )
t = Ft−1), and noting that θFι#,∗ω#

f
(q) = f (q) implies a`t (Ft) = a`t ( f )/`t , we

obtain, for any full set of prime-to-N# integral representatives {a} of C`(OK ),∑
[a]∈C`(OK )

χ−1(a)(Fι#,∗ω#
f
)(pN N ′/M)(a ? (A, A[N#

], ω))

=

( ∏
`|pN N ′/M,`-N

1−
a`( f )χ−1(v)

`
+
χ−2(v)

`

)

×

( ∏
`|pN N ′/M,`|N

1−
a`( f )χ−1(v)

`

)
·

∑
[a]∈C`(OK )

χ−1(a)Fι#,∗ω#
f
(a ? (A, A[N#

], ω))

and similarly for Fι#,∗ω#
g
. Thus, by (15), we have( ∏

`|pN N ′/M,`-N

1−
a`( f )χ−1(v)

`
+
χ−2(v)

`

)( ∏
`|pN N ′/M,`|N

1−
a`( f )χ−1(v)

`

)
·

∑
[a]∈C`(OK )

χ−1(a)Fι#,∗ω#
f
([a ? (A, A[N#

])])

≡

( ∏
`|pN N ′/M,`-N

1−
a`(g)χ−1(v)

`
+
χ−2(v)

`

)

×

( ∏
`|pN N ′/M,`|N

1−
a`(g)χ−1(v)

`

)
·

∑
[a]∈C`(OK )

χ−1(a)Fι#,∗ω#
g
([a ? (A, A[N#

])]) (mod λmOCp).

By part (2) of Theorem 3.8, we have Fι#,∗ω#
f
= ι#,∗ logω#

f
and Fι#,∗ω#

g
= ι#,∗ logω#

g
.

Thus, the above congruence becomes( ∏
`|pN N ′/M,`-N

1−
a`( f )χ−1(v)

`
+
χ−2(v)

`

)

×

( ∏
`|pN N ′/M,`|N

1−
a`( f )χ−1(v)

`

)
logω#

f
P#(χ)
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≡

( ∏
`|pN N ′/M,`-N

1−
a`(g)χ−1(v)

`
+
χ−2(v)

`

)

×

( ∏
`|pN N ′/M,`|N

1−
a`(g)χ−1(v)

`

)
logω#

g
P#(χ) (mod λmOCp).

Since both sides of this congruence belong to L p and L p ∩ OCp = OL p , this
congruence, in fact, holds mod λmOL p . The theorem now follows from the
functoriality of the p-adic logarithm:

logω#
f

P#(χ) = logπ [,∗ω f
P#(χ) = logω f

P(χ) = logπ∗f ωA f
P(χ) = logωA f

P f (χ)

and similarly logω#
g

P#(χ) = logωAg
Pg(χ).

REMARK 3.10. The normalizations of ωE and ωE ′ in the statement of
Theorem 1.16 a priori imply that both sides of Theorem 1.16 are p-integral.
This is because CM points are integrally defined by the theory of CM and the
above proof shows that the rigid analytic function ι#,∗ logω

f (pN N ′/M)
has integral

q-expansion.
Let ωE denote the canonical Néron differential of E (as we do in Section 5), and

let c ∈ Z such that ωE = c · ωE . Note that the normalization of the p-adic formal
logarithm logωE

above differs by a factor of c from that of the normalization
logE := logωE

. So we know that

|Ẽns(Fp)|

p · c
· logE P =

|Ẽns(Fp)|

p
· logωE

P

is p-integral. We remark that this is compatible with the p-part of the BSD
conjecture. In fact, the p-part of the BSD conjecture predicts that P is divisible by
pordp c

·cp(E) in E(K ) (see the conjectured formula (59)) and so (|Ẽns(Fp)|)/c · P
lies in the formal group and, hence, (|Ẽns(Fp)|)/c · logE P ∈ pOK p .

REMARK 3.11. Note that both sides of the congruence in the statement of
Theorem 3.9 depend on the choices of appropriate N,N′ up to a sign ±1. In fact,
for a rational prime `|N (respectively `|N ′), if we let v = (N, `) with complex
conjugate prime ideal v (respectively v′ = (N′, `) with complex conjugate prime
ideal v′), replacing N with Nv−1v (respectively N′ with N′v′−1v′) amounts to
performing an Atkin–Lehner involution on the Heegner point P f (χ) (respectively
Pg(χ)), which amounts to multiplying the Heegner point by the local root number
w`(A f ) ∈ {±1} (respectively w`(Ag) ∈ {±1}). Our proof, in fact, shows that
for whatever change we make in choice of N (respectively N′), both sides are
multiplied by the same sign ±1.
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3.7. Proof of Theorem 1.16. It follows immediately from Theorem 3.9 by
taking χ = 1, L = K , and f and g to be associated with E and E ′. The Heegner
points P = P f (1) and P ′ = Pg(1) are defined up to sign and torsion depending
on the choices of N and N′ (see [25]).

4. Goldfeld’s conjecture for a general class of elliptic curves

Our goal in this section is to prove Theorem 1.12. Throughout this section, we
assume

E(Q)[2] = 0, or equivalently, Gal(Q(E[2])/Q) ∼= S3 or Z/3Z.

Note that this assumption is mild and is satisfied by 100% of all elliptic curves
(when ordered by naive height).

4.1. Explicit twists. Now we restrict our attention to the following well-
chosen set of twisting discriminants.

DEFINITION 4.1. Given an imaginary quadratic field K satisfying the Heegner
hypothesis for N , we define the set S consisting of primes ` - 2N such that

(1) ` splits in K ;

(2) Frob` ∈ Gal(Q(E[2])/Q) has order 3.

We define N to be the set of all integers d ≡ 1 (mod 4) such that |d| is a square-
free product of primes in S .

REMARK 4.2. By Chebotarev’s density theorem, the set of primes S has Dirichlet
density 1

6 =
1
2 ·

1
3 or 1

3 =
1
2 ·

2
3 depending on Gal(Q(E[2]/Q)) ∼= S3 or Z/3Z. In

particular, there are infinitely many elements of N with k prime factors for any
fixed k > 1.

For d ∈ N , we consider E (d)/Q, the quadratic twist of E/Q by Q(
√

d).
Since d ≡ 1 (mod 4), we know that 2 is unramified in Q(

√
d) and E (d)/Q has

conductor Nd2. Hence, K also satisfies the Heegner hypothesis for Nd2. Let
P (d)
∈ E (d)(K ) be the corresponding Heegner point. Since

E[2] ∼= E (d)
[2],

we can apply Theorem 1.16 to E and E (d), p = 2 and obtain the following
theorem.
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THEOREM 4.3. Suppose E/Q is an elliptic curve with E(Q)[2] = 0. Let K be an
imaginary quadratic field satisfying the Heegner hypothesis for N. Assume

2 splits in K and
|Ẽns(F2)| · logωE

(P)
2

6≡ 0 (mod 2). (F)

Then for any d ∈ N :

(1) We have
|Ẽ (d),ns(F2)| · logωE(d)

(P (d))

2
6≡ 0 (mod 2).

In particular, P (d)
∈ E (d)(K ) is of infinite order and E (d)/K has both

algebraic and analytic rank one.

(2) The rank part of the BSD conjecture is true for E (d)/Q and E (d·dK )/Q. One
of them has both algebraic and analytic rank one and the other has both
algebraic and analytic rank zero.

(3) E (d)/Q (respectively E (d·dK )/Q) has the same rank as E/Q if and only if
ψd(−N ) = 1 (respectively ψd(−N ) = −1), where ψd is the quadratic
character associated with Q(

√
d)/Q.

4.2. Proof of Theorem 4.3.

(1) We apply Theorem 1.16 to the two elliptic curves E/Q and E (d)/Q and
p = 2. Let `|Nd2 be a prime. Note

(a) if `||N ,
a`(E), a`(E (d)) ∈ {±1},

(b) if `2
|N ,

a`(E) = a`(E (d)) = 0,

(c) if ` | d , we have ` ∈ S . Since Frob` is order 3 on E[2], we know that
its trace

a`(E) ≡ 1 (mod 2).

Since `2
|Nd2, we know that

a`(E (d)) = 0.
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It follows that M = N 2. The congruence formula in Theorem 1.16 then
reads

|Ẽns(F2)|

2
·

∏
`|d

|Ẽns(F`)|
`

· logωE
P

≡
|Ẽ (d),ns(F2)|

2
·

∏
`|d

|Ẽ (d),ns(F`)|
`

· logωE(d)
P (d) (mod 2).

Since E has good reduction at ` | d and ` is odd, we have

|Ẽns(F`)| = |E(F`)| = `+ 1− a`(E) ≡ a`(E) ≡ 1 (mod 2).

Since E (d) has additive reduction at ` | d and ` is odd, we have

|Ẽ (d),ns(F`)| = ` ≡ 1 (mod 2).

Therefore, we obtain the congruence

|Ẽns(F2)| · logωE
P

2
≡

|Ẽ (d),ns(F2)| · logωE(d)
P (d)

2
(mod 2).

Assumption (F) says that the left-hand side is nonzero; hence, the right-
hand side is also nonzero. In particular, the Heegner point P (d) is of infinite
order. The last assertion follows from the celebrated work of Gross–Zagier
and Kolyvagin.

(2) Since
L(E (d)/K , s) = L(E (d)/Q, s) · L(E (d·dK )/Q, s),

the sum of the analytic rank of E (d)/Q and E (d·dK )/Q is equal to the analytic
rank of E (d)/K , which is one by the first part. Hence, one of them has
analytic rank one and the other has analytic rank zero. The remaining
claims follow from Gross–Zagier and Kolyvagin.

(3) It is well known that the global root numbers of quadratic twists are related
by

ε(E/Q) · ε(E (d)/Q) = ψd(−N ).

It follows that E (d)/Q and E/Q have the same global root number if and
only ifψd(−N )=1. Since the analytic ranks of E (d)/Q and E/Q are at most
one, the equality of global root numbers implies the equality of the analytic
ranks.
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4.3. Proof of Theorem 1.12. This is a standard application of Ikehara’s
tauberian theorem (see, for example, [71, 2.4]). We include the argument for
completeness. Since the set of primes S has Dirichlet density α = 1

6 or 1
3

depending on Gal(Q(E[2]/Q)) ∼= S3 or Z/3Z, we know that∑
`∈S

`−s
∼ α · log

1
s − 1

, s → 1+.

Then,

log
(∑

d∈N

|d|−s

)
= log

(∏
`∈S

(1+ `−s)

)
∼

∑
`∈S

`−s
∼ α · log

1
s − 1

, s → 1+.

Hence, ∑
d∈N

|d|−s
=

1
(s − 1)α

· f (s)

for some function f (s) holomorphic and nonzero when <(s) > 1. It follows from
Ikehara’s tauberian theorem that

#{d ∈ N : |d| < X} ∼ c ·
X

log1−α X
, X →∞

for some constant c > 0. But by Theorem 4.3(2), we have for r = 0, 1,

Nr (E, X) > #{d ∈ N : |d| < X/|dK |}.

The results then follow.

5. The 2-part of the BSD conjecture

In this section, we aim to prove the following consequence on BSD(2) when
r 6 1 for all the explicit quadratic twists under consideration, at least when the
local Tamagawa number at 2 is odd.

THEOREM 5.1. Let E/Q be an elliptic curve with E(Q)[2] = 0. Assume that
there is an imaginary quadratic field K satisfying the Heegner hypothesis for N
and Assumption (F). Further assume that the local Tamagawa number c2(E) is
odd. If E has additive reduction at 2, further assume that its Manin constant is
odd. Let N be as in Definition 4.1.

(1) If BSD(2) is true for E/K , then BSD(2) is true for E (d)/K , for any d ∈ N .

(2) If BSD(2) is true for E/Q and E (dK )/Q, then BSD(2) is true for E (d)/Q
and E (d·dK )/Q, for any d ∈ N such that ψd(−N ) = 1.
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REMARK 5.2. BSD(2) for a single elliptic curve (of small conductor) can be
proved by numerical calculation when r 6 1 (see [51] for curves of conductor
at most 5000). Theorem 5.1 then allows one to deduce BSD(2) for many of its
quadratic twists (of arbitrarily large conductor). See Section 6 for examples.

REMARK 5.3. Manin’s conjecture asserts that the Manin constant for any optimal
curve is 1, which would imply that the Manin constant for E is odd since E is
assumed to have no rational 2-torsion. Cremona has proved Manin’s conjecture
for all optimal curves of conductor at most 380 000 (see [2, Theorem 2.6] and the
update at http://johncremona.github.io/ecdata/#optimality).

5.1. The strategy of the proof. Under Assumption (F) and the assumption
that c2(E) is odd, the Heegner point P ∈ E(K ) is indivisible by 2 (Lemma 5.4),
equivalently, all the local Tamagawa numbers of E are odd, and the 2-Selmer
group Sel2(E/K ) has rank one (Corollary 5.5). We are able to deduce that
all the local Tamagawa numbers of E (d) are also odd (Lemma 10.12), and
Sel2(E (d)/K ) also has rank one (Lemma 5.9). These are consequences of the
primes in the well-chosen set S being silent in the sense of Mazur–Rubin [49].
Note that Sel2(E (d)/K ) having rank one predicts that E (d)(K ) has rank one and
Ш(E (d)/K )[2] is trivial, though it is not known in general how to show this
directly (Remark 1.14). The advantage here is that we know a priori from the
mod 2 congruence that the Heegner point P (d)

∈ E (d)(K ) is also indivisible
by 2. Hence, the prediction is indeed true and implies BSD(2) for E (d)/K
(Corollary 5.8).

Since the Iwasawa main conjecture is not known for p = 2, the only known way
to prove BSD(2) over Q is to compute the 2-part of both sides of (2) explicitly. We
compute the 2-Selmer group Sel2(E (d)/Q) (Lemma 5.10) and compare this to a
formula of Zhai [89] (based on modular symbols) for 2-part of algebraic L-values
for rank-zero twists. This allows us to deduce BSD(2) for the rank-zero curve
among E (d) and E (d·dK ) (Lemma 5.12). Finally, BSD(2) for E (d)/K and BSD(2)
for the rank-zero curve together imply BSD(2) for the rank-one curve between
E (d) and E (d·dK ).

5.2. BSD(2) for E/K . Let E and K be as in Theorem 5.1. By the Gross–
Zagier formula, the BSD conjecture for E/K is equivalent to the equality
[28, V.2.2]

uK · cE ·
∏
`|N

c`(E) · |Ш(E/K )|1/2 = [E(K ) : ZP], (16)
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where uK = |O×K/{±1}|, cE is the Manin constant of E/Q, c`(E) = [E(Q`) :

E0(Q`)] is the local Tamagawa number of E and [E(K ) : ZP] is the index of
the Heegner point P ∈ E(K ). By Assumption (F) that 2 splits in K , we know
K 6= Q(

√
−1) or Q(

√
−3), so uK = 1. Therefore, the BSD conjecture for E/K

is equivalent to the equality

∏
`|N

c`(E) · |Ш(E/K )|1/2 =
[E(K ) : ZP]

cE
. (17)

LEMMA 5.4. The right-hand side of (17) is a 2-adic unit.

Proof. Since Q(E[2])/Q is an S3 or Z/3Z extension, we know that the Galois
representation E[2] remains irreducible when restricted to any quadratic field;
hence, E(K )[2] = 0.

Note that the Manin constant cE is odd: it follows from [1, Theorem A] when
E is good at 2, from [1, page 270(ii)] when E is multiplicative at 2 since c2(E) is
assumed to be odd and by our extra assumption when E is additive at 2.

Since cE is odd, we know that the right-hand side of (17) is 2-adically integral.
If it is not a 2-adic unit, then there exists some Q ∈ E(K ) such that 2Q is an odd
multiple of P . Let ωE be the Néron differential of E and let logE := logωE

. By the
very definition of the Manin constant, we have cE ·ωE = ωE and cE · logωE

= logE .
Hence, up to a 2-adic unit, we have

|Ẽns(F2)| · logωE
P

2
=
|Ẽns(F2)| · logE P

2
= |Ẽns(F2)| · logE(Q).

On the other hand, c2(E) · |Ẽns(F2)| · Q lies in the formal group Ê(2OK2) and
c2(E) is assumed to be odd; we know that

|Ẽns(F2)| · logE(Q) ∈ 2OK2,

which contradicts (F). So the right-hand side of (17) is a 2-adic unit.

Since the left-hand side of (17) is a product of integers, Lemma 5.4 implies the
following.

COROLLARY 5.5. BSD(2) for E/K is equivalent to the following:

all the local Tamagawa numbers c`(E) are odd and Ш(E/K )[2] = 0.
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5.3. BSD(2) for E(d)/K . Let d ∈ N . The BSD conjecture for E (d)/K is
equivalent to the equality∏

`|Nd2

c`(E (d)) · |Ш(E (d)/K )|1/2 =
[E (d)(K ) : ZP (d)

]

cE (d)
. (18)

LEMMA 5.6. Assume that BSD(2) is true for E/K . Then c`(E (d)) is odd for any
` | Nd2.

Proof. First consider ` | N . Let E and E (d) be the Néron model over Z` of E
and E (d), respectively. Note that E (d)/Qp is the unramified quadratic twist of E (d).
Since Néron models commute with unramified base change, we know that the
component groups ΦE and ΦE (d) are quadratic twists of each other as Gal(F`/F`)-
modules. In particular, ΦE [2] ∼= ΦE (d)[2] as Gal(F`/F`)-modules and thus,

ΦE(F`)[2] ∼= ΦE (d)(F`)[2].

It follows that c`(E) and c`(E (d)) have the same parity.
Next consider ` | d . Since E (d) has additive reduction and ` is odd, we know

that
E (d)(Q`)[2] ∼= ΦE (d)(F`)[2].

Since ` ∈ S , Frob` is assumed to have order 3 acting on E (d)
[2] ∼= E[2], we know

that E (d)(Q`)[2] = 0. Hence, c`(E (d)) is odd.

LEMMA 5.7. Assume that BSD(2) is true for E/K . The right-hand side of (18)
is a 2-adic unit.

Proof. Since E has no rational 2-torsion, we know that the Manin constants (with
respect to both X0(N )-parametrization and X1(N )-parametrization) for all curves
in the isogeny of E have the same 2-adic valuation. The twisting argument of
Stevens [78, Section 5] shows that if the Manin constant c1 for the X1(N )-optimal
curve in the isogeny class of E is 1, then the Manin constant c(d)1 for the X1(N )-
optimal curve in the isogeny class of E (d) is also 1. The same twisting argument
in fact shows that if c1 is a 2-adic unit, then c(d)1 is also a 2-adic unit. Since cE is
odd, we know that c1 is odd; therefore, c(d)1 is also odd. Since E (d) has no rational
2-torsion, it follows that the Manin constant cE (d) is also odd.

Now using c2(E (d)) is odd (by Lemma 10.12) and cE (d) is odd, and replacing
E by E (d) and replacing (F) by the conclusion of Theorem 4.3(1), the same
argument as in the proof of Lemma 5.4 shows that the right-hand side of (18)
is also a 2-adic unit.
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Again, since the left-hand side of (18) is a product of integers, Lemma 5.7
implies the following.

COROLLARY 5.8. BSD(2) for E (d)/K is equivalent to the following:

all the local Tamagawa numbers c`(E (d)) are odd and Ш(E (d)/K )[2] = 0.

5.4. 2-Selmer groups over K . Now let us compare the 2-Selmer groups of
E/K and E (d)/K .

LEMMA 5.9. Assume that BSD(2) is true for E/K . The isomorphism of Galois
representations E[2] ∼= E (d)

[2] induces an isomorphism of 2-Selmer groups

Sel2(E/K ) ∼= Sel2(E (d)/K ).

In particular,
Ш(E (d)/K )[2] = 0.

Proof. The 2-Selmer group Sel2(E/K ) is defined by the local Kummer
conditions

Lv(E/K ) = im(E(Kv)/2E(Kv)→ H 1(Kv, E[2])).

Denote by Lv(E (d)/K ) the local Kummer conditions for E (d)/K . It suffices to
show that Lv(E/K ) = Lv(E (d)/K ) are the same at all places v of K :

(1) v | ∞: Since v is complex, H 1(Kv, E[2]) = 0. So Lv(E/K ) =
Lv(E (d)/K ) = 0.

(2) v | d: Suppose v lies above ` ∈ S . Since Frob` acts by order 3 on E[2], we
know that the unramified cohomology

H 1
ur(Q`, E[2]) ∼= E[2]/(Frob`−1)E[2] = 0

(such ` is called silent by Mazur–Rubin), and thus dim H 1(Q`, E[2]) =
2 dim H 1

ur(Q`, E[2]) = 0 ([52, I.2.6]). Since ` is split in K , it follows that

H 1(Kv, E[2]) ∼= H 1(Q`, E[2]) = 0.

So Lv(E/K ) = Lv(E (d)/K ) = 0.

(3) v - d∞: By [48, Lemma 2.9], we have

Lv(E/K ) ∩ Lv(E (d)/K ) = EN(Kv)/2E(Kv),
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where
EN(Kv) = im(N : E(Lv)→ E(Kv))

is the image of the norm map induced from the quadratic extension Lv =
Kv(
√

d) over Kv. To show that Lv(E/K )= Lv(E (d)/K ), it suffices to show
that

E(Kv)/NE(Lv) = 0.

By local Tate duality, it suffices to show that

H 1(Gal(Lv/Kv), E(Lv)) = 0.

Note that Kv
∼= Q` and Lv/Kv is the unramified quadratic extension; we

know that
E(Lv)/E0(Lv) ∼= ΦE(F`2),

whereΦE is the component group of the Néron model of E over Z`. Let c ∈
Gal(F`2/F`) be the order 2 automorphism, then ΦE(F`2)[2]c = ΦE(F`)[2].
Since c`(E) is odd, it follows that ΦE(F`2)[2]c = ΦE(F`)[2] = 0. Since an
order 2 automorphism on a nonzero F2-vector space must have a nonzero
fixed vector, we know that ΦE(F`2)[2] = 0. Therefore, E(Lv)/E0(Lv) has
odd order. It remains to show that

H 1(Gal(Lv/Kv), E0(Lv)) = 0,

which is true by Lang’s theorem since Lv/Kv is unramified (see [50,
Proposition 4.3]).

5.5. Proof of Theorem 5.1(1). It follows immediately from Corollary 5.8 and
Lemmas 10.12 and 5.9.

5.6. 2-Selmer groups over Q. Let us compare the 2-Selmer groups of E/Q
and E (d)/Q.

LEMMA 5.10. Let ∆(E) be the discriminant of a Weierstrass equation of E/Q.

(1) If ∆(E) < 0, then Sel2(E/Q) ∼= Sel2(E (d)/Q).

(2) If ∆(E) > 0 and d > 0, then Sel2(E/Q) ∼= Sel2(E (d)/Q).

(3) If ∆(E) > 0 and d < 0, then dimF2 Sel2(E/Q) and dimF2 Sel2(E (d)/Q)
differ by 1.

Proof. By the same proof as Lemma 5.9, we know that Lv(E/Q) = Lv(E (d)/Q)
for any place v - ∞ of Q. The only issue is that the local condition at ∞ may
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differ for E/Q and E (d)/Q. By [70, page 305], we have Q(
√
∆(E)) ⊆ Q(E[2]).

So complex conjugation acts nontrivially on E[2] if and only if∆(E) < 0. Hence,

dimF2 H 1(Gal(C/R), E[2]) =

{
0, ∆(E) < 0,
2, ∆(E) > 0.

Item (3) follows immediately. When ∆(E) > 0, L∞(E/Q) = E(R)/2E(R) and
L∞(E (d)(R) = E (d)(R)/2E (d)(R) define the same line in H 1(Gal(C/R), E[2])
if and only if d > 0. Item (2) follows immediately and item (3) follows from a
standard application of global duality (for example, by [43, Lemma 8.5]).

We immediately obtain a more explicit description of the condition ψd(−N ) =
1 in Theorem 4.3(3) under our extra assumption that c2(E) is odd.

COROLLARY 5.11. The following conditions are equivalent:

(1) E (d)/Q has the same rank as E/Q.

(2) ψd(−N ) = 1, where ψd is the quadratic character associated with
Q(
√

d)/Q.

(3) ∆(E) < 0, or ∆(E) > 0 and d > 0.

Proof. Since the parity conjecture for 2-Selmer groups of elliptic curves is known
[54, Theorem 1.5], we know that E/Q and E (d)/Q have the same root number
if and only if they have the same 2-Selmer rank. The result then follows from
Lemma 5.10 and Theorem 4.3(3).

5.7. Rank-zero twists. Let K be as in Theorem 5.1. We now verify BSD(2)
for the rank-zero twists.

LEMMA 5.12. If BSD(2) is true for E/Q and E (dK )/Q, then BSD(2) is true for
all twists E (d)/Q and E (d·dK )/Q of rank zero, where d ∈ N with ψd(−N ) = 1.

Proof. Note exactly that one of E/Q and E (dK )/Q has rank zero. Consider the
case that E/Q has rank zero. Since all the local Tamagawa numbers c`(E) are
odd and Ш(E/Q)[2] = 0, BSD(2) for E/Q implies that

L(E/Q, 1)
Ω(E/Q)
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is a 2-adic unit. Assume that ψd(−N ) = 1. We know from Corollary 5.11 that
∆(E) < 0, or ∆(E) > 0 and d > 0. Under these conditions, it follows from [89,
Theorems 1.1 and 1.3] that

L(E (d)/Q, 1)
Ω(E (d)/Q)

is also a 2-adic unit (note that the Néron period Ω(E/Q) is twice the real
period when ∆(E) > 0). Since all the local Tamagawa numbers c`(E (d)) are
odd (Lemma 10.12) and Ш(E (d)/Q)[2] = 0 (Lemma 5.11, (3, 2)), we know that
BSD(2) is true for E (d)/Q. By the same argument, if E (dK )/Q has rank zero and
ψd(−N ) = 1, we know that BSD(2) is true for E (d·dK )/Q.

5.8. Proof of Theorem 5.1(2). Now we can finish the proof of Theorem 5.1(2).
Because the abelian surface E × E (dK )/Q is isogenous to the Weil restriction
ResK/Q E and the validity of the BSD conjecture for abelian varieties is invariant
under isogeny [53, I.7.3], we know that BSD(2) for E/Q and E (dK )/Q implies that
BSD(2) is true for E/K . Hence, by Theorem 5.1(2), BSD(2) is true for E (d)/K .
By Lemma 5.12, BSD(2) is true for the rank-zero curve between E (d)/Q and
E (d·dK )/Q for d ∈ N such that ψd(−N ) = 1. Then again by the invariance of
BSD(2) under isogeny, we know that BSD(2) is also true for the other rank-one
curve between E (d)/Q and E (d·dK )/Q.

6. Examples

In this section, we illustrate our application to Goldfeld’s conjecture and the
2-part of the BSD conjecture in Sections 4 and 5 by providing examples of E/Q
and K which satisfy Assumption (F).

Let us first consider curves E/Q of rank one.

EXAMPLE 6.1. Consider the curve 37a1 in Cremona’s table,

E = 37a1 : y2
+ y = x3

− x .

It is the rank-one optimal curve over Q of smallest conductor (N = 37). Take

K = Q(
√
−7),

the imaginary quadratic field with smallest |dK | satisfying the Heegner hypothesis
for N such that 2 is split in K . The Heegner point

P = (0, 0) ∈ E(K )
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generates E(Q) = E(K ) ∼= Z. Since E is optimal with Manin constant 1, we
know that ωE is equal to the Néron differential. The formal logarithm associated
with ωE is

logωE
(t) = t + 1/2 · t4

− 2/5 · t5
+ 6/7 · t7

− 3/2 · t8
+ 2/3 · t9

+ · · · .

We have |Ẽ(F2)| = 5, and the point 5P = (1/4,−5/8) reduces to∞ ∈ Ẽ(F2).

Plugging in the parameter t =−x(5P)/y(5P)= 2/5, we know that up to a 2-adic
unit,

logωE
P = logωE

5P = 2+ 25
+ 26
+ 28
+ 29
+ · · · ∈ 2Z×2 .

Hence,
|Ẽ(F2)| · logωE

P
2

∈ Z×2

and (F) is satisfied. The set N consists of square-free products of the signed
primes

−11, 53,−71,−127, 149, 197,−211,−263, 337,−359, 373,−379,−443,
−571,−599, 613, . . . .

For any d ∈ N , we deduce the following:

(1) The rank part of BSD conjecture is true for E (d) and E (−7d) by Theorem 4.3.

(2) Since ∆(E) > 0, we know from Corollary 5.11 that{
rank E (d)(Q) = 1, rank E (−7d)(Q) = 0, d > 0,
rank E (d)(Q) = 0, rank E (−7d)(Q) = 1, d < 0.

(3) Since Gal(Q(E[2])/Q)) ∼= S3, it follows from Theorem 1.12 that

Nr (E, X)�
X

log5/6 X
, r = 0, 1.

(4) Since BSD(2) is true for E/Q and E (−7)/Q by numerical verification, it
follows from Theorem 5.1 that the BSD(2) is true for E (d) and E (−7d) when
d > 0.

EXAMPLE 6.2. As we saw in Section 5, a necessary condition for (F) is that
the local Tamagawa numbers cp(E) are all odd for p 6= 2. Another necessary
condition is that the formal group of E at 2 cannot be isomorphic to Gm : this
is due to the usual subtlety that the logarithm on Gm sends 1 + 2Z2 into 4Z2

https://doi.org/10.1017/fms.2019.9 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.9


Goldfeld’s conjecture and congruences between Heegner points 39

(rather than 2Z2). We search for rank-one optimal elliptic curves with E(Q)[2] =
0 satisfying these two necessary conditions. There are 38 such curves of conductor
6 300. For each curve, we choose K with smallest |dK | satisfying the Heegner
hypothesis for N and such that 2 is split in K . Then 31 out of 38 curves satisfy
(F); see Table 1. The first three columns list E , dK and the local Tamagawa
number c2(E) at 2, respectively. A check mark in the last column means that (F)
holds, in which case Theorems 4.3 and 1.12 apply and the improved bound toward
Goldfeld’s conjecture holds. If c2(E) is further odd (true for 23 out of 31), then
the application to BSD(2) (Theorem 5.1) also applies.

REMARK 6.3. There is one CM elliptic curve in Table 1: namely E = 243a1
with j-invariant 0, which seems to be only j-invariant of CM elliptic curves over
Q for which (F) holds.

Next let us consider curves E/Q of rank zero.

EXAMPLE 6.4. Consider

E = X0(11) = 11a1 : y2
+ y = x3

− x2
− 10x − 20,

the optimal elliptic curve over Q of smallest conductor (N = 11). Take

K = Q(
√
−7),

the imaginary quadratic field with smallest |dK | satisfying the Heegner hypothesis
for N such that 2 is split in K . The Heegner point

P =
(
−

1
2

√
−7+ 1

2 ,−2
√
−7− 2

)
∈ E(K )

generates the free part of E(K ). Since E is optimal with Manin constant 1, we
know that ωE is equal to the Néron differential. The formal logarithm associated
with ωE is

logωE
(t) = t−1/3·t3

+1/2·t4
−19/5·t5

−t6
+5/7·t7

−27/2·t8
+691/9·t9

+· · · .

We have |Ẽ(F2)| = 5 and the point 5P = (− 3
4 ,−

11
8

√
−7 − 1

2 ) reduces to∞ ∈
Ẽ(F2). The prime 2 splits in K as

(2) =
(
−

1
2

√
−7+ 1

2

)
·
(

1
2

√
−7+ 1

2

)
and the parameter t = −x(5P)/y(5P) has valuation 1 for both primes above 2.
Plugging in t , we find that

logωE
P ∈ 2O×K2

.
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Table 1. Assumption (F) for rank-one curves.

E dK c2(E) F E dK c2(E) F
37a1 −7 1 X 148a1 −7 3 X
43a1 −7 1 X 152a1 −15 4 X
88a1 −7 4 X 155a1 −79 1 X
91a1 −55 1 X 155c1 −79 1 X
91b1 −55 1 X 163a1 −7 1 X
92b1 −7 3 X 172a1 −7 3 X
101a1 −23 1 X 176c1 −7 2 X
123a1 −23 1 X 184a1 −7 2 X
123b1 −23 1 X 184b1 −7 2 X
124a1 −15 3 X 189a1 −47 1 X
131a1 −23 1 X 189b1 −47 1 X
141a1 −23 1 X 196a1 −31 3 X
141d1 −23 1 X 197a1 −7 1

E dK c2(E) F
208a1 −23 4
208b1 −23 4
212a1 −7 3
216a1 −23 4 X
219a1 −23 1 X
219b1 −23 1 X
232a1 −7 2
236a1 −23 3
243a1 −23 1 X
244a1 −15 3
248a1 −15 2 X
248c1 −15 2 X

Hence,
|Ẽ(F2)| · logωE

P
2

∈ O×K2

and (F) is satisfied. The set N consists of square-free products of the signed
primes

−23, 37,−67,−71, 113, 137,−179,−191, 317,−331,−379, 389,−443,
449,−463,−487,−631, . . . .

For any d ∈ N , we deduce the following:

(1) The rank part of BSD conjecture is true for E (d) and E (−7d) by Theorem 4.3.
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(2) Since ∆(E) < 0, we know from Corollary 5.11 that

rank E (d)(Q) = 0, rank E (−7d)(Q) = 1.

(3) Since Gal(Q(E[2])/Q)) ∼= S3, it follows from Theorem 1.12 that

Nr (E, X)�
X

log5/6 X
, r = 0, 1.

(4) Since BSD(2) is true for E/Q and E (−7)/Q by numerical verification, it
follows from Theorem 5.1 that the BSD(2) is true for E (d) and E (−7d).

EXAMPLE 6.5. For rank-zero curves, the computation of Heegner points is most
feasible when |dK | is small. Thus, we fix dK = −7 and search for rank-zero
optimal curves with E(Q)[2] = 0 satisfying the two necessary conditions in
Example 6.2 and such that K = Q(

√
−7) satisfies the Heegner hypothesis. There

are 39 such curves of conductor 6 750; see Table 2. Then 28 out of 39 curves
satisfy (F), in which case Theorems 4.3 and 1.12 apply and the improved bound
toward Goldfeld’s conjecture holds. If c2(E) is further odd (true for 24 out of 28),
then the application to BSD(2) (Theorem 5.1) also applies.

REMARK 6.6. Even when E does not satisfy (F) for any K (for example, when
E(Q) has rank > 2 or Ш(E/Q)[2] is nontrivial), one can still prove the same
bound in Theorem 1.12 by exhibiting one quadratic twist E∗ of E such that E∗

satisfies (F) (as quadratic twisting can lower the 2-Selmer rank). We expect that
one can always find such E∗ when the two necessary conditions (cp(E)’s are odd
for p 6= 2 and a2(E) is even) are satisfied, and so we expect that Theorem 1.12
applies to a large positive proportion of elliptic curves E . Showing the existence
of such E∗ amounts to showing that the value of the anticyclotomic p-adic L-
function at the trivial character is nonvanishing mod p among quadratic twist
families for p = 2. This nonvanishing mod p result seems to be more difficult
and we do not address it here (but when p > 5, see Prasanna [63] and the recent
work of Burungale–Hida–Tian [10]).

7. Heegner points at Eisenstein primes

In this section, we carry out the p-adic integration which makes up the heart of
Theorem 1.20 (see the strategy sketched in Section 3.1). We will show, by direct
p-adic integration, the following generalization of [42, Theorem 13]. (Here, our
generalization also corrects a self-contained typo in the statement of [42, Theorem
13], where part of condition (3) was mistranscribed from [42, Theorem 7]:
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Table 2. Assumption (F) for rank-zero curves.

E dK c2(E) F E dK c2(E) F
11a1 −7 1 X 316a1 −7 1
37b1 −7 1 X 352a1 −7 2 X
44a1 −7 3 X 352e1 −7 2 X
67a1 −7 1 X 368c1 −7 1 X
92a1 −7 3 X 368 f 1 −7 1 X
116a1 −7 3 428a1 −7 3
116b1 −7 3 464c1 −7 2
176a1 −7 1 X 464d1 −7 1
176b1 −7 1 X 464 f 1 −7 1
179a1 −7 1 X 464g1 −7 2
184d1 −7 2 X 557b1 −7 1 X
232b1 −7 2 568a1 −7 1
268a1 −7 1 X 571a1 −7 1

E dK c2(E) F
592b1 −7 1 X
592c1 −7 1 X
659b1 −7 1 X
688b1 −7 2 X
701a1 −7 1 X
704c1 −7 1 X
704d1 −7 1 X
704e1 −7 1 X
704 f 1 −7 1 X
704g1 −7 1 X
704h1 −7 1 X
704i1 −7 1 X
739a1 −7 1 X

‘` 6≡ −1 mod p’ should be ‘` 6≡ ψ(`) mod p’.) Our generalization, in
particular, does not require p - N .

THEOREM 7.1. Let E/Q be an elliptic curve. Let p be a prime such that E[p]
is a reducible Gal(Q/Q)-representation, or equivalently, E[p]ss ∼= Fp(ψ) ⊕

Fp(ψ
−1ω), for some character ψ : Gal(Q/Q) → µp−1. Let K be an imaginary

quadratic field satisfying the Heegner hypothesis for N. Suppose p splits in K .
Suppose further that either the following four conditions hold:

(1) ψ(p) 6= 1 and (ψ−1ω)(p) 6= 1,

(2) Nsplit = 1,
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(3) ` 6= p, `|Nadd implies either ψ(`) 6= 1 and ` 6≡ ψ(`) (mod p), or ψ(`) =
0,

(4) p - B1,ψ−1
0 εK
· B1,ψ0ω−1 ,

or the following four conditions hold:

(1) ψ = 1,

(2) p|N,

(3) `|N , ` 6= p implies `||N , ` ≡ −1 (mod p), ` 6≡ 1 (mod p)

(4) ordp((p − 1/2p) logp α) = 0,

where α ∈ O×K and (α) = phK , α is its complex conjugate and logp is the Iwasawa
p-adic logarithm.

Let P ∈ E(K ) be the associated Heegner point. Then

|Ẽns(Fp)|

p
· logωE

P 6= 0 (mod p).

In particular, P ∈ E(K ) is of infinite order and E/K has analytic and algebraic
rank 1.

REMARK 7.2. When p = 2, we must have ψ = 1 (since ψ : Gal(Q/Q) →
µp−1 = {1}). Note also that by (3) of the second part of Theorem 7.1, in this case,
N must be a power of 2.

REMARK 7.3. Note that when p = 3 and ψ is quadratic, condition (3) in the first
part of the statement of Theorem 7.1 is equivalent to

• `|Nadd, ` ≡ 1 (mod 3) implies that ψ(`) = −1, and

• ` 6= 3, `|Nadd, ` ≡ 2 (mod 3) implies that ψ(`) = 0.

7.1. The Eisenstein congruence. We may assume without loss of generality
thatψ 6= ω (otherwise, interchangeψ andψ−1ω). As in the proof of [42, Theorem
13], the argument relies on establishing an Eisenstein congruence. More precisely,
let f be the normalized weight 2 Γ0(N )-level newform associated with E . Recall
the weight 2 Eisenstein series E2,ψ defined by the q-expansion (at∞)

E2,ψ(q) := δ(ψ)
L(−1, ψ)

2
+

∞∑
n=1

σψ,ψ
−1
(n)qn,
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where δ(ψ) = 1 if ψ = 1 and δ(ψ) = 0 otherwise, and

σψ,ψ
−1
(n) =

∑
0<d|n

ψ(n/d)ψ−1(d) d.

This determines a Γ0( f (ψ)2)-level algebraic modular form of weight 2, in Katz’s
sense (see [38, Ch. II]). The assumption that E[p] is reducible and E[p]ss ∼=

Fp(ψ)⊕ Fp(ψ
−1ω) implies the following lemma (see [42, Theorem 34(2)]).

LEMMA 7.4. N has a decomposition N = N+N−N0 into pairwise coprime
integers N+, N−, N0 such that N+N− is the square-free part of N , N0 is the square-
full part of N , and

(1) if `|N+, then a`( f ) ≡ ψ(`) (mod p),

(2) if `|N−, then a`( f ) ≡ ψ−1(`)` (mod p),

(3) if `|N0, then a`( f ) = 0.

Note that the minimal level of E2,ψ is f (ψ)2. With respect to this level, take N #

as in Section 3.3 to be N #
= lcm`|N (`

2, f (ψ)). We now consider E2,ψ as a form
of level N # and let E (N+,N−,N0)

2,ψ denote the (N+, N−, N0)-stabilization of E2,ψ , with
the choices α` = ψ(`) and β` = ψ−1(`)` as in Definition 3.3. Thus, viewing f
and E (N+,N−,N0)

2,ψ as a p-adic Γ0(N )-level modular forms over OCp , we have

θ j f (q) ≡ θ j E (N+,N−,N0)

2,ψ (q) (mod pOCp)

for all j > 1.
Let A be a fixed elliptic curve with complex multiplication by OK , and fix an

ideal N ⊂ OK such that OK/N = Z/N and p|N if p|N . Since p is split in K ,
the q-expansion principle implies that the above congruences of q-expansions
translate to congruences on points corresponding to curves with CM by OK . As
is explained in Section 3, by Theorem 3.8, this implies that (for any generator
ω ∈ Ω1

A/OCp
)

|Ẽns(Fp)|

p
· logωE

P

=

∑
[a]∈C`(OK )

θ−1 f (1,1,p)(a ? (A, A[N], ω))

≡

∑
[a]∈C`(OK )

θ−1 E (N+,N−,pN0)

2,ψ (a ? (A, A[N], ω))
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=

∏
`|N+, 6̀=p

(1− ψ−1(`))
∏

`|N−,` 6=p

(
1−

ψ(`)

`

) ∏
`|N0,` 6=p

(1− ψ−1(`))

(
1−

ψ(`)

`

)
·

∑
[a]∈C`(OK )

θ−1 E (1,1,p)
2,ψ (a ? (A, A[N], ω)) (mod pOCp), (19)

where the final equality follows from Lemma 3.6, applied to successive
stabilizations of E2,ψ .

7.2. CM period of Eisenstein series. To evaluate (19) further, we need to
study the period∑

[a]∈C`(OK )

θ−1 E (1,1,p)
2,ψ (a ? (A, A[N], ω)) (mod pOCp).

We will show that this period is interpolated by the Katz p-adic L-function.
Indeed, let χ j be the unramified Hecke character of infinity type (hK j,−hK j)
defined on ideals by

χ j(a) = (α/α)
j ,

where (α) = ahK and hK is the class number of K . Let p denote the prime ideal
of OK which is the complex conjugate of p. For the remainder of the proof, in a
slight abuse of notation, unless otherwise stated let NK denote the p-adic Hecke
character associated with the algebraic Hecke character giving rise to the complex
Hecke character NK : K×\A×K → C×. Then by looking at q-expansions and
invoking the q-expansion principle, it is apparent that the above sum is given
by ∑

[a]∈C`(OK )

θ−1 E (1,1,p)
2,ψ (a ? (A, A[N], ω))

= lim
j→0

∑
[a]∈C`(OK )

(χ−1
j NhK j

K )(a)θ−1+hK j E (1,1,p)
2,ψ (a ? (A, A[N], ω))

= lim
j→0
(1− ψ−1(p)χ−1

j (p))(1− ψ(p)(χ
−1
j NK )(p))

·

∑
[a]∈C`(OK )

(χ−1
j NhK j

K )(a)θ−1+hK j E2,ψ(a ? (A, A[N], ω)) (20)

since χ−1
j NhK j

K → 1 as j → 0 = (0, 0) ∈ Z/(p − 1)× Zp; here, the last equality
again follows from Lemma 3.6 applied to F = E2,ψ .

https://doi.org/10.1017/fms.2019.9 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.9


D. Kriz and C. Li 46

7.3. The Katz p-adic L-function. We will now show that the terms in the
above limit are interpolated by the Katz p-adic L-function (restricted to the
anticyclotomic line). Let f|N such that O/f = Z/ f (ψ). Choose a good integral
model A of A at p, choose an identification ι : Â ∼

−→ Ĝm (unique up to Z×p ) and let
ωcan := ι

∗(du/u) where u is the coordinate on Ĝm . This choice of ωcan determines
p-adic and complex periodsΩp andΩ∞ as in [42, Section 3]. As an intermediate
step to establishing the p-adic interpolation, we have the following identity of
algebraic values.

LEMMA 7.5. We have the following identity of values in Q for j > 1:∑
[a]∈C`(OK )

(χ−1
j NhK j

K )(a)θ−1+hK j E2,ψ(a ? (A, A[N], ωcan))

=

(
Ωp

Ω∞

)2hK j

·
f (ψ)2Γ (1+ hk j)ψ−1(−

√
dK )(χ

−1
j NK )(f)

(2π i)1+hK jg(ψ−1)(
√

dK )−1+hK j

× L((ψ ◦ NmK/Q)χ
−1
j NK , 0),

where ψ−1(−
√

dK ) denotes the Dirichlet character ψ−1 evaluated at the unique
class b ∈ (Z/ f (ψ))× such that b +

√
dK ≡ 0 (mod f). (In particular, note that

the above complex-analytic calculation does not use the assumptions p > 2 or
p - f (ψ).)

Proof. View the algebraic modular form E2,ψ as a modular form over C, and
evaluate at CM triples (A, A[N], 2π idz) as a triple over C by considering the
uniquely determined complex uniformization C/(Zτ +Z) ∼= A for some τ in the
complex upper half-plane, and identifying A[N] with (1/N )Z ⊂ C/(Zτ +Z). By
plugging ψ1 = ψ

−1
2 = ψ and u = t = f, N′ = f2 into [42, Proposition 36], we

have the complex identity∑
[a]∈C`(OK )

(χ−1
j NhK j

K )(a)∂−1+hK j E2,ψ(a ? (A, A[N], 2π i dz))

=
f (ψ)2Γ (1+ hk j)ψ−1(−

√
dK )(χ

−1
j NK )(f)

(2π i)1+hK jg(ψ−1)(
√

dK )−1+hK j
L((ψ ◦ NmK/Q)χ

−1
j NK , 0),

(21)

where ∂ is the complex Maass–Shimura operator and NK : K×\A×K → C× is the
complex norm character over K . By definition of Ωp and Ω∞, we have

2π i dz =
Ωp

Ω∞
· ωcan.
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By [42, Proposition 21], we have the equality of algebraic values

∂−1+hk j E2(a ? (A, A[N], ωcan)) = θ
−1+hk j E2(a ? (A, A[N], ωcan))

for all j > 1. Moreover, since NK (a) ∈ Z, we can identify this value of NK with
the value of its p-adic avatar, which again is denoted by NK , at a. Applying these
identities to the identity of complex numbers (21), we get the desired identity of
algebraic numbers.

We now apply the interpolation property of the Katz p-adic L-function (see [31,
Theorem II]) to our situation, taking the normalization as in [24], thus arriving at
the identity

LKatz
p ((ψ ◦ NmK/Q)χ

−1
j NK , 0) = 4 · Localp((ψ ◦ NmK/Q)χ

−1
j NK )

(
Ωp

Ω∞

)2hK j

·

(
2π i
√

DK

)−1+hK j

Γ (1+ hK j)(1− ψ(p)(χ−1
j NK )(p))(1− ψ(p)χ−1

j (p))

× L((ψ ◦ NmK/Q)χ
−1
j NK , 0) (22)

for all j > 1, where Localp(χ) = Localp(χ,Σ, δ) is defined as in [39, 5.2.26]
with Σ = {p} and δ =

√
dK/2 (or as denoted by Wp(λ) in [31, 0.10]). For any

prime `, let ψ`(−
√

dK ) denote the value ψ`(b), where again b is any integer such
that b +

√
dK ∈ f. By directly plugging in χ = (ψ ◦ NmK/Q)χ

−1
j NK into the

definition of Localp, we have

Localp((ψ ◦ NmK/Q)χ
−1
j NK ) = ψp

(
−

√
dK
) f (ψ)p

gp(ψ)
.

Plugging (22) into the identity in Lemma 7.5, we have for all j > 1

(1− ψ−1(p)χ−1
j (p))(1− ψ(p)(χ

−1
j NK )(p))

×

∑
[a]∈C`(OK )

(χ−1
j NhK j

K )(a)θ−1+hK j E2,ψ(a ? (A, A[N], ωcan))

=
f (ψ)(p) · f (ψ) · (χ−1

j NK )(f)

4(
∏

`| f (ψ)(p) ψ
−1
` (−
√

dK )g`(ψ))(2π i)2hK j
LKatz

p ((ψ ◦ NmK/Q)χ
−1
j NK , 0).

Taking the limit j → 0 = (0, 0) ∈ Z/(p − 1) × Zp, noting that χ−1
j NK → NK

and NK (f) = f (ψ)−1 and applying (20), we have∑
[a]∈C`(OK )

θ−1 E (1,1,p)
2,ψ (a ? (A, A[N], ωcan))

=
f (ψ)(p)

4(
∏

`| f (ψ)(p) ψ
−1
` (−
√

dK )g`(ψ))
LKatz

p ((ψ ◦ NmK/Q)NK , 0). (23)
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7.4. Gross’s factorization theorem. We now evaluate the Katz p-adic L-
value on the right-hand side of (23).

LEMMA 7.6. We have, for ψ 6= 1,∑
[a]∈C`(OK )

θ−1 E (1,1,p)
2,ψ (a ? (A, A[N], ωcan))

= ±
1
4
(1− ψ−1(p))(1− (ψω−1)(p))B1,ψ−1

0 εK
B1,ψ0ω−1 (mod pOCp)

and for ψ = 1,∑
[a]∈C`(OK )

θ−1 E (1,1,p)
2,1 (a ? (A, A[N], ωcan)) ≡

p − 1
2p

logp α (mod pOCp),

where α ∈ OK such that (α) = phK .

Proof. Applying Gross’s factorization theorem (see [24] and [42, Theorem 28]
for the extension to the general auxiliary conductor case), we have

f (ψ)(p)

(
∏

`| f (ψ)(p) ψ
−1
` (−
√

dK )g`(ψ))
LKatz

p ((ψ ◦ NmK/Q)NK , 0)

= ±L p(ψ
−1
0 εKω, 0)L p(ψ0, 1), (24)

where L p(·, s) denotes the Kubota–Leopoldt p-adic L-function; here, the sign
of ±1 is uniquely determined by the suitably normalized p-adic Kronecker limit
formula due to Katz used in Gross’s proof to compare elliptic and cyclotomic units
(the normalization factor in [42, Theorem 28] already incorporates this sign). We
now evaluate each Kubota–Leopoldt factor in the above identity. Using the fact
that εK (p) = 1 since p splits in K , by the interpolation property of the Kubota–
Leopoldt p-adic L-function, we have

L p(ψ
−1
0 εK , 0) = −(1− ψ−1(p))B1,ψ−1

0 εK
. (25)

Now suppose ψ 6= 1. We claim that

(1) 8 - f (ψ0) if p = 2, and

(2) p2 - f (ψ0) if p > 2.

If p = 2, then ψ0 = 1 and f (ψ0) = 1. If p = 3, then ψ0 : Gal(Q/Q) → µ2 is
quadratic, and so 9 - f (ψ0) (since f (ψ0) is square-free outside of 2). If p > 5,
then since E[p]ss ∼= Fp(ψ) ⊕ Fp(ψ

−1ω), then f (ψ) · f (ψ−1ω)|N . Since p
splits in K , f (εK )p = 1, and so f (ψ0)p = f (ψ)p. Since f (ω) = p, we have
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f (ψ−1ω)p = f (ψ−1)p = f (ψ)p, and hence f (ψ)2p|N . Now assume for the
sake of contradiction that p2

| f (ψ0). Then since p2
| f (ψ0)p = f (ψ)p, we have

p4
| f (ψ)2p|N . However, since N is the conductor of E/Q and p > 5, we have

ordp(N ) 6 2, a contradiction.
Having justified this claim, we know that L p(ψ0,m)≡ L p(ψ0, n) (mod pOCp)

for all m, n ∈ Z (for example, see [85, Corollary 5.13]). Thus,

L p(ψ0, 1) ≡ L p(ψ0, 0) = −(1− (ψω−1)(p))B1,ψ0ω−1 (mod pOCp). (26)

Combining (24)–(26), we get

f (ψ)(p)∏
`| f (ψ)(p) ψ

−1
` (−
√

dK )g`(ψ)
LKatz

p ((ψ ◦ NmK/Q)NK , 0)

≡ ±(1− ψ−1(p))(1− (ψω−1)(p))B1,ψ−1
0 εK

B1,ψ0ω−1 (mod pOCp) (27)

when ψ 6= 1.
Now suppose ψ = 1. In particular, f (ψ) = f (ψ)(p) = 1. By the functional

equation for the Katz p-adic L-function (for example, see [31, Theorem II]), since
ŇK = N−1

K NK = 1 is the dual Hecke character of NK , we have

LKatz
p (NK , 0) = LKatz

p (1, 0).

By a standard special value formula (for example, see [24, Section 5, Formulas
1]), we have

LKatz
p (1, 0) =

4
|O×K |

·
p − 1

p
logp(α)

and so

LKatz
p (NK , 0) =

4
|O×K |

·
p − 1

p
logp(α) = 2 ·

p − 1
p

logp(α) (28)

since we assume dK < −4 and hence |O×K | = 2.
Now plugging in (27) into (23) when ψ 6= 1, and (28) into (23) when ψ = 1,

we establish the lemma.

7.5. Proof of Theorem 7.1. Putting together (19) and Lemma (7.6), we arrive
at our main congruence identities. If ψ 6= 1, we have

|Ẽns(Fp)|

p
· logωE

P

≡ ±

∏
`|N+,` 6=p

(1− ψ−1(`))
∏

`|N−,` 6=p

(
1−

ψ(`)

`

)
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×

∏
`|N0,` 6=p

(1− ψ−1(`))

(
1−

ψ(`)

`

)
·

1
4
(1− ψ−1(p))(1− (ψω−1)(p))B1,ψ−1

0 εK
B1,ψ0ω−1 (mod pOCp). (29)

Now the statement for ψ 6= 1 in Theorem 7.1 immediately follows from studying
when the right-hand side of the congruence vanishes mod p. If ψ = 1, we have

|Ẽns(Fp)|

p
· logωE P

≡


∏

`|N−, 6̀=p

(
1−

1
`

)
·

p − 1
2p

logp α (mod pOCp ), if `|N+N0 H⇒ ` = p,

0 (mod pOCp ), if ∃` 6= p such that `|N+N0,

(30)

where (α) = p
hK and logp is the Iwasawa p-adic logarithm (that is, the locally

analytic function defined by the usual power series log(1 + x) = x − (x2/2) +
(x3/3)− · · · , and then uniquely extended to all of C×p by defining logp p = 0).

We now finish the proof of Theorem 7.1 with the following lemma.

LEMMA 7.7. The right-hand side of (30) does not vanish mod p if any only if

(1) `|N , ` 6= p implies `||N , ` ≡ −1 (mod p), ` 6≡ 1 (mod p),

(2) ordp((p − 1/2p) logp α) = 0.

We also have that the nonvanishing of the right-hand side of (30) mod p implies
p|N, and so the right-hand side of (30) does not vanish mod p if and only if p|N
and (1) and (2) hold.

Proof. We first study when∏
`|N−, 6̀=p

(
1−

1
`

)
·

p − 1
2p

logp α (31)

vanishes mod p. Clearly (31) does not vanish mod p if and only if each of its
factors does not vanish mod p. Then

∏
`|N−, 6̀=p(1 − 1/`) does not vanish if and

only if
`|N−, ` 6= p H⇒ ` 6≡ 1 (mod p). (32)

Hence, (31) does not vanish mod p if and only if (32) and (2) in the statement of
the lemma hold.
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If the right-hand side of (30) does not vanish, then we have `|N+N0 H⇒ `= p,
the right-hand side of (30) equals (31) mod p and (32) holds. Thus, (1) and (2) in
the statement of the lemma hold.

If (1) and (2) in the statement of the lemma hold, then since by definition
`|N− H⇒ ` ≡ ±1 (mod p), we have that (32) holds. So (31) does not vanish
mod p. Now if `|N+N0 and ` 6= p, then by (1) in the statement of the lemma, we
have `||N , ` 6≡ 1 (mod p). Hence, ` - N0, ` - N+, a contradiction. So we have
`|N+N0 H⇒ ` = p, and so the right-hand side of (30) equals (31) mod p, which
does not vanish mod p.

Thus, we have shown that the nonvanishing of the right-hand side of (30) mod
p is equivalent to (1) and (2) in the statement of the lemma.

Now we show the second part of the theorem. Suppose that the right-hand side
of (30) does not vanish. In particular, we have `|N+N0 H⇒ ` = p and that the
right-hand side of (30) equals (31) mod p. If p - N , then we thus have N+N0 = 1.
We now show a contradiction, considering the cases p = 2 and p > 3 separately.

Suppose p = 2. Then since 2 - N− = N 6= 1 (where N 6= 1 follows because E
is an elliptic curve over Q), we have that there exists `|N− with ` ≡ 1 (mod 2).
Hence, ∏

`|N−,` 6=p

(
1−

1
`

)
≡ 0 (mod p) (33)

and the right-hand side of (30) vanishes mod p, a contradiction.
Suppose p > 2. Note that

(Nsplit, N−) =
∏

`|N−,`≡1 (mod p)

`. (34)

Since N0 = Nadd (because they are both the square-full parts of N ), we have
Nadd = N0 = 1. By [87, Theorem 2.2], we know that Nsplit Nadd 6= 1, and hence
Nsplit 6= 1. Since N+ = 1, we therefore have that 1 6= Nsplit|N−. By (34), we thus
have that there is some `|N− such that ` ≡ 1 (mod p). In particular, we have (33)
once again, and so the right-hand side of (30) vanishes mod p, a contradiction.

REMARK 7.8. Note that our proof uses a direct method of p-adic integration
and does not go through the construction of the BDP p-adic L-function as in
the proof of the main theorem of [42]. In particular, it does not recover the more
general congruence of the BDP and Katz p-adic L-functions established when p
is of good reduction established in [42] (also for higher weight newforms). We
expect that our method should extend to higher weight newforms, in particular,
establishing congruences between images of generalized Heegner cycles under

https://doi.org/10.1017/fms.2019.9 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.9


D. Kriz and C. Li 52

appropriate p-adic Abel–Jacobi images and quantities involving higher Bernoulli
numbers and Euler factors, without using the deep BDP formula.

8. Bernoulli numbers and relative class numbers

When p = 3, all Dirichlet characters in Theorem 7.1 are quadratic. Note that
for an odd quadratic character ψ over Q, by the analytic class number formula,
we have

B1,ψ = −2
hKψ

|O×Kψ |
, (35)

where Kψ is the imaginary quadratic field associated with ψ . So the 3-
indivisibility criteria of the theorem becomes a question of 3-indivisibility of
quadratic class numbers. This fact will be employed in our applications to
Goldfeld’s conjecture.

More generally, for p > 3, we can find a sufficient condition for nonvanishing
mod p of the Bernoulli numbers B1,ψ−1

0 εK
B1,ψ0ω−1 in terms of nonvanishing mod

p of the relative class numbers of the abelian CM fields of degrees dividing p− 1
cut out by ψ−1

0 εK and ψ0ω
−1. Let us first observe the following simple lemma.

LEMMA 8.1. Suppose ψ : (Z/ f )× → µp−1 is a Dirichlet character and assume
thatψ−1 (mod p) 6= ω or, equivalently, assume that there exists some a ∈ (Z/ f )×

such that ψ(a)a 6≡ 1 (mod pZ[µp−1]). Then

ordp(B1,ψ) > 0.

Proof. By our assumption, there exists some a ∈ (Z/ f )× such that ψ(a)a 6≡ 1
(mod pZ[µp−1]). Then we have

f∑
m=1

ψ(m)m ≡
f∑

m=1

ψ(am)am = ψ(a)a
f∑

m=1

ψ(m)m (mod pZ[µp−1])

H⇒ (1− ψ(a)a) ·
f∑

m=1

ψ(m)m ≡ 0 (mod pZ)

H⇒

f∑
m=1

ψ(m)m ≡ 0 (mod pZ[µp−1]).

Now our conclusion follows from the formula for the Bernoulli numbers (1).

For an odd Dirichlet character ψ , let Kψ denote the abelian CM field cut out by
ψ . Consider the relative class number h−Kψ = hKψ/hK+ψ

, where K+ψ is the maximal
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totally real subfield of Kψ . The relative class number formula [85, 4.17] gives

h−Kψ = Q · w ·
∏
χodd

(
−

1
2

B1,χ

)
, (36)

where χ runs over all odd characters of Gal(Kψ/Q), w is the number of roots
of unity in Kψ and Q = 1 or 2 (see [85, 4.12]). By Lemma 8.1, assuming that
ψ−1
6≡ ω, we see that we have the following divisibility of numbers in Zp[ψ]:

p - h−Kψ H⇒ p - B1,ψ . (37)

LEMMA 8.2. Suppose ψ : Gal(Q/Q)→ µp−1 is a Dirichlet character and K is
an imaginary quadratic field such that f (ψ) is prime to dK and p - dK . As long
as ψ 6= 1 or ω, we have

p - h−Kψ0εK
· h−K

ψ
−1
0 ω

H⇒ p - B1,ψ0εK · B1,ψ−1
0 ω.

Proof. If ψ is even, then ψ0εK = ψεK is ramified at some place outside p and
so is not equal to ω, and ψ−1

0 ω = ψ−1ω is not equal to ω if and only if ψ 6= 1.
Hence, (ψ−1

0 εK )
−1 (mod p) = ψ0εK 6= ω and (ψ0ω

−1)−1
= ψ−1ω 6= ω if and

only if ψ 6= 1. If ψ is odd, then ψ0εK = ψ is not equal to ω if and only if ψ 6= ω,
and ψ−1

0 ω = ψ−1εKω is ramified at some place outside p and so is not equal to ω.
Hence, (ψ−1

0 εK )
−1
= ψ0εK 6= ω unless ψ = ω, and (ψ0ω

−1)−1
= ψ−1εKω 6= ω.

Now the lemma follows from (37).

COROLLARY 8.3. Suppose we are in the setting of Theorem 7.1. Then p - h−Kψ0εK
·

h−K
ψ
−1
0 ω

implies condition (4) of the theorem.

Proof. Condition (1) in the statement of Theorem 7.1, in particular, impliesψ 6= 1
or ω. Now the statement follows from Lemma (8.2).

9. Goldfeld’s conjecture for elliptic curves with a 3-isogeny

The goal in this section is to prove Theorem 1.5. We will need some Davenport–
Heilbronn-type class number divisibility results due to Nakagawa–Horie and Taya.
For any x > 0, let K+(x) denote the set of real quadratic fields k with fundamental
discriminant dk < x and K−(x) denote the set of imaginary quadratic fields k with
fundamental discriminant |dk | < x . Let m and M be positive integers, and let

K+(x,m,M) := {k ∈ K+(x) : dk ≡ m (mod M)},
K−(x,m,M) := {k ∈ K−(x) : dk ≡ m (mod M)}.
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Recall that we let h3(d) denote the 3-primary part of the class number of Q(
√

d),
and let Φ : Z>0 → Z>0 denote the Euler totient function. We introduce the
following terminology for convenience.

DEFINITION 9.1. We say that positive integers m and M comprise a valid pair
(m,M) if both of the following properties hold:

(1) if ` is an odd prime number dividing (m,M), then `2 divides M but not m;

(2) if M is even, then

(a) 4|M and m ≡ 1 (mod 4), or

(b) 16|M and m ≡ 8 or 12 (mod 16).

Horie and Nakagawa proved the following.

THEOREM 9.2 [55]. We have

|K+(x,m,M)| ∼ |K−(x,m,M)| ∼
3x

π 2Φ(M)

∏
`|M

q
`+ 1

(x →∞).

Suppose furthermore that (m,M) is a valid pair. Then∑
k∈K+(x,m,M)

h3(dk) ∼
4
3
|K+(x,m,M)| (x →∞),

∑
k∈K−(x,m,M)

h3(dk) ∼ 2|K−(x,m,M)| (x →∞).

Here, f (x) ∼ g(x) (x → ∞) means that limx→∞ ( f (x)/g(x)) = 1, ` ranges
over primes dividing M, q = 4 if ` = 2, and q = ` otherwise.

Now put

K+
∗
(x,m,M) := {k ∈ K+(x,m,M) : h3(dk) = 1},

K−
∗
(x,m,M) := {k ∈ K−(x,m,M) : h3(dk) = 1}.

Taya [79] proves the following bound using Theorem 9.2.

PROPOSITION 9.3. Suppose (m,M) is a valid pair. Then

lim
x→∞

|K+
∗
(x,m,M)|

|K+(x, 1, 1)|
>

5
6Φ(M)

∏
`|M

q
`+ 1

,
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lim
x→∞

|K−
∗
(x,m,M)|

|K−(x, 1, 1)|
>

1
2Φ(M)

∏
`|M

q
`+ 1

.

In particular, the set of real (respectively imaginary) quadratic fields k such that
dk ≡ m (mod M) and h3(dk) = 1 has positive density in the set of all real
(respectively imaginary) quadratic fields.

Proof. This follows from the trivial bounds K+
∗
(x,m,M) + 3(K+(x,m,

M) − K+
∗
(x,m,M)) 6

∑
k∈K+(x,m,M) h3(dk) and K−

∗
(x,m,M) + 3(K−(x,

m,M) − K−
∗
(x,m,M)) 6

∑
k∈K+(x,m,M) h3(dk), and the asymptotic formulas

from Theorem 9.2.

We have the following positive density result.

THEOREM 9.4. Suppose E/Q is any elliptic curve of conductor N =

Nsplit Nnonsplit Nadd whose mod 3 Galois representation E[3] is reducible
and E[3]ss ∼= F3(ψ) ⊕ F3(ψ

−1ω). Let d be the fundamental discriminant
corresponding to the quadratic character ψ . Suppose that

(1) ψ(3) 6= 1 and (ψ−1ω)(3) 6= 1;

(2) ` 6= 3, `|Nsplit implies ψ(`) = −1;

(3) ` 6= 3, `|Nnonsplit implies ψ(`) = 1;

(4) `|Nadd, ` ≡ 1 (mod 3) implies ψ(`) = −1 or 0;

(5) `|Nadd, ` ≡ 2 (mod 3) implies ψ(`) = 0.

Let

d0 :=


d, d > 0,
−3d, d < 0, d 6≡ 0 (mod 3),
−d/3, (mod M) d < 0, d ≡ 0 (mod 3),

(38)

let

r(E) :=


1, 2 - lcm(N , d2),

2, 2||lcm(N , d2),

ord2(lcm(N , d2, 16))− 1, 4|lcm(N , d2)

and let

s3(d) :=

{
0, d > 0, d 6≡ 0 (mod 3), or d < 0, d ≡ 0 (mod 3),
1, d > 0, d ≡ 0 (mod 3), or d < 0, d 6≡ 0 (mod 3).
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Then a proportion of at least

d0

2r(E)+s3(d) · 3

∏
`|Nsplit Nnonsplit,`-d,` odd,` 6=3

1
2

∏
`|Nadd,`-d,` odd,` 6=3

1
2

∏
`|d,` odd, 6̀=3

1
2`

∏
`|3N

q
`+ 1

(39)
of all imaginary quadratic fields K have the following properties:

(1) dK is odd;

(2) K satisfies the Heegner hypothesis with respect to 3N;

(3) h3(d0dK ) = 1.

If, furthermore, we impose the assumption on E that

(6) h3(−3d) = 1 if ψ(−1) = 1, and h3(d) = 1 if ψ(−1) = −1

then at least the same proportion (39) of all imaginary quadratic fields K have:

(1) dK is odd;

(2) K satisfies the Heegner hypothesis with respect to 3N;

(3) the Heegner point P ∈ E(K ) is nontorsion.

Proof. We will apply Proposition 9.3 as well as Theorem 7.1. Let N ′ denote
the prime-to-3 part of N . We first divide into two cases (a) and (b) regarding
d , corresponding to

(a) d > 0 and d 6≡ 0 (mod 3), or d < 0 and d ≡ 0 (mod 3);

(b) d > 0 and d ≡ 0 (mod 3), or d < 0 and d 6≡ 0 (mod 3).

We then define a positive integer M as follows:

(1) In case (a), let

M =


3 · lcm(N ′, d2, 4), 2 - lcm(N ′, d2),

3 · lcm(N ′, d2, 8), 2||lcm(N ′, d2),

3 · lcm(N ′, d2, 16), 4|lcm(N ′, d2).

(2) In case (b), let

M =


9 · lcm(N ′, d2, 4), 2 - lcm(N ′, d2),

9 · lcm(N ′, d2, 8), 2||lcm(N ′, d2),

9 · lcm(N ′, d2, 16), 4|lcm(N ′, d2).

https://doi.org/10.1017/fms.2019.9 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.9


Goldfeld’s conjecture and congruences between Heegner points 57

Using the Chinese remainder theorem, choose a positive integer m such that

(1) m ≡ 2 (mod 3) in case (a), or m ≡ 3 (mod 9) in case (b),

(2) ` odd prime, ` 6= 3, `|Nsplit H⇒ m/d0 ≡ [quadratic residue unit] (mod `)
and 2|Nsplit H⇒ m/d0 ≡ 1 (mod 8),

(3) ` odd prime, ` 6= 3, `|Nnonsplit H⇒ m/d0 ≡ [quadratic residue unit]
(mod `) and 2|Nnonsplit H⇒ m/d0 ≡ 1 (mod 8),

(4) ` prime, `≡ 1 (mod 3), `|Nadd, ` - d H⇒ m/d0 ≡ [quadratic residue unit]
(mod `) and `≡ 1 (mod 3), `|Nadd H⇒ m≡ H⇒ m/d0 ≡ [quadratic
residue unit] (mod `),

(5) ` prime, ` odd, ` ≡ 2 (mod 3), `|Nadd (which by our assumptions implies
`|d) H⇒ m ≡ 0 (mod `)where m/d0 ≡ [quadratic residue unit] (mod `)
and 2|Nadd H⇒ m ≡ d (mod 16),

and furthermore, if 2 - N , then suppose m ≡ d (mod 4).
Suppose K is any imaginary quadratic field such that d0dK ≡ m (mod M).

Then the congruence conditions corresponding to (1)–(5) above, along with
assumptions (1)–(5) in the statement of the theorem, imply

(1) 3 splits in K ,

(2) ` 6= 3, `|Nsplit H⇒ ` splits in K ,

(3) ` 6= 3, `|Nnonsplit H⇒ ` splits in K ,

(4) ` prime, ` ≡ 1 (mod 3), `|Nadd H⇒ ` splits in K ,

(5) ` prime, ` ≡ 2 (mod 3), `|Nadd H⇒ ` splits in K ,

and dK ≡ 1 (mod 4) (that is, dK is odd). Hence, K satisfies the Heegner
hypothesis with respect to 3N .

Moreover, the congruence conditions above imply that (m,M) is a valid
pair (see Definition 9.1), and assumptions (4) and (5) in the statement of the
theorem imply that ( jd, d2) is also a valid pair whenever ( j, d) = 1. Thus, by
Proposition 9.3, for any d0|M ,

lim
x→∞

|K−
∗
(x,m,M)|

|K−(x/d0, 1, 1)|
>

d0

2Φ(M)

∏
`|M

q
`+ 1

. (40)
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The left-hand side of (40) is the proportion of imaginary quadratic K satisfying
d0dK ≡ m (mod M) and h3(d0dK ) = 1. Moreover, note that there are∏

`|Nsplit Nnonsplit,`-d,` odd,` 6=3

`− 1
2

∏
`|Nadd,`-d,` odd, 6̀=3

`(`− 1)
2

∏
`|d,` odd,` 6=3

`− 1
2

choices for residue classes of m mod M . Combining all the above and summing
over each valid residue class m mod M , we immediately obtain our lower bound
(45) for the proportion of imaginary quadratic fields K such that (1) dK is odd,
(2) K satisfies the Heegner hypothesis with respect to 3N and (3) h3(d0dK ) = 1.
This proves the part of the theorem before assumption (6) is introduced in the
statement.

If we assume that E satisfies assumption (6) in the statement of the theorem,
then for all K as above, we see that E , p = 3 and K satisfy all the assumptions of
Theorem 7.1 (see Remark 7.3), thus implying that P is nontorsion. The final part
of the theorem now follows.

Similarly, we have the following positive density result for producing E which
satisfy the assumptions of Theorem 9.4.

THEOREM 9.5. Suppose (N1, N2, N3) is a triple of pairwise coprime integers
such that N1 N2 is square-free, N3 is square-full and N1 N2 N3 = N. Let

r :=

{
0, 2 - N ,
2, 2|N .

Then a proportion of at least

1
2r · 3

∏
`|N1 N2,` odd, 6̀=3

1
2

∏
`|N3,` odd,` 6=3

1
`

∏
`|N , 6̀=3

q
`+ 1

of even (respectively odd) quadratic characters ψ corresponding to real
(respectively imaginary) quadratic fields Q(

√
d), where d > 0 (respectively

d < 0) are fundamental discriminants, satisfy

(1) ψ(3) 6= 1 and (ψ−1ω)(3) 6= 1;

(2) ` 6= 3, `|N1 implies ψ(`) = −1;

(3) ` 6= 3, `|N2 implies ψ(`) = 1;

(4) ` 6= 3, `|N3, ` ≡ 1 (mod 3) implies ψ(`) = 0;
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(5) ` 6= 3, `|N3, ` ≡ 2 (mod 3) implies ψ(`) = 0;

(6) h3(−3d) = 1 (respectively h3(d) = 1).

Moreover, we have that for any i ∈ {2, 3, 5, 8},

• 1/4 of the above fundamental discriminants d > 0 (respectively d < 0) satisfy
d ≡ i (mod 9).

Proof. We will apply Proposition 9.3. Using the Chinese remainder theorem,
choose a positive integer m which satisfies the following congruence conditions:

(1) m ≡ 3 (mod 9) or m ≡ 2 (mod 3);

(2) ` odd prime, ` 6= 3, `|N1 H⇒ m ≡ −3[quadratic nonresidue] (mod `),
and 2|N1 H⇒ m ≡ 1 (mod 8);

(3) ` odd prime, ` 6= 3, `|N2 H⇒ m ≡ −3[quadratic residue unit] (mod `),
and 2|N2 H⇒ m ≡ 5 (mod 8);

(4) ` odd prime, ` 6= 3, `|N3, ` ≡ 1 (mod 3) H⇒ m ≡ 0 (mod `) and m 6≡ 0
(mod `2);

(5) ` odd prime, ` 6= 3, `|N3, ` ≡ 2 (mod 3) H⇒ m ≡ 0 (mod `) and m 6≡ 0
(mod `2), and 2|N3 H⇒ m ≡ 8 or 12 (mod 16).

Let N ′ denote the prime-to-3 part of N . Given such an m, let a positive integer
M be defined as follows:

• If m ≡ 3 (mod 9), let

M =


9N ′, 2 - N ,
9 · lcm(N ′, 8), 2||N ,
9 · lcm(N ′, 16), 4|N .

• If m ≡ 2 (mod 3), let

M =


3N ′, 2 - N ,
3 · lcm(N ′, 8), 2||N ,
3 · lcm(N ′, 16), 4|N .

If m ≡ 2 (mod 3), suppose d is a fundamental discriminant with
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• d > 0, d ≡ 0 (mod 3) and −d/3 ≡ m (mod M), or

• d < 0, d 6≡ 0 (mod 3) and d ≡ m (mod M).

If m ≡ 3 (mod 9), suppose d is a fundamental discriminant with

• d > 0, d 6≡ 0 (mod 3) and −3d ≡ m (mod M), or

• d < 0, d ≡ 0 (mod 3) and d ≡ m (mod M).

Let ψ be the quadratic character associated with d . Then the congruence
conditions on m corresponding to (1)–(5) above imply

(1) ψ(3) 6= 1 and (ψ−1ω)(3) 6= 1;

(2) ` 6= 3 prime, `|N1 H⇒ ψ(`) = −1;

(3) ` 6= 3 prime, `|N2 H⇒ ψ(`) = 1;

(4) ` 6= 3 prime, `|N3, ` ≡ 1 (mod 3) H⇒ ψ(`) = 0;

(5) ` 6= 3 prime, `|N3, ` ≡ 2 (mod 3) H⇒ ψ(`) = 0.

Thus, ψ satisfies the desired congruence conditions (1)–(5) in the statement of the
theorem. Now we address (6). The congruence conditions (1)–(5) above imply
that (m,M) is a valid pair. Thus, by Proposition 9.3, if m ≡ 2 (mod 3) with
corresponding M as defined above, then

lim
x→∞

|K−
∗
(x,m,M)|

|K+(3x, 3, 9)| + |K+(3x, 6, 9)|
>

1
6Φ(M)

∏
`|M,` 6=3

q
`+ 1

, (41)

where the left-hand side of (41) is the proportion of d > 0 which satisfy d ≡ 0
(mod 3) and −d/3 ≡ m (mod M) and h3(−3d) = h3(−d/3) = 1, and

lim
x→∞

|K−
∗
(x,m,M)|

|K−(x, 1, 3)| + |K−(x, 2, 3)|
>

1
2Φ(M)

∏
`|M,` 6=3

q
`+ 1

, (42)

where the left-hand side of (42) is the proportion of d < 0 which satisfy d 6≡ 0
(mod 3), d ≡ m (mod M) and h3(d) = 1. Similarly, by Proposition 9.3, if m ≡ 3
(mod 9) with corresponding M as defined above, then

lim
x→∞

|K−
∗
(x,m,M)|

|K+(x/3, 1, 3)| + |K+(x/3, 2, 3)|
>

3
2Φ(M)

∏
`|M,` 6=3

q
`+ 1

, (43)
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where the left-hand side of (43) is the proportion of d > 0 which satisfy d 6≡ 0
(mod 3), −3d ≡ m (mod M) and h3(−3d) = 1, and

lim
x→∞

|K−
∗
(x,m,M)|

|K−(x, 1, 3)| + |K−(x, 2, 3)|
>

1
2Φ(M)

∏
`|M,` 6=3

q
`+ 1

, (44)

where the left-hand side of (44) is the proportion of d < 0 which satisfy d ≡ 0
(mod 3), d ≡ m (mod M) and h3(d) = 1.

Moreover, in each case, we have∏
`|N1,` odd,` 6=3

`− 1
2

∏
`|N2,` odd,` 6=3

`− 1
2

·

∏
`|N3,` odd,`≡1 (mod 3)

(`− 1)
∏

`|N3,` odd,`≡2 (mod 3)

(`− 1)
∏

if 2|N3

2

choices of residue classes m mod M which satisfy congruence conditions (1)–(5).
Combining all the above and summing over each of these residue classes m mod
M , we immediately obtain our lower bounds for the proportions of desired d > 0
from (42) and desired d < 0 from (43).

The final part of the theorem follows by directly counting the number of residue
classes m mod M which force d ≡ i (mod 9) for i ∈ {2, 3, 5, 8}.

REMARK 9.6. Suppose E[3]ss ∼= F3 ⊕ F3(ω). Note that for each d produced by
Theorem 9.5, Theorem 9.4 shows that there is a positive proportion of imaginary
quadratic K satisfying the Heegner hypothesis with respect to Nd2 such that
the corresponding Heegner point P ∈ E (d)(K ) is nontorsion. In particular, for
each such d there is at least one K such that P ∈ E (d)(K ) is nontorsion. Thus,
ran(E (d)) = 1− w(E (d))/2.

Proof of Theorem 1.5. Suppose E[3] is reducible, that is, E[3]ss ∼= F3(ψ) ⊕

F3(ψ
−1ω) for some quadratic character ψ : Gal(Q/Q) → µ2. Twisting by

the quadratic character ψ−1, we may assume without loss of generality that
E[3]ss ∼= F3 ⊕ F3(ω).

Let d be a fundamental discriminant corresponding to a quadratic character
ψ in the family of d produced by Theorem 9.5 (with the integers N1 = Nsplit,

N2 = Nnonsplit and N3 = Nadd as in our setting). In particular, E (d)
[3]ss ∼= F3(ψ)⊕

F3(ψ
−1ω) satisfies the assumptions of Theorem 9.4, including assumption (6).

Hence, we can apply Theorem 9.4 to E (d) to conclude that a positive proportion
of imaginary quadratic fields K satisfy the Heegner hypothesis with respect to
3Nd2 and have that the associated Heegner point P ∈ E (d)(K ) is nontorsion.
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Since w(E (d))w(E (ddK )) = w(E/K ) = −1 (the last equality following from the
Heegner hypothesis), we have that each such K satisfies

ran(E (ddK )) =
1+ w(E (d))

2
.

Hence, there are a positive proportion of quadratic twists of E with rank
1+ w(E (d))/2, and in fact by Theorem 9.4, a lower bound for this proportion
is given by

d0

2r(E (d))+s3(d) · 3

∏
`|Nsplit Nnonsplit,
`-d,` odd, 6̀=3

1
2

∏
`|Naddd2,

`-d,` odd, 6̀=3

1
2

∏
`|d, odd,` 6=3

1
2`

∏
`|3Nd2

q
`+ 1

(45)

in the notation of the statement of the theorem.
Now choose any K as produced by Theorem 9.4 for E (d) so that w(E (ddK )) =

−w(E (d)). In particular, dK is odd and prime to 3Nd . Then, by construction,
h3(ddK ) = 1 if d > 0 and h3(−3ddK ) = 1 if d < 0, and so E (ddK )[3]ss ∼=

F3(ψεK ) ⊕ F3((ψεK )
−1ω) satisfies all of the assumptions (including (6)) of

Theorem 9.4. Hence, we can apply Theorem 9.4 to E (ddK ) to conclude that
a positive proportion of imaginary quadratic fields K ′ satisfy the Heegner
hypothesis with respect to 3Nd2d2

K and have that the associated Heegner point
P ∈ E (ddK )(K ′) is nontorsion. Since w(E (ddK ))w(E (ddK dK ′ )) = w(E (ddK )/K ′) =
−1, we have that each such K ′ satisfies

ran(E (ddK dK ′ )) =
1+ w(E (ddK ))

2
=

1− w(E (d))

2
. (46)

Hence, there are a positive proportion of quadratic twists of E with rank
1− w(E (d))/2, and in fact by Theorem 9.4, a lower bound for this proportion
is given by

(ddK )0

2r(E (ddK ))+s3(ddK ) · 3

∏
`|Nsplit Nnonsplit,
`-ddK ,` odd, 6̀=3

1
2

∏
`|Nadd(ddK )2,
`-ddK ,` odd, 6̀=3

1
2

∏
`|ddK , odd, 6̀=3

1
2`

∏
`|3N (ddK )2

q
`+ 1

in the notation of the statement of the theorem. (Note that, in fact, r(E (ddK )) =

r(E (d)) since dK is odd.)
We have thus established Theorem 1.5.

When E is semistable, we have E[3]ss ∼= F3 ⊕ F3(ω) for the following reason:
Suppose E[3]ss ∼= F3(ψ) ⊕ F3(ψ

−1ω) for some quadratic character ψ . Then
ψ cannot be ramified at any `||N since the corresponding admissible GL2(Q`)

https://doi.org/10.1017/fms.2019.9 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.9


Goldfeld’s conjecture and congruences between Heegner points 63

representation is Steinberg of conductor `, but if ψ was ramified at `, it would
force the conductor to be divisible by `2 by the above description of E[3]ss. Hence,
ψ is a quadratic character only possibly ramified at 3 and hence must be either 1
or ω.

Now we can use Theorem 9.5 to compute explicit lower bounds on the
proportion of rank-0 and rank-1 quadratic twists.

PROPOSITION 9.7. Let E/Q be semistable and suppose that E has a rational
3-isogeny.

If 3 - N, then in the notation of Theorem 9.5 (with N1 = Nsplit, N2 = Nnonsplit

and N3 = Nadd = 1, at least

1
2r · 3

∏
`|N ,` odd,` 6=3

1
2

∏
`|N ,` 6=3

q
`+ 1

(47)

of d > 0 (respectively d < 0) have ran(E (d)) = 1 (respectively ran(E (d)) = 0).
If 3|N, then:

(1) If 3 is of split multiplicative reduction, then at least

1
2r · 3

∏
`|N ,` odd,` 6=3

1
2

∏
`|N ,` 6=3

q
`+ 1

(48)

of d > 0 (respectively d < 0) have ran(E (d)) = 1 (respectively ran(E (d)) =

0).

(2) If 3 is of nonsplit multiplicative reduction, then at least

1
2r+2 · 3

∏
`|N ,` odd,` 6=3

1
2

∏
`|N ,` 6=3

q
`+ 1

(49)

of d > 0 (respectively d < 0) have ran(E (d)) = 0 (respectively ran(E (d)) =

1), and at least
1

2r+2

∏
`|N ,` odd,` 6=3

1
2

∏
`|N ,` 6=3

q
`+ 1

(50)

of d > 0 (respectively d < 0) have ran(E (d)) = 1 (respectively ran(E (d)) =

0).

Proof. First, we apply Theorem 9.5 to N1 = Nsplit, N2 = Nnonsplit and N3 = Nadd =

1. For any d produced by the theorem, Remark 9.6 implies that

ran(E (d)) =
1− w(E (d))

2
. (51)
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Let d be any fundamental discriminant produced by Theorem 9.5. By the
properties of d produced in Theorem 9.5, the corresponding local characters ψ`
satisfy the implications

`|N , ` - d H⇒ `||N H⇒ ψ`(`)w`(E) = −ψ`(`)a`(E) = −ψ(`)a`(E) = 1,
(52)

(where the last chain of equalities follows since for `||N , w`(E) = −a`(E)), and
furthermore, since N = Nsplit Nnonsplit (since we assume that E is semistable),

`|(N , d) H⇒ ` = 3. (53)

We now calculatew(E (d)) using (52) and (53). Since E is semistable, the global
root number w(E (d)) is computed via changes to local root numbers w`(E) under
the quadratic twist by d as follows (see [3, Table 1]):

(1) if ` - Nd , then w`(E (d)) = w`(E) = 1;

(2) if `|N , ` - d, then w`(E (d)) = ψ`(`)w`(E) = 1;

(3) if ` - N , `|d , then w`(E (d)) = ψ`(−1)w`(E) = ψ`(−1);

(4) if `|(N , d), then ` = 3 and w3(E (d)) = −ψ3(−1)w3(E);

(5) w∞(E (d)) = w∞(E) = −1.

Hence,

w(E (d)) = −ψ(−1)
( ∏

if 3|(N ,d)

−w3(E)
)
. (54)

If 3 - N , then we have 3 - (N , d), and so w(E (d)) = −ψ(−1). Thus, by (51)
and the lower bound given in the statement of Theorem 9.5, in the notation of the
theorem, we have that at least

1
2r · 3

∏
`|N ,` odd,` 6=3

1
2

∏
`|N ,` 6=3

q
`+ 1

(55)

of d > 0 have ran(E (d)) = 1 and at least the same proportion of d < 0 have
ran(E (d)) = 0. If 3|N , then

w(E (d)) =



−ψ(−1), 3 - d,
−ψ(−1), 3|d, 3 is of split multiplicative reduction

(that is, w3(E) = −1),
ψ(−1), 3|d, 3 is of nonsplit multiplicative reduction

(that is, w3(E) = 1).
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The desired bounds in this case follow again from (51), the lower bound given in
the statement of Theorem 9.5 and the final part of that theorem.

REMARK 9.8. It is most likely possible to refine the casework in the proofs of
Theorems 9.5 and 9.4 in order to achieve better lower bounds of twists with
ranks 0 or 1.

EXAMPLE 9.9. Consider the elliptic curve

E = 19a1 : y2
+ y = x3

+ x2
− 9x − 15

in Cremona’s labeling. Then E(Q)∼= Z/3Z, so we take p = 3 and obtain E[3]ss
=

F3⊕F3(ω). Note that N = Nsplit = 19 and the root numberw(E) = +1. Consider
the set of fundamental discriminant d > 0 (respectively d < 0) such that

(1) ψd(3) 6= 1 and (ψdω)(3) 6= 1;

(2) ψd(19) = −1;

(3) h3(−3d) = 1 (respectively h3(d) = 1).

The first few such d > 0 are

d = 8, 12, 21, 41, 53, 56, 65, 84, 89, 129, 164, 165, 185, 189, . . .

and the first few such d < 0 are

d = −4,−7,−24,−28,−43,−55,−63,−115,−123,−159,−163,−168,
−172,−175,−187,−195, . . . .

Note that the root number w(E (d)) = ψd(−19) = −1 (respectively+1), we know
from Theorem 9.4 that

ran(E (d)) =

{
0, d < 0,
1, d > 0.

The explicit lower bounds in Proposition 9.7 show that at least 19
120 = 15.833% of

real quadratic twists of E have rank 1 and at least 19
120 = 15.833% of imaginary

quadratic twists of E have rank 0 (compare the lower bound 19
240 = 7.917% in

[32, page 640]).

10. The sextic twist family

10.1. The curves Ed . In this section, we consider the elliptic curve of j-
invariant 0,

E = 27a1 = X0(27) : y2
= x3

− 432.
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We remind the reader that E has CM by the ring of integers Z[ζ3] of Q(
√
−3) and

is isomorphic to the Fermat cubic curve X 3
+ Y 3

= 1 via the transformation

X =
36− y

6x
, Y =

36+ y
6x

.

DEFINITION 10.1. For d ∈ Z, we denote Ed as the dth sextic twist of E ,

Ed : y2
= x3

− 432d.

Note that the dth quadratic twist E (d) of E is given by

Ed3 = E (d)
: y2
= x3

− 432d3

and the dth cubic twist of E is given by

Ed2 : y2
= x3

− 432d2.

REMARK 10.2. The cubic twist Ed2 is isomorphic to the curve X 3
+ Y 3

= d and
its rational points provide solutions to the classical sum of two cubes problem.
These equations have a long history; see [88, Section 1] or [86, Section 1] for an
overview.

LEMMA 10.3. We have an isomorphism of GQ-representations

Ed[3]ss ∼= F3(ψd)⊕ F3(ψdω).

Here, ψd : GQ→ Aut(F3) = {±1} is the quadratic character associated with the
extension Q(

√
d)/Q and ω = ψ−3 : GQ→ Aut(F3) = {±1}.

Proof. Note that under cubic twisting, the associated modular forms are
congruent mod (ζ3 − 1). Since the Hecke eigenvalues are integers, we know that
the associated modular forms are indeed congruent mod 3. Hence, cubic twisting
does not change the semisimplification of the mod 3 Galois representations. Note
that Ed

∼= Ed7 is the d4th sextic twist of the curve Ed3 , which is the same as the
d2-cubic twist of the quadratic twist E (d). Since E(Q)[3] ∼= Z/3Z, we have an
exact sequence of GQ-modules,

0→ F3 → E[3] → F3(ω)→ 0.

Hence, we have an exact sequence of GQ-modules

0→ F3(ψd)→ E (d)
[3] → F3(ψdω)→ 0.

The result then follows.
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LEMMA 10.4. Assume that

(1) d is a fundamental discriminant;

(2) d ≡ 0 (mod 3).

Then the root number of Ed is given by

w(Ed) =

{
−sign(d), d ≡ 3 (mod 9),
sign(d), d ≡ 6 (mod 9).

Proof. We use the closed formula for the local root numbers w`(Ed) in
[46, Section 9].

(1) Since d is a fundamental discriminant, we have d ≡ 1 (mod 4), d = 4d ′ for
some d ′ ≡ 3 (mod 4) or d = 8d ′ for some d ′ ≡ 1 (mod 4). In the first case,
we have−432d = 24

·(−27d), with 2 - (−27d). In the second case, we have
−432d = 26

·(−27d ′), and in the third case, we have−432d = 27
·(−27d ′),

with 2 - (−27d ′). The local root number formula gives

w2(Ed) =

{
+1, 2 - d or 4||d,
−1, 8||d.

(56)

(2) Let d = 3d ′. Then −432d = 34
· (−16d ′), with 3 - −16d ′. Since the

exponent of 3 is 4, which is ≡ 1 (mod 3), we know that w3(Ed) = +1.

(3) Note that if 2 - d or 4||d , then the number of prime factors `|d such that
` > 5 and ` ≡ 2 (mod 3) is odd if and only if |d ′| ≡ 2 (mod 3). Similarly,
if 8||d , then the number of prime factors `|d such that ` > 5 and ` ≡ 2
(mod 3) is odd if and only if |d ′| ≡ 1 (mod 3). It follows that if d ′ ≡ 1
(mod 3), then

∏
`>5

w`(Ed) =

{
sign(d), 2 - d or 4||d,
−sign(d), 8||d.

If d ′ ≡ 2 (mod 3), then the product of the local root numbers

∏
`>5

w`(Ed) =

{
−sign(d), 2 - d or 4||d,
sign(d), 8||d.

(57)

Now the result follows from the product formulaw(Ed) =−w2(Ed)w3(Ed)
∏

`>5
w`(Ed).
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LEMMA 10.5. Assume that

(1) d is a fundamental discriminant;

(2) d ≡ 2 (mod 3).

Then the root number of Ed is given by

w(Ed) =

{
sign(d), d ≡ 2 (mod 9),
−sign(d), d ≡ 5, 8 (mod 9).

Proof. The proof is similar to Lemma 10.4 using [46, Section 9].

(1) Since d is a fundamental discriminant, we again have the formula (56).

(2) Note that−432d = 33
· (−16d). Its prime-to-3 part−16d satisfies−16d ≡

±2, 1 (mod 9) if and only if d ≡ ±1, 5 (mod 9). It follows that the local
root number

w3(Ed) =

{
+1, d ≡ 2 (mod 9),
−1, d ≡ 5, 8 (mod 9).

(3) Since d ≡ 2 (mod 3), we again have the formula (57).

Now the result again follows from the product formula.

10.2. Weak Goldfeld conjecture for {Ed}. Since Ed is CM, we know that its
conductor N (Ed) = Nadd(Ed). When d is a fundamental discriminant, the curve
Ed has additive reduction exactly at the prime factors of 3d .

THEOREM 10.6. Let K = Q(
√

dK ) be an imaginary quadratic field satisfying
the Heegner hypothesis with respect to 3d. Let Pd ∈ Ed(K ) be the associated
Heegner point. Assume that

(1) d is a fundamental discriminant;

(2) d ≡ 2 (mod 3) or d ≡ 3 (mod 9);

(3) if d > 0, then h3(−3d) = h3(dK d) = 1. If d < 0, then h3(d) =
h3(−3dK d) = 1.

Then
logωEd

Pd 6≡ 0 (mod 3). (58)

In particular, Pd is of infinite order and Ed/K has both analytic and algebraic
rank one.
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Proof. It follows by applying Theorem 7.1 for p = 3 and noting that |Ẽns
d (F3)| =

3 since Ed has additive reduction at 3. It remains to check that all the assumptions
of Theorem 7.1 are satisfied. By Lemma 10.3, we have that E[3] is reducible with
ψ = ψd . The condition that ψ(3) 6= 1 and (ψ−1ω)(3) 6= 1 is equivalent to that
d ≡ 2 (mod 3) or d ≡ 3 (mod 9). For ` 6= 3 and `|Nadd(Ed), we have `|d; so
ψd(`) = 0. Finally, the requirement on the trivial 3-class numbers is exactly the
assumption that 3 - B1,ψ−1

0 εK
B1,ψ0ω−1 by noting that

(ψd)0 =

{
ψd, d > 0,
ψdK d, d < 0,

and using the formula for the Bernoulli numbers (35) (see also Corollary 8.3).

COROLLARY 10.7. Assume that we are in the situation of Theorem 10.6.

(1) If d > 0 and d ≡ 2 (mod 9), or d < 0 and d ≡ 3, 5, 8 (mod 9), then

ran(Ed/Q) = 0, ran(E
(dK )
d /Q) = 1.

(2) If d < 0 and d ≡ 2 (mod 9), or d > 0 and d ≡ 3, 5, 8 (mod 9), then

ran(Ed/Q) = 1, ran(E
(dK )
d /Q) = 0.

Proof. It follows immediately from Theorem 10.6 using the root number
calculation in Lemmas 10.4 and 10.5.

COROLLARY 10.8. The weak Goldfeld’s conjecture holds for the sextic twist
family {Ed}. In fact, Ed has analytic rank 0 (respectively 1) for at least 1/6 of
fundamental discriminants d.

Proof. By Theorem 9.5, at least 1/3 of all (positive or negative) fundamental
discriminants d satisfy the assumptions of Theorem 10.6, and by Remark 9.6,
for each of these d , there is at least one imaginary quadratic field K satisfying
the Heegner hypothesis with respect to 3d and such that h3(dK d) = 1 if d > 0
and h3(−3dK d) = 1 if d < 0. Thus, d and K satisfy all of the assumptions of
Theorem 10.6. The final part of Theorem 9.5 implies that 1/4 of the fundamental
discriminants d considered above (which in turn comprise 1/3 of all fundamental
discriminants) satisfy d ≡ i (mod 9), for each i ∈ {2, 3, 5, 8}. Moreover, 1/2 of
these d give ran(Ed) = 0 (respectively 1) by Corollary 10.7. The desired density
1/6 then follows.
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REMARK 10.9. One can also obtain ran(Ed) ∈ {0, 1} for many d’s which are not
fundamental discriminants. From the proof of Theorem 10.6, one sees that the
fundamental discriminant assumption can be relaxed by allowing the exponent of
prime factors of d to be 3 or 5 (all we use is that Q(

√
d) is ramified exactly at

the prime factors of d). We assume that d is a fundamental discriminant only to
simplify the root number computation in Lemmas 10.4 and 10.5.

10.3. The 3-part of the BSD conjecture over K . The goal of this subsection
is to prove the following theorem.

THEOREM 10.10. Assume that we are in the situation of Theorem 10.6. Assume
that the Manin constant of Ed is coprime to 3. Then BSD(3) is true for Ed/K .

By the Gross–Zagier formula, the BSD conjecture for Ed/K is equivalent to
the equality [28, V.2.2]

uK · cEd ·

∏
`|N (Ed )

c`(Ed) · |Ш(Ed/K )|1/2 = [Ed(K ) : ZPd], (59)

where uK = |O×K/{±1}|, cEd is the Manin constant of Ed/Q, c`(Ed) = [Ed(Q`) :

E0
d(Q`)] is the local Tamagawa number of Ed and [Ed(K ) : ZPd] is the index of

the Heegner point Pd ∈ Ed(K ).
From now on, assume that we are in the situation of Theorem 10.6. Since 3

splits in K , we know K 6= Q(
√
−1) or Q(

√
−3), so uK = 1. Therefore, the BSD

conjecture for Ed/K is equivalent to the equality∏
`|N (Ed )

c`(Ed) · |Ш(Ed/K )|1/2 =
[Ed(K ) : ZPd]

cEd

. (60)

We will prove BSD(3) by computing the 3-part of both sides of (60) explicitly.

LEMMA 10.11. We have Ed(K )[3] = 0.

Proof. By Lemma 10.3, we have Ed[3]ss ∼= F3(ψd)⊕ F3(ψdω). Since neither ψd

nor ψdω becomes trivial when restricted to G K , we know that Ed(K )[3] = 0.

LEMMA 10.12. If `|N (Ed) and ` 6= 3 (equivalently, `|d), then 3 - c`(Ed).

Proof. By Lemma 10.3, we have Ed[3]ss ∼= F3(ψd)⊕ F3(ψdω). Because ψd and
ψdω are both nontrivial at ` (in fact, ramified at `), we know that Ed(Q`)[3] = 0.
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Since Ed(Q`) has a pro-`-subgroup (` 6= 3) of finite index and Ed(Q`) has trivial
3-torsion, we know that 3 - c`(Ed).

DEFINITION 10.13. Let F be any number field. Let L = {Lv} be a collection of
subspaces Lv ⊆ H 1(Fv, Ed[3]), where v runs over all places of L . We say L is a
collection of local conditions if for almost all v, we have Lv = H 1

ur(Fv, Ed[3]) is
the unramified subspace. Note that H 1(Fv, Ed[3]) = 0, if v | ∞. We define the
Selmer group cut out by the local conditions L to be

H 1
L(F, Ed[3]) := {x ∈ H 1(F, Ed[3]) : resv(x) ∈ Lv, for all v}.

We will consider the following four types of local conditions:

(1) The Kummer conditions L given by Lv = im(E(Fv)/3E(Fv) → H 1(Fv,
Ed[3])). The 3-Selmer group Sel3(Ed/F) = H 1

L(F, Ed[3]) is cut out by the
Kummer conditions.

(2) The unramified conditions U given by Uv = H 1
ur(Fv, Ed[3]).

(3) The strict conditions S given by Sv = Uv for v - 3 and Sv = 0 for v|3.

(4) The relaxed conditions R given by Rv = Uv for v - 3 and Rv = H 1(Fv,
Ed[3]) for v|3.

LEMMA 10.14. H 1
U (K , Ed[3]) = H 1

S(K , Ed[3]) = 0.

Proof. By Shapiro’s lemma, we have

H 1
U (K , Ed[3]) ∼= H 1

U (Q, Ed[3])⊕ H 1
U (Q, E (dK )

d [3]).

By Lemma 10.3, we have an exact sequence

· · · → H 1(Q,F3(ψd))→ H 1(Q, Ed[3])→ H 1(Q,F3(ψdω))→ · · · .

Restricting to the unramified Selmer group, we obtain a map

H 1
U (Q, Ed[3])→ H 1(Q,F3(ψdω))

whose kernel and image consist of everywhere unramified classes. It follows from
class field theory that

|H 1
U (Q, Ed[3])| 6 h3(d) · h3(−3d).

Similarly, we have

|H 1
U (Q, E (dK )

d [3])| 6 h3(dK d) · h3(−3dK d).
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By the assumptions on the 3-class numbers in Theorem 10.6 and Scholz’s
reflection theorem ([69]; see also [85, 10.2]), we know that the four 3-class
numbers appearing above are all trivial. Hence, H 1

U (K , Ed[3]) = 0. Since by
definition, we have

H 1
S(K , Ed[3]) ⊆ H 1

U (K , Ed[3]),

and we also know that H 1
S(K , Ed[3]) = 0.

LEMMA 10.15. dim H 1
R(K , Ed[3]) = 2.

Proof. It follows from [17, Theorem 2.18] that

dim H 1
R(K , Ed[3])− dim H 1

S(K , Ed[3]) =
1
2

∑
v|3

dimRv. (61)

Consider v|3. Since 3 is split in K , we know that H 1(Kv, Ed[3]) ∼= H 1(Q3,

Ed[3]). By Lemma 10.3, Ed[3]ss ∼= F3(ψd) ⊕ F3(ψdω). Since ψd(3) 6= 1 and
ψdω(3) 6= 1, we know that

H 0(Q3, Ed[3]) = H 2(Q3, Ed[3]) = 0.

It follows from the Euler characteristic formula that

dim H 1(Q3, Ed[3]) = 2.

Namely, dimRv = 2. The result then follows from Lemma 10.14 and formula
(61).

LEMMA 10.16. Sel3(Ed/K ) ∼= Z/3Z. In particular, Ш(Ed/K )[3] = 0.

Proof. We claim that Lv = Uv for any v - 3. In fact,

(1) If v - 3d∞, then Ed has good reduction at v and so Lv = H 1
ur(Kv, Ed[3])

by [27, Lemma 6].

(2) If v|∞, then v is complex and H 1(Kv, Ed[3]) = 0. So Lv = H 1
ur(Kv,

Ed[3]) = 0.

(3) If v|d , then v is split in K and thus Kv
∼= Q`. By Lemma 10.12, c`(E) is

coprime to 3. It follows that Lv = H 1
ur(Kv, Ed[3]) by [27, Lemma 6].

It follows from the claim that

Sel3(Ed/K ) ⊆ H 1
R(K , Ed[3]).

So dim Sel3(Ed/K ) 6 2 by Lemma 10.15.
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By the Heegner hypothesis, the root number of Ed/K is −1. Since the 3-parity
conjecture is known for elliptic curves with a 3-isogeny [19, Theorem 1.8], we
know that dim Sel3(Ed/K ) is odd and thus must be 1. Hence, Sel3(Ed/K ) ∼=
Z/3Z as desired.

LEMMA 10.17. We have

c3(Ed) =

{
3, d ≡ 2 (mod 9),
1, d ≡ 3, 5, 8 (mod 9).

In either case, we have ord3(c3(Ed)) = ord3([Ed(K ) : ZPd]/cEd ).

Proof. The first part follows directly from Tate’s algorithm [72, IV.9] (see also
the formula in [68, 0.5]).

Suppose ord3(c3(Ed)) = 0. We need to show that ord3([Ed(K ) : ZPd]) = 0. If
not, then since Ed(K )[3] = 0 (Lemma 10.11), we know that there exists some
Q ∈ Ed(K ) such that 3Q = n Pd for some n coprime to 3. Let ωEd be the Néron
differential of Ed and let logEd

:= logωEd
. By the very definition of the Manin

constant, we have cEd · ωEd = ωEd and cEd · logωEd
= logEd

. Since cEd is assumed
to be coprime to 3, we have up to a 3-adic unit,

|Ẽns
d (F3)| · logωEd

Pd

3
=
|Ẽns

d (F3)| · logEd
Pd

3
= |Ẽns

d (F3)| · logEd
(Q).

On the other hand, c3(Ed) · |Ẽns
d (F3)| · Q lies in the formal group Êd(3OK3) and

ord3(c3(Ed)) = 0; we know that

|Ẽns
d (F3)| · logEd

(Q) ∈ 3OK3,

which contradicts formula (58).
Now suppose ord3(c3(Ed)) = 1. The same argument as the previous case shows

that we have ord3([Ed(K ) : ZPd]) 6 1. It remains to show that

ord3([Ed(K ) : ZPd]) 6= 0.

Assume otherwise, then the image of Pd in Ed(K )/3Ed(K ) is nontrivial, and
hence its image in Sel3(Ed/K ) ∼= Z/3Z is nontrivial. We now analyze its local
Kummer image at 3 and derive a contradiction.

Since c3(Ed) = 3 and Ẽns
d (F3) = Z/3Z, we know that Ed(Q3)/Êd(3Z3) is a

group of order 9; so

Ed(Q3)/Êd(3Z3) ∼= Z/9Z or Z/3Z× Z/3Z.
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Since dim H 1(Q3, Ed[3]) = 2 and the local Kummer condition is a maximal
isotropic subspace of H 1(Q3, Ed[3]) under the local Tate pairing, we know that
Ed(Q3)/3Ed(Q3) = Z/3Z. So the only possibility is that

Ed(Q3)/Êd(3Z3) ∼= Z/9Z. (62)

Now by formula (58), we know that Pd 6∈ Êd(3OK3), but 3Pd ∈ Êd(3OK3). Using
K3
∼= Q3 and (62), we deduce that Pd ∈ 3Ed(K3). So the local image of Pd in

Ed(K3)/3Ed(K3) is trivial.
Therefore, Sel3(Ed/K ) is equal to the strict Selmer group H 1

S(K , Ed[3]), a
contradiction to Lemmas 10.14 and 10.16.

Proof of Theorem 10.10. Theorem 10.10 follows immediately from the
equivalent formula (60) and Lemmas 10.12, 10.16 and 10.17.

11. Cubic twist families

In this section, we consider the elliptic curve Ed/Q : y2
= x3

− 432d of j-
invariant 0, where d is any sixth-power-free integer. Recall that for a cube-free
positive integer D, the Dth cubic twist Ed is the curve Ed D2 (see Definition 10.1).
For r > 0, we define

Cr (Ed, X) = {D < X : D > 0 cube-free, ran(Ed D2) = r}

to be the counting function for the number of cubic twists of Ed of analytic rank
r . Recall that by Lemma 10.3, Ed[3]ss ∼= F3(ψd)⊕ F3(ψdω).

THEOREM 11.1. Assume for any prime `|N (Ed), we have ψd(`) 6= 1 and
ψdω(`) 6= 1. Assume that there exists an imaginary quadratic field K satisfying
the Heegner hypothesis for N (Ed) such that

(1) 3 is split in K .

(2) If d > 0, then h3(−3d) = h3(dK d) = 1. If d < 0, then h3(d) =
h3(−3dK d) = 1.

Then for r ∈ {0, 1}, we have

Cr (Ed, X)�
X

log7/8(X)
.

REMARK 11.2. Note that when 3 - d is a fundamental discriminant, the
conditions ψd(`) 6= 1 and ψdω(`) 6= 1 for `|N (Ed) are automatically satisfied.
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Proof. We consider the following set S consisting of primes ` - 6N (Ed) such that

(1) ` is split in K ;

(2) ψd(`) = −1 (` is inert in Q(
√

d));

(3) ω(`) = 1 (` is split in Q(
√
−3)).

Since our assumption implies that the three quadratic fields K , Q(
√

d) and
Q(
√
−3) are linearly disjoint, we know that the set of primes S has density

α = ( 1
2 )

3
=

1
8 by Chebotarev’s density theorem.

Let N be the set of integers consisting of square-free products of primes in S .
Then for any D ∈N . We have Ed D2[3]ss ∼= F3(ψd)⊕F3(ψdω). For any `|N (Ed D2),
we have ψd(`) 6= 1 and ψdω(`) 6= 1 by construction. The imaginary quadratic
field K also satisfies the Heegner hypothesis for N (Ed D2). Since the relevant 3-
class numbers are trivial, we can apply Theorem 7.1 (p = 3) to Ed D2 and conclude
that

ran(Ed D2/K ) = 1.

The root number w(Ed D2) is +1 (respectively −1) for a positive proportion of
D ∈ N ; so we have for r ∈ {0, 1},

Cr (Ed, X)� #{D ∈ N : D < X}.

By the standard application of Ikehara’s tauberian theorem as in the proof of
Theorem 1.12, we know that

#{D ∈ N : D < X} ∼ c ·
X

log1−α X
,

for some c > 0. Here, α = 1
8 is the density of the set of primes S . The results then

follow.

EXAMPLE 11.3. Consider d = 22
·33
= 108. Then Ed = 144a1 : y2

= x3
−1. The

field K = Q(
√
−23) satisfies the Heegner hypothesis for N = 144 and 3 is split

in K . We compute the 3-class numbers h3(−3d) = h3(−1) = 1 and h3(dK d) =
h3(−69) = 1. So the assumptions of Theorem 11.1 are satisfied. The set N in the
proof of Theorem 11.1 consists of square-free products of the primes

31, 127, 139, 151, 163, 211, 223, 271, 307, 331, 439, 463, 487, 499, . . . .

Note that D ∈ N implies that D ≡ 1 (mod 3). One can then compute the root
number of the cubic twist

Ed D2 : y2
= x3

− D2
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to be

w(Ed D2) =

{
+1, D ≡ 1, 4 (mod 9),
−1, D ≡ 7 (mod 9).

We conclude that for D ∈ N ,

ran(Ed D2) =

{
0, D ≡ 1, 4 (mod 9),
1, D ≡ 7 (mod 9).
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