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ON A GENERAL NONLINEAR VARIATIONAL INEQUALITY

RAMENDRA KRISHNA BOSE

Variational inequality theory provides techniques for solving a variety of applied
problems in science and engineering. Recently Noor considered some interesting
general nonlinear and linear variational inequalities in a series of papers and proved
the existence and uniqueness of solutions by a fixed point technique developed by
Glowinski, Lions and Tremolieres and also by a fixed point technique of Lions and
Stampacchia. But there are several inaccuracies in his proofs and here they have
been removed and correct formulation of the theorems are stated and proved and
relationships are clearly shown. The existence of solution necessitates an additional
condition in one case, and less condition in the other, but uniqueness can be proved
without the condition that the operator be antimonotone.

1. INTRODUCTION

Variational inequality theory provides techniques to solve a variety of applied prob-
lems in science and engineering. For details, one can refer to Duvaut and Lions [3],
Glowinski, Lions and Tremolieres [4], Crank [2], and Baiocchi and Capelo [1]. Re-
cently Noor [5] considered some general nonlinear variational inequalities and proved
the existence of a unique solution by a fixed point technique of Glowinski, Lions and
Tremolieres [4] under certain conditions. Previously known classes of variational in-
equalities, originally studied by Duvaut and Lions [3], are special cases of this general
inequality. Earlier Noor [6] considered a less generalised variational inequality related
with a Signorini problem in which also he used the similar techniques to prove the
existence of a unique solution under certain conditions. Noor [9] has considered the
same general variational inequality again with some variation of conditions and proved
the existence of a unique solution by a fixed point technique of Lions and Stampacchia
[7] (or refer to Baiocchi and Capelo [1], p.26 — the second proof). Earlier Noor [8]
considered a less general version of this variational inequality.

There are certain inaccuracies in the proofs given by Noor [5, 6, 8, 9], and the
object of this note is to prove the theorems under suitable conditions which necessitates
certain deletion and addition of conditions. The specific differences between the results
obtained by these two fixed point techniques are established. Naturally this will lead
to the required modification in the results and and examples discussed by Noor [9].
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2. PRELIMINARIES AND NOTATION.

Let H be a Hilbert space on the reals with its dual H', whose norm and inner
product are denoted by ||.|| and (. , .) , respectively. We denote the pairing between H'

and H by (., .). We have (f,u) = (Af,u) for all / € H' and u e H, where A is the
canonical isomorphism from H' onto H. Also ||A|| = ||^. a || = 1.

Let K be a closed convex set in H and a(.,.) : H x H —* R be a coercive
continuous bilinear form on H. That is, there exist constants a > 0, and (3 > 0 such
that the bilinear form satisfies the following:

(1) a(v,v)>a\\v\\2

and

(2) a(u,v)</9|H|||v|| for all u,v € H.

It follows from (1) and (2) that a < 0. Let j : H -+ R U {oo} U {-co} be a func-
tional which is convex, lower semi-continuous and proper (that is, j(v) > —oo for all v £
H, and j ' £ oo).

Moreover let the form 6(.,.) : H x H —> il which is not differentiable, satisfy the
following:

(i) b(u,v) is linear in the first argument,

(ii) b(u,v) is bounded, that is, there exists a constant 7 > 0 such that

|&(«,«)|<7lHIIHI ^ all u,v£H,

(iii) b(u,v) — b(u,w) ^ 6(u,v — w) for all u,v, and w G H, and
(iv) for a fixed u,6(u,w), that is, b(u,.) is a convex functional.

When b(u,v) is linear in the second argument, conditions (iii) and (iv) are satisfied.

A non-linear operator A : H —» JET' is called Lipschitz continuous if there exists a
constant £ > 0 such that

(3) \\Au - Av\\ ^ (\\u - «||, for all u,v € H,

and is called antimonotone if

(4) (Au- Av,u-v) ^ 0 for all u,v € K.

As a(u, v) is a continuous bilinear form on H, by the Riesz-Frechet representation

theorem, we have

(5) a(u,v) = (Tu,v)

for all t; e H whereT :H-*H'. Furthermore||T|| ^ 0.
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3. M A I N RESULT.

We first state the theorems proved by Noor ([5, 6]).

THEOREM A. (Noor [6]) Let a(u,v) be a coercive continuous bilinear form and
j(v) be a convex, lower semi-continuous proper functional. If A : K —* H' is a Lipschitz
continuous antimonotone operator and condition

(N) 7 < «

holds, then there exists a unique solution u £ K such that

a(u,v — u) + j(v) — j(u) ^ (A(v.),v — u), forallvEK.

THEOREM B. (Noor [5]) Let a(u,v) be a coercive continuous bilinear form and
b(u,v) satisfy the conditions (i)-(iii). If A : K —* H' is a Lipschitz continuous anti-
monotone operator and condition

(N*) 7 + £ < «

holds, then there exists a unique solution u £ K such that

a(u,v — «) + b{u,v) — b(u,u) > (A(u),v — u) for all v € K.

The theorems we want to prove axe stated below.

THEOREM 1. Let a(u,v) be a coercive continuous bilinear form and j(v) be
a convex, lower semi-continuous proper functional. If A : K —» H' is a Lipschitz
continuous operator and condition (N) holds, then there exists a unique solution u 6 K
such that

(6) a(u,v - u) + j(v) - j{u) ^ (A(u),v-u),

for all v € K (that is, A need not be antimonotone).

THEOREM 2 . Let a(u,v) be a coercive continuous bilinear form and b(u,v) sat-
isfy the conditions (i)-(iv). If A : K —> H' is Lipschitz continuous operator and
condition (N*) holds, then there exists a unique solution u 6 K such that

(7) a(u, v - v.) + b{u, v) - b(u, u) ^ (A(u), v - u)

for all v € K (that is, A need not be antimonotone but b(.,.) has to satisfy the
additional condition (iv) for the existence and uniqueness of the auxiliary problem
discussed below).
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R E M A R K 1. If the dependence of the form b(u,v) is restricted to its second argument
only, that is, 6(u,v) = j(v), the variational inequality (7) reduces to the variational
inequality (6) with some stronger conditions on j . We give the proof of Theorem 2
only. Theorem 1 can be proved in a similar fashion.

PROOF OF THEOREM 2: We prove the uniqueness of solution first. Let Ui,U2 G K

be two solutions of (7). Then

(8) a(«i,w

for all v € A* and

(9) a(u2,v - u2) + b(u2,v) - b(u2,u2) > (A(u2),v - u2)

for all v G K.

Under stated conditions (in case b(u,v) = j(v) refer to Glowinski et al. [4], p.543),

we can take v = u2 in (8) and v = Ui in (9), and adding these inequalities and using

condition (iii), we get

(10) o(ui - «2,«i - «2) ^ (A(A(ui) - A(u2)),Ui - u2) + 6(uj - u2)u2 -

Using (1), (3), and condition (ii) of &(.,.) in (10) we have

«||«! - u2||2 < (Hm - u2||
2 + 7 | | U l - u 2 | | 2

That is (a — £ — 7)||i*i — u2\\
2 ^ 0. Since a > £+7 by condition (N*), we have u± — u2.

For existence, we have to consider the following auxiliary problem. For each u € K

and p > 0, we consider the auxiliary problem of finding w G K satisfying the variational

inequality problem:

Find w £ K such that

(w,v — w) + pb(u,v) — pb(u,w) ^ {u,v — w)

(11) + p{A(u),v — w) — pa(u,v — w)

for all v G K.

For a fixed «, this is the problem (np(w)) of Glowinski, Lions and Tremolieres [4]
(Appendix 1, Sec. 2, p.545, Lemma 2.1). This problem admits one and only one solution
when the conditions of Theorem 2 are satisfied (of course 6 need satisfy conditions (ii)
to (iv) only).

Let ioi,i02 be two solutions of (11) related to u i , ^ G K, respectively. We can
prove the existence of a solution of (7) if we show that the mapping u —» w (w — Su)

has a fixed point in K. For this we show that 5 : K —> K satisfies the condition

||5u2 - Sui|| < 6\\v.2 - U l | | with 0 < 0 < 1,
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where 6 is independent of Ui and u j .

Taking v —w^ (respectively i»i) in (11) related to 1*1 (respectively 1*2), we get

(12) + p{A(ui),w2 -

and («>2»U>1 -W2) + ^ ( u 2 > w l )

(13) + p(A(u2),Wi - w2) -

Adding (12) and (13) and using (5) we get, after changing sign,

\\w2 - t«i | | 2 ^ pb{y.i - u2,w2 - wi)

- «i - pA{Tu2 - Tui),w2 - wi) - p(k{A(ui) - A(u2)),w2

that is ||w2 - 1011| < Wl ~ 2aP + a2P2 + P(f + 0]ll"2 -

(Glowinski, Lions, and Tremolieres [4], p.16). Here

(14) 0 = y/\ - 2ap + p*P2 + p(j + 0 < 1

a-i—t 1
where 0 < p < 2 • ^-j and p <

(by condition (N*) we have 7 + ^ < a < / 3 ) . D

REMARK 2. When b(u,v) = j(v), Theorem 2 gives Theorem 1 with a little stronger
condition on j(y) (continuity instead of lower semi-continuity and range of j(y) re-
stricted to reals). But Theorem 1 can be proved exactly in the same manner under the
stated conditions.

Now we discuss the solution of these general variational inequalities by the fixed
point technique of Lions and Stampacchia [7]. Noor proved the following two theorems.

THEOREM C. (Noor [9]) Lei a(u,v) be a coercive continuous bilinear form and
b(u,v) satisfy the conditions (i) and (ii), and let 6(11,1;) be sublinear in the second
argument, that is,

b(u,u - v) < b(u,u) - b(y.,v) for all «,« £ I .

If the condition (N) holds, then there exists a unique u 6 K such that, for a given

/eF,
a(u,v -u) + b(u,v) -b(u,u) > (/,« - u) for all v 6 K.

https://doi.org/10.1017/S0004972700028562 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028562


404 R.K. Bose [6]

THEOREM D. (Noor [8]) Let a{u,v) be a coercive continuous bilinear form and
b(u,v) satisfy conditions (i) and (ii) and also the following: It is either convex or linear
in the second argument and

|6(u,v) - 6(«,w)| < b(u,v - w),

b{u,v ± w) ^ b{it,v) + 6(u,io) for every u,v,w € H

If the operator A is antimonotone and Lipschitz continuous and condition (N*) holds,

then there exists a unique solution u £ K such that

o(w,w — u) + b(u,v) — b(u,u) ^ (A(u),v - u) for all v € K.

The theorems we want to prove are stated below.

THEOREM 3 . Let <z(u,v) be a coercive continuous bilinear form and 6(u,v) sat-
isfy conditions (i) and (ii) and h'nearity in the second argument. If condition (N) holds,
then there exists a unique tt 6 K such that, for a given f £ H',

a(u,v — u) + b(u,v) — b(u,u) ^ (f,v— u) for all v £ K.

(That is, we need a stronger condition on b(u,v).)

THEOREM 4 . Let a(u,v) be a coercive continuous bilinear form and b(u,v) be a
continuous bilinear form. If the non-linear operator is Lipschitz continuous and condi-

tion (N*) holds, then there exists a unique w € K such that

a(u,v — u) + b(u,v) — b(u,u) ^ (A(u),v -u) for all v G K.

(Neither the convexity of b(u,v) in the second argument nor the antimonotonicity of

the operator A is needed and linearity of 6(u,v) in the second argument is sufficient.)

REMARK 3. Theorem 4 is a corollary of Theorem 2. Theorem 3 is a corollary of
Thoerem 4 when A(u) € H' is independent of it and equals / G H'. The proof of
Theorem 4 can be given in the same manner as in Noor [9] under the stated conditions.
(A short sketch is given below.) Thus we conclude that the fixed point technique of
Glowinski tt al gives us a better result compared to the fixed point technique of Lions
and Stampacchia.

We need the following lemmas (refer to Baiocchi and Capelo [1], p.18) to prove
Theorem 4 by the fixed point technique of Lions and Stampacchia.

LEMMA 1 . Let M be a convex subset of H. Then, given z G H, we have u = PMZ

(projection of z onto M) if and only if

(15) ue M : (u-z,v-u) ^ 0 for all v 6 M.
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LEMMA 2 . The projection operator PM is non-expansive, that is,

\\PMU - PMv\\ < ||u - w|| for all u,v G H.

PROOF OF THEOREM 4: The uniqueness can be shown as in the proof of Theo-

rem 2. For existence, for a fixed p > 0 and u G H, we define <f>(u) G H' by

(4>(u),v) = (u,v) - pa(u,v) — pb(u,v) + p{A(u),v) for all v G H.

By Lemma 1, there exists w G K such that

(16) (•u>»t> — •">) ^ (<t>(u)>v —w) f°r ^ v E K,

and iu is given by tu = PR-A^(U) = Tu and this defines a mapping from H into A".

Also by Lemma 2, it can be shown (as in the proof of Theorem 2) that

< \\(j>{u) - <j>{v)\\ < 0 | | « - t > | | for all u,v£H.

Here 0 is same as given in (14). Thus T is a contraction mapping from K into itself

and it has a fixed point, say u. Then by (16) we have

(u,v — u) ^ (<j>{ii),v — u) for all v G K.

This implies that

a(u,v — w) + 6(w,v) — b(u,u) ^ (i4(u),v — u) for all v G if.

D
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