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Abstract. Solar flares are understood as a process of explosive liberation of magnetic energy, coming after 
a slow phase of energy build-up. The slow evolution of magnetic equilibria may end up with (a) the 
termination of an equilibrium sequence, or (b) an instability. The distinction between the two can be made 
by drawing schematic potential curves. Case (a) has been extensively studied in two-dimensional models. 
The appearance of multiple solutions, or disappearance of a solution takes place as the system evolves away 
from the current-free configuration. Case (b) can be discussed in terms of ideal MHD or resistive MHD 
instabilities. A possible route to explosive energy release is suggested by combining these two cases. 

1. Introduction 

This review addresses theoretical aspects of energy build-up and energy liberation 
processes in solar flares. Solar flares take place in the solar corona above active regions. 
The heating of the corona from its quiescent 2 MK state to a 20-30 MK flare state 
indicates that the density of energy which produces flares must greatly exceed the 
thermal energy density of the quiescent coronal plasma. The most dominant source of 
energy in the corona is the magnetic field. The current consensus is that solar flares 
represent a process of liberating the magnetic energy stored in the corona. 

The existence of the magnetic field in the corona does not necessarily mean that the 
magnetic energy is available there to heat the plasma. The electric currents that create 
the magnetic field are the ultimate source of energy. When no electric currents exist in 
the corona, the magnetic field in the corona is totally due to the currents flowing in the 
lower layers of the solar atmosphere (i.e., in the photosphere and below). Such magnetic 
fields are said to be free from distortion and have no energetic contribution to the 
phenomena in the corona. When the currents are induced in the corona, the magnetic 
field there is distorted, and contains the excess energy that can be liberated as a flare. 

When an active region is born, there might be transient processes of energy liberation 
associated with the emergence of magnetic flux. After the initial relaxation is over, 
flare-productive active regions continue to grow and develop a highly distorted magnetic 
field configuration. This energy build-up phase will be regarded as a slow evolution of 
magnetic equilibria. This phase is followed by an explosive liberation of the stored 
magnetic energy, namely a flare. 

The magnetic field in the corona is anchored in the dense photosphere and is 
controlled (passively moved around) by the flow of gas in the photosphere. Such a 
situation may be modeled by taking the photosphere as the lower boundary on which 
the boundary conditions can be specified. Therefore, the slow build-up of magnetic 
energy in the corona reflects the slow change in the boundary conditions near the 
photosphere. The energy release will be related to some sort of instability in the distorted 
magnetic field configuration. Although there can be other possibilities concerning the 
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basic scenario of the flare process, in this review we will look into this canonical view 
in detail. 

2. Instability vs Non-Equilibrium 

Stability of a magnetic equilibrium can be most easily discussed by using an analogy with 
the equilibrium of a ball placed on a slope (Figure 1). The shape of the slope reflects 
an environment of the magnetic configuration, and may deform according to the change 
in the boundary condition for example. 

The state O is a stable equilibrium. As it evolves to A1, the system becomes marginally 
stable. AtA2, the curve becomes slightly convex and the system is now unstable. This 
instability is 'weak', because the system will evolve into a neighboring stable equilibrium, 
without any drastic process. 

0 Ci 

B, 

A, B2 

B, C4 

Fig. 1. Schematic representation of equilibrium sequences. The state O is the initial stable equilibrium. 
Sequence A leads to a weak instability, and sequence B ends up with an explosive instability. Sequence C 

leads to the loss of equilibrium. 
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The state Bl is called a meta-stable equilibrium, because it is stable against small 
amplitude perturbations but is unstable to large amplitude perturbations (Sturrock, 
1966). At B2 the system is marginally stable. The state B3 is 'explosively unstable', 
because there is no stable equilibrium in the neighborhood of the original (unstable) 
equilibrium and the system undergoes a jump of finite amplitude. 

The state C2 is meta-stable and C3 is marginally stable. As the system evolves to C4, 
the equilibrium (i.e., the plateau in C3) is lost and the system exhibits a finite-amplitude 
jump toward a new equilibrium. 

One notable difference between the explosive instability (sequence B) and the loss of 
equilibrium (sequence C) is that the resulting perturbation that grows is unidirectional 
in sequence C. In sequence B the direction in which the system moves depends on the 
initial (infinitesimal) perturbation. 

3. Two-Dimensional Equilibria 

3.1. BASIC EQUATION 

In order to study instabilities and disequilibrium of magnetic field configurations dis­
cussed above, we will next consider two-dimensional equilibria as an example (Birn and 
Schindler, 1981; Low, 1982). The .^-coordinate is supposed to be an ignorable coordi­
nate, and the magnetic field B is a function of y and z in the form 

where A is a function of y and z, and Bx is a function of A. If the gas is stratified 
isothermally, the gas pressure p must be written as 

/> = />o04)exp(-z/ff), (2) 

where H is the (constant) scale height. The vector potential A is determined by the 
so-called Grad-Shafranov equation 

1 /-) 

I2A + - — {B2
X + 8np0 exp( - z/H)} = 0 . (3) 

2 oA 

The current-free state is represented by I2A = 0, so that the second term reflects the 
distortion in the magnetic field. Therefore, we write 

I2A + XF{A, i) = 0 (4) 

and the field configuration is increasingly distorted as A is varied from zero to larger 
values. 
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The boundary condition for A is given at the z = 0 plane (the photosphere) as A = Ab. 
By defining A' = A -A with 

V2Z = 0 , A = Ab at z = 0 , (5) 

the equation is reduced to a canonical form 

-I7-A' = XF(A+A',z), A'=0 at z = 0 . (6) 

3.2. MULTIPLICITY IN THE SOLUTIONS 

At this point it is useful to compare this equation with the equation describing the 
equilibrium of a membrane, namely, 

-xin = og. (7) 

Here x(£) is the tension, a is the surface density, g is the gravitational acceleration, and 
£ is the displacement in the membrane which vanishes on the boundary. (We have 
slightly deviated from the linearization assumption that led to Equation (7) and intro­
duced the ^-dependence in t.) We find the following correspondence: 

£*-*A' , T*-+l/F, Gg*-+X. 

We can see that larger X corresponds to heavier mass loading in the membrane. The 
larger F is, the more fragile the membrane is. 

We may roughly set - V2 -> 1/L2, where L stands for the size of the system. Then 
Equations (4) and (7) are simplified as 

XF = A'jL2 (8) 

and 

cgh = Z/L2 , (9) 

respectively, and the multiplicity in the solutions can be argued graphically. 
Figure 2(a) shows that the solution exists and is unique when 8F/8A < 0. On the other 

hand Figure 2(b) reveals that if F > 0, dF/dA > 0, and d2F/8A2 > 0, no solution exists 
for X > X^ but two (or more) solutions exist for X < X^. (Similar argument holds if 
F < 0, 8F/8A > 0, and 82F/8A2 < 0.) 

Figure 2(c) is equivalent to Figure 2(b) but in a different format. The curve in 
Figure 2(c) represents the restoring force in the membrane as a function of the dis­
placement £ The solution with a smaller magnitude of ^ (designated as the branch I 
solution) is stable. The branch II solution will be unstable because slightly larger 
displacement £ leads to smaller restoring force. The solution at X = X^ represents the 
critical equilibrium and is marginally stable. These stability properties are for the cases 
in which the perturbations given to the system are also two-dimensional. If three-
dimensional perturbations are considered, the branch I solutions may be unstable. 

If the function F satisfies 8F/8A < 0, the solution formally exists for an arbitrary value 
of X. However, the solution sequence terminates physically at some X, beyond which the 
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Fig. 2a. Schematic diagram showing the uniqueness in the solutions to Equation (8) when BF/dA < 0. 

A —A* 

Fig. 2b. Schematic diagram showing the multiplicity in the solutions to Equation (8) when dF/dA > 0. 

quantity Bx + 8np0 exp( - z/H) goes to negative. In the following we will concentrate 
on the cases with multiple solutions, because of their relevance to the flare models. 

3.3. LOSS OF EQUILIBRIUM BY INCREASING SHEAR 

First we will discuss the case with p = 0, so that XF measures the effect of Bx. The 
presence of Bx makes the field lines tilted from the >>z-plane. The separation between 
the two footpoints (Ax) is called the shear. The variation of Ax as a function of X is as 
in Figure 3. Solutions may be lost if X is driven beyond A%. 
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ag or A 

£ T / L 2 (restoring force) 

or A ' /FL 2 

I or A' 

Fig. 2c. Same as Figure 2(b) but in a different format. The ordinate corresponds to the equivalent restoring 
force. 

However, it is not Bx but is Ax that directly represents the effect of boundary motions 
deforming the magnetic configuration. If Ax is taken as the control parameter, then X 
varies from zero to A,,, and then decreases along the branch II as Ax increases. This 
behavior is explained by Jockers (1976) as follows. The shear Ax is proportional to 
Bx x LF, where LF is the length of the field line. Along branch I solutions, LF is nearly 
constant and Bx is proportional to Ax. On branch II the increase in Ax is accounted for 
by the increase in LF, in spite of the decrease in Bx or X. 

Aly (1985) derived the integral inequality 

! 
Bx(A)Ax(A)dA^ ^B2

zdyjy2B2
zdyJ2 

(10) 

and found that Bx -> 0 as Ax -> oo. He interpreted this as the asymptotic formation of 
current sheets as Ax becomes very large. 

The implication of the two arguments above is that the equilibrium will not be lost 
as the shear Ax increases. The solutions with very large shear may, however, belong to 
the branch II and will be unstable against two-dimensional perturbations. The stability 
of the equilibria with respect to three-dimensional perturbations will be discussed later. 

3.4. LOSS OF EQUILIBRIUM BY INCREASING PRESSURE 

Next we will look into the case with Bx = 0, so that XF is solely due to the gas pressure. 
Then X (namely pressure) is a natural control parameter, and there would be no reason 
to exclude the cases with X > X^. Therefore, the equilibrium will be lost when X is driven 
beyond Xt. Low (1981) argued that such disequilibrium may occur in two ways. One 
is when the prescribed pressure is too high to be magnetically confined. The effect of 
gravity is not essential in this case. The other case is due to the magnetic buoyancy. 
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Fig. 3. Definition of the shear Ax (top) and the behavior of Ax as a function of the parameter X (bottom). 

Zwingmann (1987) performed the numerical simulations including both the shear and 
the pressure effects, and found that the catastrophe requires finite pressure but can take 
place without shear. Therefore, the presence of finite pressure is necessary for the loss 
of equilibrium. However, shearless configurations may well be susceptible to the inter­
change instability (Section 4.2) even if A < A#, when three-dimensional perturbations 
are considered. It is, therefore, debatable whether pressure-dominated equilibria can 
reach the critical state A = A,, before getting unstable. 

4. Ideal MHD Instabilities 

When the effect of resistivity is negligible (ideal MHD), instabilities that can take place 
may be divided into two classes. One is the kink instability, driven by the Lorentz force. 
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This instability may occur even with the absence of the pressure. The other is the 
interchange instability, driven by the pressure force. 

4.1. KINK INSTABILITY OF LOOPS 

Kink instability appears in cylindrical loops as a growing helical perturbation. Anzer 
(1968) showed that infinitely long loops are always unstable to the kink instability. In 
actuality the loop has a finite length, and its footpoints are rooted in the dense 
photosphere. Therefore, the displacements are required to vanish at two footpoint cross 
sections. This effect of'line-tying' tends to stabilize the kink instability (Raadu, 1972). 
For example the constant-pitch force-free field in cylindrical coordinates (r, 6, z), 

Bz = B0/[l+r2/b2]-1, 

Bg = (r/b)Bz (b = const.), 

is stable if the length of the loop L is such that L/b < 2.57c. That is, this loop is stable 
if the twist over the length of the loop does not exceed 1.25 turn (Hood and Priest, 1981). 

The nonlinear development of the kink instability will be described by the equation 
for the mode amplitude £ as 

8^=y^+^ + .... (12) 
8t2 

Even when the system is linearly unstable (y2 > 0), nonlinear effects stabilize the 
instability if b < 0. On the other hand if b > 0, the nonlinear effects enhance the 
instability, leading to the explosive instability. For example, in the case of a sharp 
boundary pinch (plasma inr<rl, vacuum in r, < r < r2, with a current sheet at r = rx 

and a conducting wall at r2), b is found to be 

»~^4^. (13) 
(V , ) 4 - i 

so that the kink instability is explosive if r2 > 1.2/*, (Pao, 1978). The nonlinear develop­
ment of the kink instability was studied by Sakurai (1976). 

4.2. STABILITY OF ARCADES 

Roughly speaking, the magnetic arcade is equivalent to a straight magnetic loop sliced 
in half along the loop axis and placed on the photosphere. Helical perturbations that 
characterize the kink instability are prohibited in magnetic arcades due to the line-tying 
condition. If the effect of pressure is large enough, the arcade can be unstable to the 
interchange instability. Hood (1986) derived the sufficient condition for instability as 

B2 n2
n2fldq\2 2 dp \6nrPB2 

— + — B2 [-—) + - — + ^—^—<0 (14) 
r2 4 \q drj r dr r2(\nTp + B2) 

(a = rBJBg). 
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Here T denotes the ratio of specific heats, and the cylindrical coordinates (r, 0) around 
the x-axis are taken as in Figure 4(a). The equilibrium quantities are functions of r. The 
instability arises when the plasma confined by the magnetic field (dpjdr < 0) escapes 
from the confinement by making thin sheets intruding through the magnetic field. 
Stabilizing effects come from varying pitch of the field lines (the second term) and from 
the line tying (the first and the fourth terms). For force-free arcades (p = 0) this equation 
does not suggest instability, and a higher-order analysis is necessary to determine the 
stability. Hood and Anzer (1987) studied the stability of several force-free arcade 
configurations and could not find any unstable modes. However, if the configuration 
contains closed field lines detached from the photosphere (the magnetic island, 
Figure 4(b)), which might be related to dark filaments on the Sun (Anzer and 
Tandberg-Hanssen, 1970), the situation is similar to a loop surrounded by an external 
magnetic field and the rigid boundary (i.e., the photosphere). Hood and Priest (1980) 
showed that if the height of the closed loop above the photosphere is sufficiently large, 
the loop may be unstable against the kink instability. 

Fig. 4. (a) The magnetic arcade configuration, (b) The arcade with a magnetic island or 'a filament' 
(shaded). 

5. Non-Ideal Effects 

Deviation from the ideal MHD situation can be found in various ways. The effect of 
non-zero resistivity is to violate the frozen-in condition of lines of force, and to modify 
the energy equation by Joule heating. Non-adiabatic effects may also come from the heat 
conduction and radiative processes. 
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5.1. FINITE RESISTIVITY 

A well-known instability in the presence of a finite resistivity is the tearing instability 
(Furth, Killeen, and Rosenbluth, 1963). Let us denote the dynamical and resistive 
time-scales by TA and tR, respectively. They are defined as 

iA = L/KA, TR = L2M, (15) 

where L is the size of the system, VA is the Alfven speed, and r\ is the resistivity. The 
magnetic Reynolds number 5* is defined by S = TR/TA, which is much larger than unity 
in the solar atmosphere. The growth rate of the tearing instability is expressed as 

y ~ -s-/ik. (16) 

where a ranges from f to f (Steinolfson and Van Hoven, 1983). 
Another important process is the magnetic reconnection. Original analytic but simpli­

fied treatment (Petschek, 1964) assumed a steady state, but recent progress has been 
made by time-dependent numerical simulations. An important implication derived from 
them is that the rate of reconnection can be as fast as one likes, if the flow field is set 
up which forces the reconnection to occur (Sato and Hayashi, 1979). Then the question 
is how such a favorable flow is set up. 

In this respect it is adequate to mention the so-called coalescence instability (Finn 
and Kaw, 1977). This instability takes place, for example, when two loops with parallel 
electric currents attract with each other. Until two loops come in contact and merge, 
the process is described essentially as an ideal MHD process. The explosive nature of 
this instability is demonstrated by using a self-similar scaling (Sakai and Tajima, 1986). 
In one-dimensional coalescence in the x-direction, they found the velocity v, the density 
p, and the magnetic field B to scale as 

t - 1 - * , (17) 
a dt 

a 
(18) 

and 

x B = B 0 ~ - (19) 
x0 a 

Here p0, B0, and x0 are constants, and the scale factor a varies as a ~ (t0 - t)2/3. The 
time t0 represents the epoch when two current systems collide. 

It may well be that not only the coalescence instability but also other MHD insta­
bilities are able to provide a driving force which promotes a rapid reconnection. For 
example the tearing instability shows faster growth (a in Equation (16) is close to f) when 
it is driven externally (Spicer and Brown, 1981). 
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5.2. THERMAL INSTABILITIES 

Thermal instabilities may arise in several ways. If the radiative cooling rate decreases 
as the temperature increases, there will be a thermal runaway (Field, 1965). The 
time-scale of this radiative instability is 

3nkT , , 
*rad= 2 n m . (20) 

where n is the number density of the plasma and 2 r a d ( r ) is the radiative output power 
per unit number density at temperature T. 

Similarly if the Joule heating rate increases as the temperature increases, the plasma 
is unstable to the so-called Joule heating mode (Heyvaerts, 1974). This instability arises 
because 

T'[^r]~ T~3/21 -»• jf(£~ const.)-*heatingT->rf . 

For the electric field E to stay constant, the time-scale of this sequence must be as long 
as TR. For faster time-scales the decrease in r\ will lead to the decrease in E while the 
current j is kept constant, and the heating is reduced instead. 

In the solar corona the ordering TA < rrad < TR holds. The interplay between thermal 
and tearing instabilities was studied, e.g., by Steinolfson (1983). When the radiation 
is unstable, there are cases in which the radiative instability grows faster than the tearing 
instability. The radiative instability in such a case involves the reconnection of magnetic 
fields as well. Joule heating mode does not appear unless the radiative energy loss is 
artificially suppressed. 

Thermal instabilities can play a role in setting up a pre-flare current filamentation or 
in triggering other more energetic instabilities. It seems unlikely, however, that they serve 
as the primary mechanism of flare energy release. 

5.3. THERMAL STABILITY OF CORONAL LOOPS 

Thermal stability of coronal loops is more complicated than the argument given above, 
due to the coupling between the coronal loop and the chromosphere/photosphere at its 
footpoints. The treatment of the mass flow into or out of the loop has yielded 
contradictory results. McClymont and Craig (1985) claimed that the coronal loops are 
stable, while Antiochos etal. (1985) found instabilities. Martens and Kuin (1983) 
suggested that the loops we see are not static but are exhibiting a limit cycle behavior. 
Recent analysis (Klimchuk, Antiochos, and Mariska, 1987) indicated that the stability 
of coronal loops critically depends on the height or the length of loops. Apparently more 
study is needed to resolve this important issue. 

6. Summary 

A possible sequence from a current-free (non-distorted) magnetic field configuration to 
an explosive energy release is shown in Figure 5. 
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Fig. 5. Various possibilities which may lead to catastrophic energy release, starting from an initial stable 
equilibrium. 

(a) If the pressure increases in an arcade with small magnetic shear, 2-D equilibrium 
sequence models predict a catastrophe by disequilibrium. However, it is likely that the 
system may become unstable to the interchange instability before the catastrophe. [The 
interchange instability is here assumed to be a local, non-catastrophic instability. This 
may not be true if the magnetic reconnection is involved (Parker, 1973; Uchida and 
Sakurai, 1977).] 

(b) If the pressure increases in a sheared arcade, the system may remain stable 
against the interchange instability until the system loses the equilibrium. However, the 
requirement of a large pressure in cases (a) and (b) is unsatisfactory, in considering the 
magnetically dominated condition in the corona. Therefore, the case (c) below is 
concluded to be the most promising. 

(c) If the shear increases in a nearly force-free arcade, there is evidence that the 
equilibrium always exists and the magnetic configuration asymptotically approaches the 
open magnetic field. Force-free arcades are highly stable, with the absence of a magnetic 
island. The configuration with the magnetic island can become unstable against the kink 
instability. 

It is premature to say that any force-free arcades without magnetic islands are stable. 
Nevertheless it is suggestive that the presence of the magnetic island in an arcade could 
be crucial in considering the stability of the system. Physically speaking, the magnetic 
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island may correspond to a filament if cool material is present there. In some pressure-
dominated cases (Melville, Hood, and Priest, 1987), the island forms before the catas­
trophic point is reached. In all the force-free arcade models available up to now, the 
island only forms at or after the critical point is reached (Low, 1977; Jockers, 1978). 
It is not clear whether this is a general rule or because only a small number of examples 
were studied. Therefore, the important issues raised here are (i) to thoroughly study the 
stability of force-free arcades, and (ii) to clarify whether the magnetic island can form 
in stable force-free equilibrium sequences. 

In the models developed so far, the island either emerges from the bottom boundary 
(Low, 1977; Jockers, 1978; Melville, Hood, and Priest, 1987) or forms at some height 
in the volume z > 0 (Zwingmann, 1987). The latter case physically requires the magnetic 
reconnection (Anzer and Priest, 1985). When the magnetic island (or a magnetic loop) 
is formed in an arcade, it may undergo explosive kink instability. This is in accord with 
the fact that flares are often associated with the activation of filaments. The role played 
by the cool material which comprises the filament is not clear, however. It might be that 
an invisible filament, namely a magnetic island not filled with cool material, can play 
the same role. 

The scenario described above may correspond to the so-called two-ribbon flares, 
which are in contrast with the simple loop flares (Priest, 1981). For the latter class of 
flares, they could be due to the kink-unstable loops which may form simply by twisting 
the existing coronal loops. The magnetic reconnection (or the tearing instability) driven 
by explosive MHD instabilities may, therefore, be a possible explanation for both types 
of flares. This conjecture does not exclude the possibility of other important classes of 
flare models such as the emerging flux model (Heyvaerts, Priest, and Rust, 1977). 
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