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Protoplanetary discs are made of gas and dust orbiting a young star. They are also the
birth place of planetary systems, which motivates a large amount of observational and
theoretical research. In these lecture notes, I present a review of the magnetic mechanisms
applied to the outer regions (R � 1 AU) of these discs, which are the planet-formation
regions. In contrast to usual astrophysical plasmas, the gas in these regions is noticeably
cold (T < 300 K) and dense, which implies a very low ionisation fraction close to the
disc midplane. In these notes, I deliberately ignore the innermost (R ∼ 0.1 AU) region,
which is influenced by the star–disc interaction and various radiative effects. I start by
presenting a short overview of the observational evidence for the dynamics of these
objects. I then introduce the methods and approximations used to model these plasmas,
including non-ideal magnetohydrodynamics, and the uncertainties associated with this
approach. In this framework, I explain how the global dynamics of these discs is modelled,
and I present a stability analysis of this plasma in the local approximation, introducing the
non-ideal magneto-rotational instability. Following this mostly analytical part, I discuss
numerical models that have been used to describe the saturation mechanisms of this
instability, and the formation of large-scale structures by various saturation mechanisms.
Finally, I show that local numerical models are insufficient because magnetised winds are
also emitted from the surface of these objects. After a short introduction on wind physics,
I present global models of protoplanetary discs, including both a large-scale wind and the
non-ideal dynamics of the disc.
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PART ONE: Observations and physical description
1. Observational context

Recent years have seen a dramatic change in our understanding of protoplanetary discs
(PPDs), both from an observational and a theoretical point of view. Observations are now
able to resolve the outer regions (radii larger than 1 astronomical unit [AU]) and show
the existence of many unexpected features: spiral arms, rings and crescent-like structures.
Although these observations mostly probe the distribution of dust grains, they indicate that
the gaseous structure of PPDs is much more complex and rich than initially anticipated.
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FIGURE 1. PPD diagram showing the various observational diagnostics. Disc winds have been
omitted for clarity.

In this part, we review the most recent evidence for PPD structure and evolution, which
can be used to constrain the most recent theoretical models.

1.1. Observational diagnostics
Today observations probe different regions of the disc. In order to interpret these
observations and constrain theoretical models, it is essential to clearly understand the
quantities and limitations of each kind of observation. A typical PPD can be separated
into two parts: an inner dust-free disc (from a few stellar radii to the dust sublimation
radius) made of hot gas (typically more than 1000 K) and an outer disc of gas and dust
(figure 1). The disc outer edge can range from 100 AU to more than 1000 AU depending
on the object under consideration.

Observations typically probe the following regions:

(i) The UV excess is a signature of the accretion shock at the foot of accretion columns.
It is very often the only way to deduce the accretion rate in a specific disc.

(ii) The near and mid-infrared continuum (also known as infrared excess) is a result
of stellar photons scattered by small dust grains (typically less than 1 μm in size).
Scattered light probes the very surface of the dust layer as the dust disc is very
optically thick at these wavelengths. For this reason, the intensity of scattered light
is not related to the column density but to the amount of stellar light received by the
layer. It therefore characterizes the disc geometry.

(iii) The (sub-)millimetre continuum probes the thermal emission of bigger dust grains
(typically with a size of the order of 1 mm). If the dust layer is optically thin at these
wavelengths (as usually assumed), the emissivity is related to the column density of
dust, but also to its temperature.
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(a)
(b)

FIGURE 2. (a) Measurement of the accretion rate as a function of stellar age in NGC 2264 using
the excess UV due to accretion columns. From Venuti et al. (2014). (b) Fraction of disc signature
(accretion) and dust signature (infrared excess) as a function of the cluster age. Both show that
discs have an average lifetime of a few million years. From Fedele et al. (2010).

(iv) Spectral lines, both in the infrared and at radio wavelengths, probe specific gas
tracers such as gas or molecular transitions. These lines are usually optically thick,
which implies that they only probe the surface of the gas layer. For this reason, direct
estimates of the gas mass in the disc is very difficult, and one has to rely on proxies.

These observational properties are then used to derive several useful dynamical
quantities.

1.2. Accretion
Because the thermal equilibrium of PPDs for R � 1 AU is dominated by the illumination
of the central star (D’Alessio et al. 1998), a direct measurement of the accretion rate
through viscous heating is not possible. For this reason, observational evidence of
accretion in these regions are scarce and plagued by uncertainties. There are mainly two
classes of accretion signature, which are all indirect.

The first is the observational signature of accretion columns at the stellar surface. These
accretion columns are formed when the disc material is lifted and accreted by the stellar
magnetic field. The gas then ends up in a nearly free-fall speed and hits the stellar surface,
forming an accretion shock. The luminosity of this accretion shock observed in UV bands
is directly related to the accretion rate in the accretion columns and, therefore, in the
innermost disc. It should be kept in mind that accretion rates deduced by this method are
not necessarily accretion rates in the entire disc, which can in principle vary with radius
if the disc is not in steady state, or if the disc is losing mass from a wind. Typical results
show accretion rates of the order of 10−8 M�/year with uncertainties of the order of an
order of magnitude depending on the object under consideration1 (e.g.figure 2a). These
accretion rates tend to decrease over timescales of a few million years.

The second observational evidence lies in the proportion of stars showing disc features
(accretion on the stellar surface, or infrared excess signifying the presence of dust around

1Additional sources of uncertainties (not shown here) arise from the method used to reconstruct the mass accretion
rate from the UV excess, and from the intrinsic accretion variability of the object (e.g. Venuti et al. 2014).
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FIGURE 3. Observation of a disc and an atomic jet seen by the Hubble Space Telescope
(Burrows et al. 1996) and a molecular wind observed in CO(2-1) by ALMA (Louvet et al. 2018)
in HH30, a PPD seen edge-on. Courtesy of F.Louvet.

the star) as a function of the stellar age. The disappearance of these signatures in older
stars allows one to evaluate the typical gas and dusty disc lifetimes. These two time scales
do not necessarily match as the gas disc could, for instance, disappear before the dusty
disc. However, they both show the same trend: disc tends to disappear on a timescale of a
few million years (figure 2b).

By combining this information, and assuming that accretion is approximately constant
during the lifetime of these objects, one deduces that typical PPD masses range from
10−3 M� to 10−1 M�, which is consistent with mass inferred from the total dust content of
the disc (Andrews et al. 2013).

1.3. Ejection: winds and jets
PPDs are often observed in association with large-scale winds and jets. Jets are often seen
in forbidden emission lines and correspond to fast collimated flow (v > 100 km s−1). Their
high velocity suggests they are launched from the inner few AU of the disc (Frank et al.
2014). The typical outflow rate is estimated to be of the order of 10 % of the accretion rate
in classical T-tauri stars (Frank et al. 2014).

In addition to these jets, a slower component is also observed in molecular lines. This
‘molecular outflow’ is denser and reach velocities v ∼ 1–10 km s−1 (figure 3). They could
be a result of the interaction of the jet with its environment, or they could be a genuine
outflow component, emitted from the disc at R � 1 AU.

1.4. Structures
The progress in observational techniques (adaptative optics, interferometry) now allows
astronomers to resolve the disc and look for signatures of planet formation, accretion
or other unexpected processes. The first class of observations relies on polarimetric
differential imaging (PDI) of scattered light emission in the near infrared. This technique
allows one to obtain only the light scattered by dust grains (which is naturally polarised)
and not the light of the central object. They have been used to probe the disc surface of
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(a) (b)

FIGURE 4. Scattered light images in the near infrared using PDI: (a) spiral structures observed
in MWC758, from Benisty et al. (2015); (b) multiple ring structures observed in HD97048, from
Ginski et al. (2016).

various disc (mainly transitional discs). Stunning structures such as spiral and rings were
found2 in several objects (figure 4).

The second class of observation is based on interferometry at millimetric and
sub-millimetric wavelengths. The ALMA observatory has been very successful at probing
the very structure of PPDs with incredible resolution and unexpected results (figure 5,
Andrews et al. 2018).

Although these observations probe the dust distribution in the disc, they also tell us
about the gas distribution and dynamics, because the grains that are observed are tightly
coupled to the gas through a drag force. Such a direct connection has been recently
confirmed observationally by simultaneously looking at the continuum (dust) and line
emissions (probing the gas kinematics) (Teague, Bae & Bergin 2019).

All these observations indicate that discs are not smooth and symmetrical. They are
instead structured on length scales comparable with our solar system. Structures are
categorised in spirals, rings and horseshoes, which can be associated with specific physical
processes in the disc. It should be noted some of these structures are found in transitional
discs, i.e. truncated discs that are presumably in the final evolution stage of PPDs. All of
these structures could be the signature of embedded planets perturbing the disc structure
by gravitational interaction. However, other processes have been proposed that do not
assume planets. One of the key questions is, therefore, whether or not these structures
are necessarily a signature of embedded planets.

1.5. Turbulence
Turbulence is likely one of the key elements of any dynamical theory for the evolution
of discs. Theoretical arguments (see § 4.4) show that turbulence should be subsonic in
these systems, i.e., that chaotic motions of the gas are slower than the sound speed.
This implies that turbulence is difficult to detect because the turbulent broadening of
spectral lines is comparable with the thermal spreading of the molecules constituting the
gas. For this reason, heavy molecules such as CN and CO tend to be preferred to detect
turbulence, because their thermal velocity is lower compared with lighter molecules at a

2These structures trace the disc surface and not the column density.
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(a)
(b)

(c) (d )

FIGURE 5. (a) Ring-like structures observed in TW Hydra. From Andrews et al. (2016).
(b) Multiple ring structure in a deprojected image of HL-Tau from Partnership et al. (2015).
(c) Horsehoe-like structure observed in Oph IRS 48 at sub-millimetre wavelengths (green,
tracing millimetre-sized dust) and corresponding scattered light infrared emission (yellow,
tracing μm size dust) from van der Marel et al. (2013). (d) Spiral structures seen at sub-millimetre
wavelengths in the young and massive disc of Elias 2-27, from Pérez et al. (2016).

given equilibrium temperature. High-resolution spectra obtained from ALMA for CO lines
indicates that turbulence is very weak, or non-existent (Flaherty et al. 2015, 2017). Spectral
broadening smaller than 3 % of the local sound speed are found as best fits to observational
data at large distances (typically more than 30 AU). This turbulent broadening is way
smaller than the typical values expected from ideal magnetohydrodynamics (MHD)
turbulence which typically predicts δv � 0.1cs.

Another signature of turbulence (or, more precisely, the lack of turbulence) lies in the
dust vertical distribution. Indeed, dust grains naturally tend to settle towards the midplane,
unless turbulence stirs them up into the disc atmosphere. Direct measurements of the
thickness of the dust layer allow one to deduce the level of hydrodynamical turbulence
in the disc. Such a measurement has been done in the case of HL-tau, where the thickness
of the rings is used as a tracer for the disc thickness (Pinte et al. 2016). The result is that
100 μm grains have settled towards the midplane, with a vertical dust scale height about
10 times smaller than the gas scale height. This implies a very low level of turbulence in
the disc, with typically δv ∼ 10−2 cs (α ∼ 10−4, see § 4.4).
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1.6. Magnetic fields
Evidence for magnetic fields in PPDs is scarce. Typical values are expected to be of
the order of a Gauss at 1 AU down to a few milli-Gauss at a few tens of astronomical
units (Wardle 2007), although these theoretical values could vary by several orders of
magnitude. For this reason, measurement through Zeeman effect is unfeasible except in
the very inner disc. In this region, toroidal magnetic fields of a few kilo-Gauss have
been measured, although it is not clear whether this field belongs to the host star or
to the disc itself (Donati et al. 2005). At larger distances (tens of astronomical units),
attempts at measuring the field strength through Zeeman splitting in molecular lines
have only led to upper limits, with Bz < 0.8 mG and B < 30 mG (Vlemmings et al.
2019).

Topological information on the field is also accessible through polarisation in the
continuum (i.e. dust thermal emission). It is assumed that dust grains tend to align
perpendicularly to magnetic field lines, thereby emitting thermal radiation with a preferred
polarisation, perpendicular to the local field orientation (Cho & Lazarian 2007; Stephens
et al. 2014). However, polarisation in sub-millimetric radiation can also be due to
self-scattering by dust grains (Kataoka et al. 2015; Yang et al. 2016). Campaigns
using multiple wavelengths observations have attempted to disentangle these two effects
(Stephens et al. 2017), but the interpretation of the results in terms of magnetic topology
remains very uncertain.

Finally, magnetic field intensities can be deduced from meteoritic and cometary
evidence in our own solar system, assuming that the field gets frozen in the body
during its formation in the parent disc. Field strength of the order of 0.1 G around
1 AU are inferred from remnant magnetisation in meteorites following this idea (Fu
et al. 2014), whereas upper limits with B < 30 mG in the region around 15–45 AU is
deduced from the magnetisation of Comet 67P/Churyumov-Gerasimenko (Biersteker et al.
2019).

2. Disc prototype
2.1. Fluid properties

PPDs are rather cold objects, with temperatures ranging from 1000 K in the inner (0.1
AU) disc down to 10 K in the outer (100 AU) disc. In order to characterise these discs, It
is important to quantify the typical length scales and time scales relevant to the problem.
Let us start with a typical disc model which matches disc observations (Andrews et al.
2009):

Σ = 300 R−1
AU g cm−2,

T = 280 R−1/2
AU K,

Ω = 2 × 10−7 R−3/2
AU s−1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.1)

Here, we have defined the main physical properties of a disc: its surface density Σ ,
which correspond to the usual mass density integrated in the direction perpendicular to the
disc plane, its temperature T , and its angular velocityΩ around the central object. We also
define for convenience a dimensionless distance from the central object, in astronomical
units: RAU ≡ R/1 AU.

This simple model leads to a 0.04 M� mass disc, extending from 0.07 to 200
AU, rotating around a solar mass star, typical of discs which have been observed.
We can deduce some useful dynamical parameters associated from this simplified
models. Defining the isothermal sound speed as cs ≡ √

P/ρ and using the vertical
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hydrostatic equilibrium to define the disc vertical scale height (§ 4.2) H = cs/Ω ,
one obtains

cs = 105 R−1/4
AU cm s−1,

H = 5 × 1011 R5/4
AU cm,

H
R

= 0.03 R1/4
AU ,

ρmid = 6 × 10−10 R−9/4
AU g cm−3,

nmid = 1.5 × 1014 R−9/4
AU cm−3,

Pmid = 6 R−11/4
AU dyn cm−2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

2.2. Magnetic fields
Magnetic fields in PPDs are poorly constrained (§ 1.6). It is widely believed that fields are
largely sub-thermal: the thermal pressure of the fluid dominates over the magnetic pressure
(this requirement follows from the fact that the discs are approximately in Keplerian
rotation). This translates into a plasma β parameter

β ≡ Pth

Pmag

= 8πP
B2

� 1. (2.3)

In practice, β � 1 constitutes a lower limit for the MRI to operate in geometrically thin
discs (see § 6.4.6). Note also that if dynamo action is generating a field (both ordered or
disordered), then β cannot reach a value lower than β ∼ 1, hence this value is actually a
lower limit for the typical plasma β expected in these discs. It is possible to connect the
field strength to the plasma β using the properties defined previously and obtain

B = 12 R−11/8
AU β−1/2 G. (2.4)

The upper bound B � 10 mG for R ∼ 10 AU mentioned in § 1.6 tend to suggest β �
104 in these regions, which confirms that the field strength is expected to be strongly
sub-thermal.

2.3. Fluid approximation
PPDs are mostly constituted of neutral gas. In order to describe this gas, it is tempting to
use the fluid approximation. For this approximation to be valid, the gas under consideration
needs to be collisional, i.e. gas particles need to be subject to many collisions during one
dynamical timescale. This ensures that at the microphysical level, the velocity distribution
of the gas phase can be approximated by a Maxwellian distribution, allowing us to use a
scalar pressure field.

Assuming the gas is mainly made of H2 molecules of radius 10−8 cm, we can
estimate the cross section of neutral molecules as σnn = 3 × 10−16 cm2. This gives us an
approximate mean free path 
mfp and collision frequency ωcoll


mfp = 1
nσnn

= 22 R9/4
AU cm,

ωcoll = vth


mfp
= 5 × 103 R−5/2

AU s−1.

⎫⎪⎪⎬
⎪⎪⎭ (2.5)
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We therefore have 
mfp � R and ωcoll � Ω , which validate the fluid approximation to
describe the dynamics of PPDs to a very good approximation. It should be noted that
these quantities are evaluated at the disc midplane. If one looks at regions well above the
disc, as in the case of outflows, 
mfp increases significantly. One finds that 
mfp � H when
n � 104 cm−3, i.e. when the atmosphere is 1010 times less dense than the midplane at 1
AU. Such a strong density contrast is almost never reached in outflow models, where one
finds density contrasts between 104 and 107 (e.g. figure 46). Nevertheless, it should be
kept in mind that very weak outflows in the outermost parts of the disc can be close to the
collisionless regime.

2.4. Grain population
The question of grains is of importance in PPDs. As is usually assumed, we consider a
constant dust to gas mass fraction, equal to that of the interstellar medium (1/100). We
further assume that grains are spherical with a radius a and made of olivine with a density
ρo = 3 g cm−3. The density of grains is therefore

ρgrain = 6 × 10−12 R−9/4
AU g cm−3,

ngrain = 1.4 R−9/4
AU a−3

μm cm−3.

}
(2.6)

In this last estimate, we have assumed that all the grains had the same size. This is an
over-estimation because the sizes are actually distributed over a wide range of scales. In
addition, the grain size distribution is expected to evolve with time as grains are known to
be growing in PPDs. However, this order of magnitude estimate points to an important fact:
the abundance of grains ngrain/n ∼ 10−14a−3

μm. Hence, if grains are smaller than 1 μm, the
typical ionisation fraction of PPDs (10−14) suggest that grains are more abundant than free
charge carriers. As we show in § 3.4.3, this has a huge effect on the plasma conductivity
tensor as grains can become the main charge carriers.

2.5. Ionisation fraction
The ionisation fraction ξ ≡ n−/nn, where n− is the number of free negative charge carriers,
is a highly uncertain quantity, with very little constraints coming from observations.
The ionisation fraction typically range from 10−16–10−13 at 1 AU to 10−13–10−10 at 100
AU. However, the resulting plasma is not necessarily a plasma made of electrons and
molecular ions. Indeed, if dust grains are present and sufficiently abundant, they tend
to suck electrons and ions in the gas phase, leading to a plasma made of positively and
negatively charged grains (Sano et al. 2000).

Here, we illustrate how each physical process affects the ionisation fraction by
considering a simple chemical network which includes singly charged grains. We combine
this network with ionisation rate prescriptions for the various ionisation sources (X-rays,
UV, cosmic rays (CRs) and radioactive decay).

2.5.1. Sources of ionisation
As we focus on the outer part of PPDs (R > 1 AU), the gas is mostly cold with T <

300 K. This implies that thermal ionisation (owing to collision between molecules) is
inefficient, and one has to rely on non-thermal ionisation processes. Here, we consider the
following effects with their associated ionisation rate ζ :

(i) X-ray ionisation owing to bremsstrahlung emission from an isothermal T = 5 keV
corona localised around the central protostar (Igea & Glassgold 1999; Bai &
Goodman 2009, see their equation (21));
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FIGURE 6. Ionisation rate log(ζ ) (s−1) as a function of radius and altitude (in disc scale
height) resulting from X-rays, CRs and radioactive decay.

(ii) CR ionisation with ζCR = ζCR,0 exp(−Σ/96 g cm−2) s−1 (e.g. Umebayashi & Nakano
1981) and ζCR,0 = 10−17 s−1, corresponding to the interstellar value;

(iii) radioactive decay with ζrad = 10−19 s−1 (Umebayashi & Nakano 2009).

The amount of ionisation due to CRs is highly disputed. Some authors have proposed
that owing to the wind coming from the young star, CRs are magnetically mirrored from
the PPD, resulting in a significantly reduced ionisation rate due to CRs (ζCR,0 ∼ 10−20 s−1,
Cleeves, Adams & Bergin 2013). In contrast, it has been proposed that CRs could be
accelerated in shocks produced in the protostellar jet by a Fermi process. This could result
in ionisation rates as high as ζCR,0 ∼ 10−13 s−1 (Padovani et al. 2018). Observations of
TW Hya tend to suggest a low ionisation rate owing to CRs (ζCR,0 � 10−19 s−1, Cleeves
et al. 2015), though this is still highly model dependent. Owing to these uncertainties,
some authors (e.g.Ilgner & Nelson 2006) have simply omitted CR ionisation and consider
only X-rays as the main source of ionisation. These difference and uncertainties in the
treatment of the ionisation rate have to be kept in mind when comparing the results of
different research groups.

We show in figure 6 the resulting ionisation rate following the disc structure presented
in § 2.1. We find that CRs are shielded only in the innermost parts of the disc, where
the column density goes above 100 g cm−2. Most of the disc midplane up to z ∼ h has
ζ � ζCR,0, indicating that CRs are indeed the dominant source of ionisation in this region.
Above z ∼ h, X-rays start to penetrate the disc and the ionisation rate rises.

2.5.2. A simple chemical model
To illustrate the typical ionisation fractions expected in PPDs, we follow Oppenheimer

& Dalgarno (1974), Fromang, Terquem & Balbus (2002) and Ilgner & Nelson (2006)
defining the following reaction network and rates with free electrons, neutral molecules m,
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molecular ions m+ and metal atoms M:

m + ionising radiation → m+ + e− ζ,

m+ + e− → m δ,

M+ + e− → M δr,

m+ + M → m + M+ δt,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.7)

where ζ is the ionisation rate, δ is the dissociative recombination rate for molecular ions,
δr the radiative recombination rate for metal atoms, and δt the rate of charge transfer from
molecular ions to metal atoms. Following Fromang et al. (2002), we take

δr = 3 × 10−11T−1/2 cm3 s−1,

δ = 3 × 10−6T−1/2 cm3 s−1,

δt = 3 × 10−9 cm3 s−1.

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

In the absence of metals and grains, the rate equations admit a simple solution in steady
state:

ξ =
√
ζ

δnn
. (2.9)

In the opposite metal-dominated limit, still without grains, one obtains

ξ =
√

ζ

δrnn
. (2.10)

As δr � δ, one clearly sees that the absence of metals leads to a dramatic decrease in the
ionisation fraction (Fromang et al. 2002).

2.5.3. Typical ionisation fraction profile
Grain-free case, Metal-free case: Combining (2.9) with the ionisation rate in § 2.5.1, one

can obtain the ionisation fraction in the disc. However, this ionisation fraction depends not
only on the disc chemistry one assumes but also on the disc structure. A lot of theoretical
work has focused on the minimum mass solar nebula (MMSN) model, which assumes
Σ = 1700 R−3/2

AU g cm−2 (Wardle 2007; Bai & Stone 2013b; Lesur, Kunz & Fromang 2014).
This makes the disc much denser in the inner part, resulting in a stronger shielding of
CRs and a lower ionisation fraction than less-dense discs. As an illustration, we show in
figure 7 the resulting ionisation fraction with the disc structure presented in § 2.1 and with
a MMSN disc model.

We observe that the lowest ionisation fraction reaches 10−14 in the MMSN case or 10−13

in our disc model. The lowest ionisation fractions are reached in the innermost parts of
the disc, where the recombination is the fastest and CRs + X-rays are efficiently shielded.
The ionisation fraction progressively increases when X-rays start to penetrate, until one
reach ionisation fractions as high as 10−6 at a few scale heights. Note that the differences
between these models are only significant for R < 10 AU because the column densities
between the MMSN and our disc model are similar above this radius.

Inclusion of grains and metals: As demonstrated by Elmegreen (1979) and Umebayashi
& Nakano (1980) in the context of molecular clouds, and later applied to PPDs (Sano et al.
2000; Ilgner & Nelson 2006; Wardle 2007), grains tend to accelerate the recombination
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(a) (b)

FIGURE 7. Ionisation fraction log(ξ) as a function of position in (a) our disc model (§ 2.1)
and (b) in a MMSN. Note the difference in ionisation fraction close to the disc midplane for
R < 10 AU.

of electrons by removing them from the gas phase, resulting in a lower global ionisation
fraction, which we have ignored here. To illustrate the effect of grains, let us add the
following reactions to our simplified reaction network:

grain + m+ → grain+ + m,

grain− + m+ → grain + m,

grain + e− → grain−,

grain+ + e− → grain,

grain + M+ → grain+ + M,

grain− + M+ → grain + M,

grain+ + grain− → grain + grain.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

This reaction network only considers singly charged grains, whereas it is well known that
grains can have many charges (Ilgner 2012). We chose this approach to illustrate in the
simplest model the effect of grains on the ionisation fraction, and later on the diffusivities
because the abundance of multiply charged grains is usually lower than that of singly
charged grains for z < h (Wardle 2007).

The rates for these reactions are computed by assuming each species collides at its
thermal velocity with a spherical grain of radius a (see § 2.4 for more details). We assume
a fixed sticking probability of electrons on grains, which corresponds to the probability of
bouncing back from a grain.3

The resulting ionisation fraction owing to electrons and charged grains are presented
in figure 8. We observe essentially two trends. First, the smallest ionisation fraction is
found when grains are present, whereas the highest ionisation fractions correspond to
grain-free metal-rich cases, with variations owing to this composition effect of the order
of three orders of magnitude. Second, the ionisation fraction increases with increasing
radius. This effect is not only because the ionisation rate increases, but also because the

3This probability varies greatly in the literature, from fixed values in Wardle (2007) to various temperature and
charge-dependent fits in Ilgner & Nelson (2006) and Bai (2011a). Choosing a fixed sticking probability, as we do, tends
to increase the effect of grains at high temperature, so the results presented here are a limit case of extreme grain sticking
efficiency.
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 8. Ionisation fraction ξ for three different compositions: row 1 (a,b), no grains, no
metals; row 2 (c,d), no grains with [M] = 10−8; row 3 (e, f ), with a = 0.1 μm grains and metal
atoms. The first column corresponds to R = 5 AU and the second column to R = 50 AU.

recombination rate decreases owing to lower densities. Let us finally point out that when
grains are present, they can become the main charge carrier, as is the case at R = 5 AU.

In the following, we use the value ξ = 10−13 to evaluate several plasma parameters,
keeping in mind this corresponds to a lower bound in our disc model.

3. Plasma description in PPDs

In this section, we explore the properties of the plasma constituting PPDs and ask
whether they can be described using non-ideal MHD. For this limit to be valid, we have to
satisfy the following three criteria.

(i) Binary Coulomb interactions should be negligible. This implies that the plasma
parameter (defined in the following) is much larger than one.

(ii) Electro-neutrality is satisfied on timescales of interest, i.e. any charge separation is
quickly eliminated by electrostatic interactions.

(iii) The behaviour of each fluid component (electrons, ions, neutrals, charged grains)
can be described using a single-fluid approximation.
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3.1. Plasma parameter
Several quantities allow one to characterise a plasma, the first being the nature of the
electromagnetic interaction. The most fundamental quantity characterising a plasma is the
Debye length that may be written in an electron–ion plasma

λD ≡
√

kBTe

4π(1 + Z)nee2

= 30
(

ξ

10−13

)−1/2

R7/8
AU(1 + Z)−1/2 cm, (3.1)

where Z is the averaged number of charges on the ions and we have assumed
electro-neutrality so that ni = ne/Z. The Debye length is clearly below the scales of interest
in PPDs. Even if one considers charged grains, the same Debye length can be derived
because it does not depend on the particle mass. In addition to this characteristic length,
a ‘good’ plasma should have many particles in a Debye sphere, ensuring the screening of
short-range Coulomb interaction. This is quantified by the plasma parameter Υ , equal to
the number of charge carriers in a Debye sphere

Υ = 4πneλ
3
D

= 4 × 105(1 + Z)−3/2R3/8
AU

(
ξ

10−13

)−1/2

. (3.2)

Hence, despite the low ionisation fraction and low temperature of these objects, they
are still very much in the plasma regime where short-range Coulomb interactions can
be neglected. Note, however, that reducing the ionisation fraction and, at the same
time, increasing the number of charges could change this picture, breaking the plasma
approximation altogether. However, this would require Z � 103 in PPDs, a value that is
never encountered, even in chemical models including grains (e.g. Wardle 2007).

3.2. Electro-neutrality and drag
PPDs are weakly ionised objects. This implies that the dynamical equations describing the
flow and the approximations underlying their derivation should be clearly stated. In this
section, we derive these equations, starting from the multi-fluid plasma description. We
assume the gas is made of neutral and charged ‘particles’ (particle could mean electron,
ion, or charged grain, indifferently). The multi-fluid approximation is valid because the
collision timescales are short, as demonstrated previously. We therefore start from the
following dynamical equations:

∂nj

∂t
+ ∇ · njvj = 0, (3.3)

∂njmjvj

∂t
+ ∇ · (njmjvj ⊗ vj) = −∇Pj + f j + njqj

(
vj × B

c
+ E

)
+ Rj, (3.4)

where nj, mj, vj, Pj, qj, and f j are the number density, mass, velocity, pressure, charge, and
additional forces (gravity, etc.) on species j. We have also included a drag force Rj between
this species and all of the other species. This force is a result of to inter-species collisions
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and can be written as
Rj =

∑
k

γjkρjρk(vk − vj), (3.5)

because each fluid component is collisional and, therefore, has a Maxwellian velocity
distribution. Here, γ = 〈σv〉jk/(mj + mk) and 〈σv〉jk is the momentum exchange rate
between species j and k. As expected from momentum conservation, we have

∑
j Rj = 0.

It is usually assumed that electro-neutrality follows from the fact that the plasma
frequency ωp is much larger than any frequency of interest. Although this is indeed a good
criterion for a fully ionised plasma, it is not necessarily true for a weakly ionised plasma.
Let us therefore revisit this criterion, starting from the linearised multi-fluid equations. We
perturb only one species along the x-axis, leaving the others unperturbed. We moreover
assume that the fluid pressure and other external forces are negligible compared with
electromagnetic forces. The linearised equation of motion reads

∂δn
∂t

+ n0∂xvx = 0,

n0m
∂vx

∂t
= n0qEx − γmn0ρvx.

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

Solving these equations requires an equation for the electric field, which is obtained from
one of Maxwell’s equation

∂xE = 4πqδn. (3.7)

We can combine these equations to obtain a second-order relation on the density
fluctuation

− ∂2δn
∂t2

= ω2
pδn + 1

τs

∂δn
∂t
, (3.8)

where we have introduced the plasma frequency ωp and the stopping time τs as

ωp ≡
(

4πnq2

m

)1/2

,

τs ≡ 1
γρ
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.9)

Dynamically, this equation describes damped plasma oscillations with frequencies

ω± =
iτ−1

s ±
√

4ω2
p − τ−2

s

2
, (3.10)

for which we can distinguish two physical limits.

(i) ωp � τ−1
s in which case the plasma is subject to plasma oscillations at frequency

ωp with a damping timescale equal to τs. If we consider phenomena on frequencies
much lower than ωp, we can average out the highest-order time derivative and obtain
a simple closure relation between vx and Ex: vx = qEx/γmρ, which constitutes the
base of Ohm’s law. Once these oscillations are time-averaged, the plasma can be
assumed to be electrically neutral.

(ii) ωp � τ−1
s in which case the plasma is subject to over-damped oscillations with

two imaginary frequencies ω+ = iτ−1
s and ω− = iω2

pτs � ω+ associated with two
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damping timescales τ± = (ω±)−1. To interpret physically these timescales, let us
consider a plasma at rest in which we introduce a localised charge deficit. First,
the plasma is going to start moving to ‘fill’ the charge deficit. Owing to the drag,
however, it very rapidly reaches an asymptotic velocity, given by vx = qEx/γmρ.
Here τ+ is the time needed by the system to be put in motion and reach this
quasi-stationary velocity. This velocity fluctuation, however, is smaller than that
which would be obtained in a pure plasma oscillation, because the drag prevents
the plasma from reaching high velocities. Hence, it takes a time τ− to actually
fill the charge deficit. This implies that Ohm’s law, given by the asymptotic
velocity, is valid on timescales longer than τ+, and that charge inertia can be
neglected in that limit. However, charge neutrality is restored on the much longer
timescale τ−.

To summarise, it is possible to neglect inertia for the charged species in the momentum
equation provided that the timescales under consideration are larger than max(τs, ω

−1
p ),

and recover Ohm’s law without time derivative. Note that this condition is different from
electroneutrality, which requires timescales longer than max(ω−1

p , (ω
2
pτs)

−1), which are
significantly longer than τs when ωpτs � 1. It should be pointed out that this analysis
was done for a single species, whereas plasmas in PPDs can be made of many different
species. Hence, the condition for electroneutrality needs to be satisfied only by the most
mobile species of the plasma, which can then compensate for charge fluctuations, and not
necessarily by all of the species present.

In PPDs, we obtain the following values for the plasma frequency, depending on the
type of charge carrier

ωp,e = 2.2 × 105

(
ξ

10−13

)1/2

R−9/8
AU s−1,

ωp,i = 9.3 × 102

(
ξ

10−13

)1/2

R−9/8
AU s−1,

ωp,g = 1.8 × 10−3

(
ξ

10−13

)1/2

R−9/8
AU a−3/2

μm s−1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.11)

where e, i and g denote electrons, ions and grains, respectively. As can be seen, this
frequency is always short compared with the timescales of interest, but grains tend to
have significantly lower frequencies owing to their higher inertia.

The stopping times can be estimated starting from the momentum exchange rates 〈σv〉ij.
As we are interested only in weakly ionised plasmas, collisions between charged species
will be extremely rare. We therefore only consider neutral-charge collisions.

The ‘collision’ between electron/ions and neutrals are mainly a result of the electrostatic
interaction between the approaching charge and the dipole induced on the neutral by the
charge. This is estimated by

〈σv〉e = 8.3 × 10−9 × max

[
1,
(

T
100 K

)1/2
]

cm3 s−1,

〈σv〉i = 2.4 × 10−9 (mH/mn)
1/2 cm3 s−1,

⎫⎪⎪⎬
⎪⎪⎭ (3.12)
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where 〈σv〉e is deduced from Draine, Roberge & Dalgarno (1983) and 〈σv〉i is obtained
from Draine (2011), following Bai (2011a).4 For grains above a size of a few 10−2 μm,
collisions mainly behave as billiard balls. In other words, σv is roughly equal to the
velocity of the incident neutral times the cross-section of the grain. For spherical grains,
this leads to5

〈σv〉g = πa2

√
2kBT
mn

= 2.6 × 10−3aμm

(
T

100 K

)1/2

cm3 s−1. (3.13)

These rates allow us to compute stopping times for each species following the previous
definition:

τs,e = 6.7 × 10−7 R9/4
AU s,

τs,i = 4.9 × 10−5 R9/4
AU s,

τs,g = 8.1 × 104 R9/4
AU a2

μm

(
100 K

T

)
s,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.14)

which shows that because of the low ionisation fraction and the neutral drag, ωp,jτs,j < 1
for ions and electrons, whereas it is greater than one for grains. This means that plasma
oscillations are over-damped for ions and electrons (case (ii)) and are not directly relevant
for quasi-neutrality. Nevertheless, ωpτs > 10−2, so even in this case, electroneutrality is
recovered on timescales shorter than a second. Grains, on the other hand, are usually
in regime (i), with a relatively low plasma frequency (period of a few days for 1 μm
size grains), decreasing rapidly with increasing grain size. Grains are usually not the
only charge carrier in discs, so electro-neutrality is guaranteed by ions and electrons,
but it should be kept in mind that, in a hypothetical situation where grains would be the
only charge carrier, electro-neutrality could be violated, leading to phenomena similar to
lightning. This, however, is not explored here, and we only consider situations where ions
and electrons are still present in the system.

3.3. Single-fluid approximation
3.3.1. Dynamical equation for the centre of mass

The set of equations (3.3) and (3.4) can, in principle, be solved simultaneously
(O’Keeffe & Downes 2014). However, it is numerically expensive because the numerical
time steps are usually limited by τs, which is much smaller than the timescales of
interest (as described previously). Note, however, that there are situations where the
multifluids approach cannot be avoided, such as when the timescale to reach the
ionisation/recombination equilibrium becomes of the order of the timescales of interest
(e.g. Ilgner & Nelson 2008), or when the neutral density is so low that the collision
timescale τs becomes of the order of the timescales of interest, which can occur well above
the disc in the early phases of star formation, when X-rays and UV are not yet produced
by the central body.

4The momentum exchange rate 〈σv〉i estimated by Bai (2011a) is actually the collision rate. The momentum
exchange rate quoted here is larger by a factor of approximately 1.21 than the collision rate quoted by Bai (2011a) (see
Draine (2011, equation (2.39))).

5Note that the expression provided by Bai (2011a) for this rate is incorrect by more than three orders of magnitude
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However, if one focuses on disc dynamics and its immediate environment once
the central star is formed, the single-fluid approximation is a perfectly reasonable
approximation, as multi-fluid approaches tend to confirm (Rodgers-Lee, Ray & Downes
2016). For this reason, I will focus here on the single-fluid approximation. To derive
this single-fluid approximation, let us consider the dynamical equations for the centre
of mass of the fluid, defining the total mass density ρ = ∑

j njmj, the flow velocity
v = ∑

j njmjvj/ρ and the drift speed for each species wj = vj − v we sum equations (3.3)
and (3.4) to obtain

∂ρ

∂t
+ ∇ · ρv = 0,

∂ρv

∂t
+ ∇ · (ρv ⊗ v) = ∇ ·

(∑
j

njmjwj ⊗ wj

)
− ∇P + f + J × B

c
+
∑

j

njqjE,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.15)
where we have introduced the total pressure and force P and f as well as the total current
J = ∑

j njqjvj. These equations are exact. However, they do not correspond to the usual
dynamical equations one is used to, and it is important to understand why each extra term
can be neglected.

The first term on the right-hand side corresponds to the transport of momentum by
the drift velocity. Physically, it can be interpreted as a diffusion of momentum owing to
drifting particles. It can be neglected, provided that drift velocities are small, i.e. that wj <

LΩ
√
ρ/ρj where L is the typical length scale of interest and Ω is the typical frequency.6

The presence of the density ratio ensures that even for drift velocities comparable with
LΩ , this term is negligible.

We also have a term involving the total charge of the flow
∑

j njqj. As shown previously,
this term is negligible provided that the timescale of interest is sufficiently long to recover
charge neutrality, which is usually the case. We can therefore drop this term altogether to
obtain the usual single-fluid equations

∂ρ

∂t
+ ∇ · ρv = 0,

∂ρv

∂t
+ ∇ · (ρv ⊗ v) = −∇P + f + J × B

c
.

⎫⎪⎪⎬
⎪⎪⎭ (3.16)

3.3.2. Ohm’s law
In the equation of motion for the centre of mass, we have left aside the fact that

additional equations were required to obtain B and J . Indeed, Maxwell’s equations give
us

∂B
∂t

= −c∇ × E,

J = c
4π

∇ × B.

⎫⎪⎬
⎪⎭ (3.17)

The remaining unknown is, therefore, the electric field. Owing to our assumption of
electro-neutrality, we cannot use Gauss’s law to compute the electric field (since under
our scheme of approximation, the total charge density is zero). However, we can use the

6Comparing the drift velocity with the mean velocity v, as is sometimes done, is meaningless because by a Galilean
boost, any drift velocity can be made negligible compared with the mean.

https://doi.org/10.1017/S0022377820001002 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001002


22 G. R. J. Lesur

dynamical equation for charged species to deduce the electric field that is consistent with
quasi-neutrality.

Let us start with (3.3), and let us separate the velocity into a velocity for the centre of
mass, and the drift velocity for species j:

ρj
dwj

dt
= −∇Pj + f j + njqj

(
wj × B

c
+ Ecm

)
+ Rj

− ρj

[
wj · ∇v + v · ∇wj + F cm

ρ

]
(3.18)

where we have defined the electric field in the centre of mass frame Ecm ≡ E + v × B/c
and the forces on the centre of mass F cm = −∇P + f + J × B/c. Several terms can be
neglected here assuming that the stopping time for the species is short compared to the
other timescales of the problem.

(i) dtwj can be neglected provided that Ω � τ−1
s (i.e. this assumption is identical to

the quasi-neutrality assumption discussed previously). In other words, the inertia
of charged particles is negligible and they instantaneously reach their asymptotic
velocity.

(ii) Similarly, the inertial term (second line) and external forces f j can be neglected
because they modify the impulsion on timescales long compared with τs.

(iii) ∇Pj ∼ ρjc2
s,j/Λ is negligible provided that cs,j � ΩΛ.

The equations of motion for charged particles in the frame of the centre of mass therefore
read

qj

(
wj × B

c
+ Ecm

)
− γjnmjρwj = 0, (3.19)

where we have assumed that dominant collisions were due to neutrals. This is usually
recast as

wj − μjwj × b̂ = cμj

B
Ecm, (3.20)

where b̂ is a unit vector parallel to B and

μj ≡ qjB
γjnρmjc

, (3.21)

is the Hall parameter (Wardle & Ng 1999). Equation (3.20) can be solved for wj, which
gives the asymptotic velocity

wj,‖ = cμj

B
Ecm,‖,

wj,⊥ = cμj

B(1 + μ2
j )

[
Ecm,⊥ + μjEcm,⊥ × b̂

]
.

⎫⎪⎪⎬
⎪⎪⎭ (3.22)

We eventually obtain an expression closing our set of equations by relating the drift
velocities to the current in the flow J = ∑

j njqjwj and assuming quasi-neutrality
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j njqj = 0:

J ‖ = c
B

(∑
j

qjnjμj

)
E‖,

J⊥ = c
B

(∑
j

qjnjμj

1 + μ2
j

)
Ecm,⊥ + c

B

(∑
j

qjnj

1 + μ2
j

)
b̂ × Ecm,⊥.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.23)

These expressions constitute the base of Ohm’s law. We can identify three conductivity
tensors, the Ohmic, Hall and Petersen conductivity tensors,

σO = c
B

∑
j

qjnjμj,

σH = c
B

∑
j

qjnj

1 + μ2
j
,

σP = c
B

∑
j

qjnjμj

1 + μ2
j
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.24)

defined so that Ohm’s law can be written in the more familiar form

J = σ‖Ecm,‖ + σHb̂ × Ecm,⊥ + σPEcm,⊥. (3.25)

This relation can be inverted one final time to obtain the electric field in the observer frame
and write the induction equation as

∂B
∂t

= ∇ × (v × B)− ∇ ×
(
ηO∇ × B + ηH(∇ × B)× b̂ + ηA(∇ × B)⊥

)
, (3.26)

where the magnetic diffusivities are defined as

ηO = c2

4π

1
σO
, (3.27)

ηH = c2

4π

σH

σ 2
H + σ 2

P
, (3.28)

ηA = c2

4π

(
σP

σ 2
H + σ 2

P
− 1
σO

)
, (3.29)

where the subscripts O, H and A denotes Ohmic, Hall and ambipolar.

3.4. Non-ideal diffusivities
3.4.1. Simplified case of two charged species

In the simplest case of a plasma made of two singly charged species (+)
and (−), we obtain the following simplified expressions from (3.27), (3.28)
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and (3.29):

ηO = cB
4πen+

(
1

μ+ − μ−

)
,

ηH = cB
4πen+

(
μ+ + μ−
μ− − μ+

)
,

ηA = cB
4πen+

(
μ+μ−
μ− − μ+

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.30)

First, all of these coefficients are proportional to n−1
+ , i.e. are inversely proportional

to the ionisation fraction. Second, because μj ∝ B, we find that ηO does not depend
on B, whereas ηH ∝ B and ηA ∝ B2. Finally, we find that ηH may have either sign. If
|μ−| > |μ+|, we find ηH > 0, and ηH < 0 otherwise. As μ is essentially a measure of
the collisionality and mass of the charge carrier, it indicates that the sign of the Hall effect
depends on the nature of the charge carriers. In the case where the positive and negative
charge carriers have identical masses and γ so that μ− = −μ+, the Hall effect vanishes.

In the case of an electron–ion plasma, we have |μe| � mi/me|μi| � |μi|. Hence, ηO ∝
|μe|−1 and ηA ∝ |μi|, which justifies the usual statement that Ohmic diffusion is a result
of electron–neutral collisions and ambipolar diffusion to ion–neutral collisions. We also
have ηH = |μe|ηO and ηA = |μeμi|ηO. Hence, we can distinguish three regimes depending
on the Hall parameter of the ion and electrons:

(i) 1 < μi < |μe| in which case ηA > ηH > ηO and the regime is predominantly
ambipolar;

(ii) μi < 1 < |μe| in which case ηH > (ηA, ηO) known as the Hall regime;
(iii) μi < |μe| < 1 where ηO > ηH > ηA and which is dominated by Ohmic diffusion.

This allows us to delimit the Ohmic, Hall and ambipolar regime as a function of the
neutral density and the field intensity (figure 9). As can be seen, the midplane of PPDs
is expected to lie mostly in the Hall regime and possibly in the ambipolar regime in the
outer-most parts of the disc.

A word of caution though: the physical nature of the Hall effect is different from
the Ohmic and ambipolar counterparts (the Hall effect is dispersive, but not diffusive
because J × B · B = 0). Being in the Ohmic- or ambipolar-dominated regime does not
automatically imply that the Hall effect is dynamically unimportant.

Finally, we obtain the usual expressions for the diffusivities in the electron–ion case:

ηO = c2γenmnme

4πe2

1
ξ

= 2.3 × 1016

(
ξ

10−13

)−1

cm2 s−1 (3.31)

ηH = cB
4πene

= 5.0 × 1017

(
ξ

10−13

)−1 ( B
1 G

)( nn

1014 cm−3

)−1
cm2 s−1 (3.32)
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FIGURE 9. Non-ideal regimes as a function of the neutral density and magnetic field intensity,
computed for an electron–ion plasma and assuming T < 100 K. The blue and green lines
correspond to the typical values of a PPD midplane, for various plasma β parameters.

ηA = B2

4πγinρρi

= 1.6 × 1016

(
ξ

10−13

)−1 ( B
1 G

)2 ( nn

1014 cm−3

)−2
cm2 s−1. (3.33)

These values can be compared with diffusivities of everyday material such as iron (η =
8 × 102 cm2 s−1), demineralised water (η = 1.4 × 1015 cm2 s−1) and dry air (η = 1.6 ×
1024 cm2 s−1). Even though one might wrongfully conclude from this that MHD effects are
irrelevant, the time scales (∼1 year) and length scales (∼1 AU) are also much larger than
conventional everyday experiments. This illustrates the fact that dimensionless numbers
should be compared and not dimensional quantities. As we show, one obtains magnetic
Reynolds numbers of O(1), which put these flows in a regime comparable with liquid
sodium experiments on Earth.

3.4.2. Dimensionless numbers and application to disc models
It is customary to define dimensionless numbers in association with non-ideal effects in

order to quantify their relative importance in the induction equation. First, one can define
Elsasser numbers

ΛO,H,A ≡ V2
A

ΩηO,H,A
, (3.34)

where VA is the Alfvén speed and Ω is the rotation rate of the system. Note, however, that
ΛO ∝ B2 andΛH ∝ B, which makes these numbers less useful when it comes to predicting
the saturation of MHD instabilities because B is a priori unknown. It is therefore useful
to define two additional dimensionless numbers, the magnetic Reynolds number and the
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(a)

(b)

(c)

FIGURE 10. Magnetic Reynolds number Rm (a), Hall Lundquist number LH (b) and ambipolar
Elsasser number ΛA (c) in our disc model (§ 2.1), using a simple ion–electron approximation
with a metal-free chemistry. White values are >103.

Hall Lundquist number

Rm ≡ ΩH2

ηO
,

LH ≡ VAH
ηH

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.35)

These two numbers do not depend on the field strength (at least in the two-species
plasma case), and they turn out to be excellent saturation predictors in the non-linear
regime of the MRI. We show in figure 10 the dimensionless numbers resulting from our
grain-free metal-free ionisation model. As it can be seen, Rm < 103 only in the innermost
regions of the disc. This is the region which was historically defined as the ‘dead zone’
(Gammie 1996). In addition, we find 10−1 < LH < 10 in most of the disc midplane with a
sharp increase at the disc surface whereas ΛA � 1 in most of the disc.

3.4.3. The role of grains
When it comes to the conductivity of PPDs, grains play essentially two roles.

(i) By capturing free electrons, they become predominantly negatively charged, and
they increase the recombination rate with ions thanks to their large cross-section and
reaction rates at the grain surface. The end product is generally a reduced ionisation
fraction, possibly by several orders of magnitude (see § 2.5.3).

(ii) Owing to their high inertia, charged grains enter into the conductivity tensor as
a very low Hall parameter species. In this case, the scaling laws obtained for the
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two species case do not hold anymore. The abundance of charged grains, therefore,
changes the diffusion regime in which the system lies.

To illustrate how the diffusivity depends on the presence of grains, we present in
figure 11 an example of diffusivity computation in plasmas of different compositions
(these compositions are identical to those discussed in § 2.5.3). As can be seen, the
addition of 0.1 μm size grains to the system has a dramatic effect on the diffusivities: all of
the dimensionless numbers decrease by several orders of magnitude close to the midplane,
whereas ambipolar diffusion becomes stronger than Hall in the case with grains. Overall,
ambipolar diffusion increases by 104 whereas Hall and Ohmic increase by 102 compared
with the fiducial metal-free case. The Hall effect also changes sign at the disc surface. This
arises because of the presence of negatively charged grains, which contribute to the disc
conductivity tensor by reducing the ‘effective’ Hall parameter of negative charge carriers
(electrons + grains−). In the end, the Hall conductivity becomes dominated by ions when
they become sufficiently abundant: at the disc surface.

In the grain-free case, the presence of metal atoms tends to decrease the diffusivities
by typically one to two orders of magnitude. However, let us point out that the effect of
metal atoms disappears once grains are sufficiently abundant (Ilgner & Nelson 2006). Our
grain-free metal-rich model is, therefore, a best-case scenario for the ionisation fraction
and the diffusivities.

The simplified grain model we have used is by no mean the final answer to this question.
However, it demonstrates the strong effect of grains on the dynamics of the plasma.
The intensity of this effect also depends on the grain size and grain abundance, a lower
abundance or larger grain size leading to a smaller effect (Ilgner & Nelson 2006; Salmeron
& Wardle 2008). Here, we have purposely chosen very small grains with an interstellar
abundance to illustrate a worst-case scenario for the ionisation fraction. Finally, if one
assumes polycyclic aromatic hydrocarbons (PAHs) are present in the gas phase, they then
behave as very small grains, capturing all of the floating electrons and also affecting
significantly the amplitude of non-ideal effects (Bai 2011b).

3.4.4. Conclusion on non-ideal MHD effects
Overall, there is no general consensus on the quantitative strength of non-ideal MHD

effects in the outer part (R > 1 AU) of PPDs. It is clear that these effects are qualitatively
very important though, and that these objects are far from the ideal MHD regime. Let
us summarise here the source of uncertainty and their implication for the strength of
non-ideal effects.

Ionisation rate: Because CRs can be both shielded by the stellar wind or ‘locally’
produced in shocks surrounding the forming star, there is tremendous uncertainty of six
orders of magnitude on the ionisation rate due to CRs (see the discussion in § 2.5.1).
As this mechanism is the main source of ionisation in the disc below two scale heights,
this implies a three orders of magnitude uncertainty in the ionisation fraction ξ and
similarly on the diffusivity coefficients. Ionisation as a result of X-rays is also subject
to caution because the X-ray flux coming from the star is largely variable, leading to order
of magnitude fluctuations of the ionisation fraction close to the disc surface.

Disc structure: The disc structure is a fundamental parameter that determines the
penetration depth of ionising radiations, but also the recombination rate. Denser disc
models, such as the MMSN, tend to have lower ionisation fractions and larger diffusion.
We have shown that by comparing a theoretical MMSN disc model with a model favoured
by observations (§ 2.1), one can change the ionisation fraction by two orders of magnitude
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 11. Dimensionless diffusivity for three different compositions: row 1 (a,b), no grains,
no metals (identical to figure 10); row 2 (c,d), no grains with [M] = 10−8; row 3 (e, f ), with
a = 0.1 μm grains and metal atoms. The first column corresponds to R = 5 AU and the second
column R = 50 AU. Dashed lines correspond to negative diffusivities for the Hall effect.

(see § 2.5.3). As the gas column density profile is largely unknown for R ∼ 10 AU, one is
forced to use the gas column density as a free parameter.

Grains: As shown previously, grains affect both the ionisation fraction and the
dependence of the diffusivities on ξ . Overall, grains tend to reduce the ionisation
fraction by several orders of magnitude (typically two to three). Owing to the change
in composition (grains become the dominant charge carrier close to the midplane),
diffusivities increase by two to four orders of magnitude in our worst-case scenario,
compared with the metal-free case. In addition, the Hall diffusivity ηH can be reversed.
The effect of grains naturally depends on the assumed grain size and abundance. It is
usually found that grain size a > 1 μm does not affect the conductivity tensor too much
(Salmeron & Wardle 2008) and that a significant depletion of small grains also reduces
their effect (Ilgner & Nelson 2006). All of these calculations assume all of the grains have
the same size, which most presumably overestimates the abundance of grains and their
effect on the conductivity tensor. More realistic grain size distribution, including more
complex chemical reaction networks (e.g. Thi et al. 2019) tend to obtain diffusivities that
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are within an order of magnitude of the diffusivities discussed in our grain-free metal-free
scenarios.

Finally, the physics at the grain surface is poorly understood, which gives a lot
of freedom to chemical models. For instance, some authors assume a fixed sticking
coefficients of electrons and ions on dust grains as we do (Sano et al. 2000; Wardle 2007),
whereas others include dependences as a function of the grain size, charge and temperature
(Ilgner & Nelson 2006; Bai 2011a); note, however, that the dependency of the sticking
coefficient on the grain charge differs significantly between these authors. This can have
an additional order of magnitude effect on the resulting diffusivities.

Overall, one is forced to conclude that the conductivity tensor of PPDs is plagued
by uncertainties and that no chemical/ionisation/grain model is better than the other.
Given the previous discussion, the uncertainty on the diffusion coefficient is at least ±3
orders of magnitude, which has dramatic effects on the dynamical behaviour of these
objects. Until more constraints are obtained for these coefficients, theoreticians are forced
to explore in a more or less systematic manner the parameter space of the conductivity
tensor.

Owing to these uncertainties, we focus in the following on the ‘intermediate’ case of a
metal-free grain-free case that we discussed in § 3.4.2 and for which diffusivities are given
in figure 10.

PART TWO: Disc dynamics: global and local views
4. Introduction

4.1. Motivations
Explaining accretion in discs is a long-standing problem of modern astrophysics. Even
though angular momentum transport equations have been known for a long time, the
road to quantifying the level of stress in various discs has been paved with unforeseen
difficulties. The main idea that has been followed since the pioneering work of Shakura
& Sunyaev (1973) is that accretion discs are somehow turbulent, and this turbulence
generates a radial stress. The key is then to relate this radial stress to the other large-scale
quantities such as the disc surface density Σ and thickness H, the rotation rate Ω , the
diffusivities and the magnetic field strength. This approach is, in essence, very similar to
the mixing length theory of convection, except that in the disc case, one does not transport
heat but angular momentum. In discs, it is called the α-disc theory.

Here, we present the basic concepts behind accretion and the α-disc theory. Then, we
introduce the magneto-rotational instability (MRI), which is probably the most promising
instability to explain the origin of accretion in astrophysical discs. Finally, we apply the
MRI in the context of PPDs, taking into account non-ideal MHD effects.

4.2. Disc equilibrium
A PPD is typically made of gas (and possibly dust) orbiting a young stellar object of
mass M. Here, we assume that the gravity of the orbiting gas onto itself (self-gravity) is
negligible. This is not necessarily true in very massive discs or in the outer parts of young
class 0 objects. Under these assumptions, the gravitational potential is simply that of the
central object and the equilibrium may simply be written as

0 = − 1
ρ

∂P
∂R

− ∂Rψ +Ω2R,

0 = − 1
ρ

∂P
∂z

− ∂zψ,

⎫⎪⎪⎬
⎪⎪⎭ (4.1)
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where (R, z) are cylindrical coordinates and Ω is the angular velocity of the flow, which
we assume only depends on R and ψ = −GM/(R2 + z2)1/2 is the cylindrical potential. A
useful quantity will be the Keplerian frequency, which corresponds to the orbital frequency
of a test particle on a circular orbit at radius R:

ΩK(R) =
√

GM
R3
. (4.2)

In order to simplify the computation, let us assume that the disc is locally isothermal:7

T(R). Under these assumptions, the sound speed may be written

cs ≡
√

P
ρ

=
√

kT
μ
, (4.3)

where k is Boltzmann’s constant and μ is the mean molecular mass. As the disc is locally
isothermal, cs only depends on R, as the temperature does.

We start with the vertical equilibrium, which we consider close to the disc midplane
(z � R) because we assume the disc is thin:

c2
s∂z log ρ = − GMz

(R2 + z2)3/2

� zΩ2
K + O(z3), (4.4)

where we have assumed z � R. We deduce from this the vertical density profile

ρ = ρ0(r) exp
(

− z2

2H2

)
, (4.5)

where we have defined the disc scale height

H ≡ cs/ΩK . (4.6)

The thin disc approximation H � R implies that the disc is cold, or in other words that
cs � RΩK .

In the radial direction, we first have to compare the radial pressure gradient with the
gravitational potential

0 = − 1
ρ

∂P
∂R︸ ︷︷ ︸

∼c2
s /R

− ∂Rψ︸︷︷︸
∼Ω2

K R

+Ω2R. (4.7)

The pressure gradient is (H/R)2 smaller than the gravitational potential and can be
neglected in the thin disc approximation. This means that the disc is, to a very good
approximation, a Keplerian disc Ω = ΩK . Note, however, that local (i.e. on radial length
scales of the order of H) pressure variations may exist leading to measurable deviation
from the Keplerian rotation. These variations are typically responsible for zonal flows and
local pressure maxima.

7This assumption is approximately valid because PPDs are passively irradiated. In turbulent discs, recent 3D
relativistic magnetohydrodynamics (RMHD) simulations show a vertical temperature profile very close to isothermal,
e.g. Flock et al. (2013).
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4.3. Accretion theory
The energetics of MHD-driven discs has been discussed extensively by Balbus, Gammie
& Hawley (1994), Balbus & Hawley (1998) and Balbus & Papaloizou (1999). Here, we
revisit this question, and include the possibility of wind-driven accretion in the system.
The accretion of mass in astrophysical discs is described by the equation of mass, angular
momentum and mechanical energy conservation equations:

∂ρ

∂t
+ ∇ · ρu = 0 (4.8)

∂Rρuφ
∂t

+ ∇ ·
[

Rρuφu − R
BφB
4π

]
= 0 (4.9)

∂

(
1
2
ρu2 + ρψ + B2

8π

)
∂t

+ ∇ ·
[(

1
2
ρu2 + ρψ + P + B2

4π

)
u − u · B

4π
B − ENI × B

4π

]

= P∇ · u + ENI · J
c

, (4.10)

where ENI are electromotive forces owing to non-ideal effects. Note that molecular
viscosity is usually negligible in these equations as it is several orders of magnitude smaller
than non-ideal MHD effects. One notable exception is naturally when non-ideal MHD
effects are absent, such as in ideal-MHD flows or in purely hydrodynamic flows subject to
turbulence and/or spiral density waves. In these cases, viscosity becomes non-negligible
in the energy equation because of the formation of small-scale structures, either through
a direct turbulent cascade, or thanks to shocks. In any case, this viscosity then leads
to an additional definite negative source term in the energy equation, which transforms
mechanical energy into heat. The energy flux and angular momentum flux terms associated
with viscosity are always negligible for practical applications.

In order to capture the dynamics of the disc, we separate the gravitational potential
ψ as a midplane potential Ψ and a deviation as one moves away from the disc
midplane Φ:

ψ = Ψ (R)+Φ(R, z). (4.11)

We also separate the mean rotational motion of the disc from its deviations (not necessarily
small):

ur = vr; uφ = ΩR + vφ; uz = vz, (4.12a–c)

where we only assume that Ω satisfies the radial equilibrium in the disc midplane

Ω2R = ∂RΨ. (4.13)

Under these assumptions, it is possible to rewrite the angular momentum conservation as

∂Rρvφ
∂t

+ ρu · ∇(ΩR2)+ ∇ ·
[

Rρvφu − R
BφB
4π

]
= 0, (4.14)
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where we have used the continuity equation to eliminate the terms proportional toΩR2. A
similar procedure can be followed for the energy equation, which can be written as(

1
2
Ω2R2 + Ψ

)[
∂ρ

∂t
+ ∇ · ρu

]
+ ρu · ∇

(
1
2
Ω2R2 + Ψ

)

+Ω

(
∂Rρvφ
∂t

+ ∇ ·
[

Rρvφu − R
BφB
4π

])
+
[

Rρvφu − R
BφB
4π

]
· ∇Ω

+
∂

(
1
2
ρv2 + ρΦ + B2

8π

)
∂t

+ ∇ ·
[(

1
2
ρv2 + ρΦ + P + B2

4π

)
v

−v · B
4π

B − ENI × B
4π

]
= P∇ · u + ENI · J

c
. (4.15)

We recognise the mass conservation equation in the first line, and the angular momentum
conservation equation in the second line. Substituting (4.8) and (4.14) into the previous
equation allows us to recast energy conservation as

ρu · [∇Ψ −Ω2R∇R] +
[

Rρvφu − R
BφB
4π

]
· ∇Ω

+
∂

1
2
ρv2 + ρΦ + B2

8π

∂t
+ ∇ ·

[(
1
2
ρv2 + ρΦ + P + B2

4π

)
v

−v · B
4π

B − ENI × B
4π

]
= P∇ · u + ENI · J

c
, (4.16)

where we recognise the radial equilibrium in the first term, which can be cancelled out.
Hence, we obtain an energy equation for the velocity fluctuations, which reads

∂

(
1
2
ρv2 + ρΦ + B2

8π

)
∂t

+ ∇ ·
[(

1
2
ρv2 + ρΦ + P + B2

4π

)
v − v · B

4π
B − ENI × B

4π

]

= P∇ · u −
[

Rρvφu − R
BφB
4π

]
· ∇Ω + ENI · J

c
. (4.17)

4.3.1. Averaged equations
In order to compute averaged conservation equations, we define an azimuthal average

as

〈Q〉 = 1
2π

∫
dφQ (4.18)

and a vertical integration of the azimuthal average

Q̄ =
∫ z=+h

z=−h
dz〈Q〉, (4.19)

so that the continuity equation (4.8) reads

∂Σ

∂t
+ 1

R
∂

∂R
Rρur + [〈ρvz〉

]+h

z=−h = 0, (4.20)
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where Σ ≡ ρ̄ is the gas surface density.
The equation of angular momentum conservation (4.14) can be recast using the same

averaging procedure (4.19) defined above to obtain an equation relating the mass accretion
rate ρvr as to the radial and surface stresses

ρvr
∂

∂R
ΩR2 + 1

R
∂

∂R
R2

⎡
⎢⎢⎣ρvφvr − BφBr

4π︸ ︷︷ ︸
Radial stress

⎤
⎥⎥⎦+

[
R〈ρvφvz〉 − R

〈BφBz〉
4π

]+h

z=−h︸ ︷︷ ︸
Surface stress

= 0, (4.21)

where we have assumed that v � ΩR, which allows us to neglect the remaining time
derivative.

This demonstrates the close relationship between the accretion rate and the transport of
angular momentum by the stresses. Angular momentum can be transported outward in the
disc by the radial stress, or evacuated from the disc by a torque applied at the disc surface,
as for example when a magnetised wind is present.

This link between accretion and stress can also be seen by averaging of the mechanical
energy equation (4.17):

∂tEm + 1
R
∂

∂R
RFm,R + [〈Fm,z〉

]+h

z=−h = P∇ · v −
[
ρvφvR − BφBR

4π

]
dΩ

d log R︸ ︷︷ ︸
Radial stress source term

+ENI · J
c

,

(4.22)
where we have the mechanical energy of the fluctuations

Em = 1
2
ρv2 + ρΦ + B2

8π
(4.23)

and its associated energy flux(
Em + P + B2

8π

)
v − v · B

4π
B − ENI × B

4π
. (4.24)

This energy equation demonstrates a very important fact: unless one assumes that the
energy flux locally deposits energy (which implies that a source of energy is externally
provided to the disc), then the only term that can balance diffusive (and viscous, when
applicable) losses is the radial stress source term, which appears as a source term in the
conservation of mechanical energy. Diffusive (and viscous) source terms being necessarily
negative definite, we have [

ρvφvR − BφBR

4π

]
dΩ

d log R
< 0. (4.25)

As this term balances losses (which convert mechanical energy into heat), it is also equal
to the local heating rate of the disc is we assume the fluctuations are statistically steady (as
in a saturated turbulent state) and no energy escapes via the vertical energy flux.8 Note that
the surface stress does not appear as a source term, as it does not lead to any local heating,
despite driving accretion. That’s one of the key difference between radially-driven and
vertically-driven accretion.

8When an outflow is present, one finds that the vertical energy flux Fm,z extracts energy from the disc, which implies
that heating is actually smaller than the radial stress source term.
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4.4. α disc theory
This theory assumes no wind is present at the disc surface. In order to solve the long-term
evolution of the disc, one needs to express the radial stress

Wrφ = ρvφvr − BφBr

4π
, (4.26)

as a function of vertically averaged quantities such as Σ or P̄. Historically, and based on a
purely dimensional argument (Shakura & Sunyaev 1973), it is usually assumed that

Wrφ = αP̄, (4.27)

where α is a dimensionless constant. Physically, it can, however, be justified as a mixing
length theory: let us consider turbulent velocity fluctuations v in a thin disc. The
fluctuations are confined in the disc thickness H with a forcing frequency ΩK (these
two quantities are the only length and frequency accessible to an ideal system). Hence,
we expect v = θHΩK where θ is a dimensionless constant, of order unity. Therefore,
Wrφ = θ 2ρv2 = θ 2ρH2Ω2

K . Using (4.6), one obtains Wrφ = θ 2ρc2
s = θ 2P̄. Hence, thanks

to the vertical equilibrium of a thin disc, the prescription of Shakura & Sunyaev (1973)
shows up as a mixing length theory with a length H, a frequency ΩK and α = θ 2.

Interestingly, because H = cs/ΩK , θ is actually a measure of the Mach number of the
flow θ = v/cs. If the turbulence was strongly supersonic, then strong shocks would appear,
dissipating rapidly turbulent fluctuations until they become subsonic. For this reason,
and in the absence of any supersonic excitation, turbulence is expected to be essentially
subsonic with θ � 1 and, therefore, α < 1.

This prescription may be seen as a viscous theory. Indeed, the α-disc prescription leads
to Wrφ = αP = αΣcsHΩK . As R dΩK/dR = −3/2ΩK , the stress can be recast as

Wrφ = −2
3
νtΣ

dΩ
d log R

, (4.28)

where we have defined an effective viscosity νt = αcsH. Here, we clearly recognise the
usual R − φ component of the viscous stress in the Navier–Stokes equations.

Plugging the α prescription into (4.21) and neglecting surface (wind) contribution leads
to

ρvr = − 1
R∂R(ΩKR2)

∂

∂R
R2αc2

sΣ. (4.29)

This allows us to express the mass accretion rate Ṁ ≡ −2πRρvr as

Ṁ = 4π

RΩK

∂

∂R
R2αc2

sΣ. (4.30)

We can then use mass conservation (4.20) to obtain an equation for Σ

∂Σ

∂t
= 1

R
∂

∂R

[
1

∂R(ΩKR2)

∂

∂R
R2αc2

sΣ

]
, (4.31)

which essentially constitutes a diffusion equation for the surface density. The diffusion
timescale associated to accretion can be estimated using cs = ΩKH. One finds

τ−1
visc ∼ αΩK

(
H
R

)2

� ΩK . (4.32)
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Accretion therefore occurs on timescales much longer than the orbital timescale in thin
discs. This is usually a problem for simulations trying to capture the phenomenon of
accretion. However, it allows us to separate accretion from dynamics occurring at the local
orbital frequency, by stating that accretion is essentially non-existent on this timescale.

4.5. α–υ disc theory
This theory is identical to the alpha disc theory for the radial stress part, but it also includes
a contribution from the surface term, owing to a hypothetical wind. To do so, let us define

Wzφ = ρvφvz − BφBz

4π
, (4.33)

and in a way similar to the α prescription, we assume[〈Wzφ〉
]+h

z=−h = υPmid, (4.34)

where Pmid is the midplane pressure of the disc. Using the same procedure as for the α
disc, we can express the mass accretion rate as a function of α and υ

Ṁ = 4π

RΩK

⎡
⎢⎢⎣ ∂

∂R
R2αP︸ ︷︷ ︸

radial

+ R2υPmid︸ ︷︷ ︸
vertical

⎤
⎥⎥⎦ . (4.35)

The comparison between the α term and the υ term is revealing as it compares the role
played by the radial and vertical stresses. One can assume that in first approximation P̄ �
PmidH so that the vertical contribution is R/H(υ/α) times larger than the radial one. This
implies, in particular in thin discs where R/H � 1, that magnetised winds can easily be
the dominant source of accretion.

In addition, using (4.35) in the continuity equation, the vertical stress term shows up
as a first-order radial derivative of Σ (=advection) whereas the radial term appears as a
second-order derivative as in the usual alpha disc theory. For this reason, wind-driven discs
cannot be treated as viscous discs, because the wind component appears as an advective
term in the surface density evolution.

4.6. Beyond the α prescription
The α disc model is useful as a starting point to characterise the evolution of discs.
However, it is not based on first principles, and it would be desirable to compute the
turbulent stress Wrφ directly from the equations of motion for the gas.

This is, however, a rather complicated task that often implies using numerical tools, as
the equations of motion cannot, in general, be solved analytically. As the disc is thin, and
turbulence, in the α disc theory, is supposed to be confined by the scale height H � R, one
can start by using this scale separation to look only at what is happening at the scale H,
leaving the global scale (R) apart. This is the idea of local models, often called ‘shearing
box’ models, following Hawley, Gammie & Balbus (1995).

5. Local models
5.1. The Hill’s approximation

The Hill’s approximation is a local view of the dynamics of an orbiting system, which was
initially used by Hill (1878) to model the libration motions of the moon along its orbit.
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FIGURE 12. Rotating frame on a circular orbit at R0.

It has been used more recently as an efficient tool to model the dynamics of gas or stars
in gravitating systems (e.g. Goldreich & Lynden-Bell 1965) and it was later implemented
numerically in the so-called ‘shearing-box’ by Hawley et al. (1995). In this model, one
considers the dynamics of the flow around an equilibrium point R0, which is rotating
with the disc at the angular velocity ΩO ≡ ΩK(R0). We define a Cartesian frame (x, y, z),
attached to this point so that x is aligned with the radius, y with the azimuth and z is aligned
with the vertical direction (figure 12).

In this frame, the system follows the usual single-fluid equations of motion (MHD). As
it is rotating, we have, in addition, a Coriolis force and a centrifugal force, so that the
equations of motion read

∂tρ + ∇ · ρv = 0, (5.1)

∂tv + v · ∇v = − 1
ρ

∇P + J × B
ρc

− 2Ω0ez × v +Ω0R2eR − ∇ψ, (5.2)

∂tP + v · ∇P = −γ∇ · v, (5.3)

∂tB = ∇ × (v × B + cENI) , (5.4)

where ψ is the gravitational potential, ENI is the non-ideal electromotive force and R ≡√
(R0 + x)2 + y2 is the cylindrical radius. We also assume the gas follows an ideal equation

of state with first adiabatic exponent γ . As is well known, the centrifugal force derives
from a potential of the form ψc = −Ω2

0 R2/2. The effective potential (gravitational plus
centrifugal) in the corotating frame therefore reads

ψeff = − GM(
(R0 + x)2 + y2 + z2

)1/2 − 1
2
Ω2

0

(
(R0 + x)2 + y2) . (5.5)

Hill’s model focuses on a ‘small’ (i.e. of the order of the disc scale height in the case
of a gaseous disc) region around the fiducial point R0. We therefore expand the effective
potential around this point, assuming x ∼ y ∼ z � H to obtain Hill’s potential

ψeff,Hill = Ω2
0

[
−3R2

0

2
− 3

2
x2 + 1

2
z2 + O

(
H3

R0

)]
. (5.6)

This effective potential has been truncated at the first non-trivial order. It is, however,
interesting to note that it does not depend on y and that is does not contain any cross
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(a) (b)

FIGURE 13. Effective potential in (a) the rotating frame ψeff and (b) its Hill’s approximation
ψeff,Hill. Note the x → −x symmetry of Hill’s potential, as well as the different asymptotic
behaviour.

term such as xy or xz. It is also independent from R0 (apart from the constant term). This
simplicity in the effective potential is what makes this model so useful for analytical and
numerical computation. Any higher-order expansion will include curvature terms such as
x/R0 dependences and cross-dependences, making calculations much more tedious.

Let us emphasise already at this stage that Hill’s potential is not adapted to global
phenomenon. This can be seen by comparing the iso-potentials of ψeff and ψeff,Hill
(figure 13). Hill’s approximation is found to be symmetrical in x → −x, implying that
one does not know where the centre of attraction is located (both x → −∞ and x → +∞
are technically valid). Moreover, the neutral iso-potential ψ(x, z) = −3Ω2

0 R2
0/2 has an

asymptote for z → +∞ at x = R0(
√

3 − 1), which is absent in Hill’s approximation.
This asymptote is key for outflows to be ejected to z → ∞, and is the main reason why
local models always produce outflows which depend on the location of the z boundary
conditions (see § 9.2).

Finally, it can be shown that in the more general case of a central gravity of the form
ψgrav = r−2(q−1), the equilibrium rotation profile is Ω ∝ R−q and Hill’s potential reads
ψeff,Hill = Ω2

0 R2
0(qx2 + z2)/2 + constant. In the case of a gravitational potential from a

central point mass, we simply have q = 3/2.
The equations of motion in Hill’s approximation finally reads

∂tρ + ∇ · ρv = 0, (5.7)

∂tv + v · ∇v = − 1
ρ

∇P + J × B
ρc

− 2Ω0ez × v +Ω2
0 (2qxex − zez) (5.8)

∂tP + v · ∇P = −γ∇ · v (5.9)

∂tB = ∇ × (v × B + cENI) , (5.10)

where we have differentiated Hill’s potential to obtain the tidal acceleration Ω2
0 (qxex −

zez). This set of equation admits a simple steady solution V 0 for the velocity field by
simply balancing the Coriolis and tidal forces in the x direction:

V 0 = −qΩ0xey. (5.11)

This velocity field represents a constant radial shear. It corresponds to the local
representation of the Keplerian flow, which is not in solid body rotation. As Hill’s
approximation only retains the first terms of the effective potential, the shear in Hill’s
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model is linear with x and does not depend on z. It is sometimes useful to work with the
deviations from this velocity field. Let us define w ≡ v − V 0 (where w is not necessarily
small compared with v), for which the equations of motion read

Dtρ + ∇ · ρw = 0, (5.12)

Dtw + w · ∇w = − 1
ρ

∇P + J × B
ρc

− 2Ω0ez × w + qΩ0wxey −Ω2
0 zez (5.13)

DtP + w · ∇P = −γ∇ · w (5.14)

DtB = −qΩ0Bxey + ∇ × (w × B + cENI) , (5.15)

where we have defined the comoving derivative Dt ≡ ∂t − qΩx∂y. It is worth noting that
this last set of equations does not present any x dependency, except in the comoving
derivative. This property is the key allowing the definition of a numerical ‘shearing box’,
which we present later. In exchange, new source terms have appeared when going from v
to w: the ‘lift up’ effect qΩ0wxey, which is essentially the advection of the mean Keplerian
flow by radial motions, and the ‘Ω effect’ of dynamo theory (actually due to shear, not
rotation) −qΩ0Bxey. As we show later, these terms are key elements to the local physics of
accretion discs. A local equivalent of the angular momentum equation can also be derived
from (5.13). By defining L = wy + (2 − q)Ω0x, we obtain the conservation equation

DtL + w · ∇L = − 1
ρ
∂yP + [J × B]y

ρc
, (5.16)

where the Coriolis and tidal terms have vanished in the definition of the local angular
momentum.

5.2. The shearing box model
5.2.1. Introduction

The shearing box model formally comes in two forms, the ‘large’ shearing box
(LSB, also known as the stratified shearing box) model which is essentially a numerical
equivalent of Hill’s approximation in a finite size numerical domain, and the ‘small’
shearing box (SSB, also known as the unstratified shearing box), which is a local
approximation in Hill’s approximation. In essence, the SSB model assumes that one zooms
on a region close to the disc midplane so that the box size L � H. In this case, vertical
gravity can be neglected in (5.13) and because one expects w ∼ ΩL, the flow is strongly
subsonic so that an incompressible approximation9 can be made in place of (5.12). The
asymptotic of these two models are discussed in details by Umurhan & Regev (2004).
Here, we mostly use the LSB, keeping in mind that an incompressible approximation is
possible to study the basic effects of the shear.

5.2.2. Boundary conditions
The shearing box model makes use of Hill’s approximation in the simplest possible

numerical setup: a periodic box. Because Hill’s approximation is local, the shearing box
model is also local and should satisfy the asymptotic rules shown above. In particular,
for a box of size L, we should have L ∼ H � R0. However, the presence of the comoving
derivative makes things a bit more difficult. The fields ρ, w, etc. are advected everywhere
at the azimuthal velocity −qΩxey. It is, therefore, physically inconsistent to assume

9Note, however, that in most of the unstratified shearing box models published to date, compressibility is retained in
the equation of motion.
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FIGURE 14. Radial boundary conditions in a shearing box. The background shear is represented
in blue. At t = 0 the boundary conditions are strictly periodic (red). At t > 0, the periodic
boundary conditions are shifted in time (green), according to the advection by the mean flow.

Q(−Lx/2, y, z) = Q(Lx/2, y, z) for any quantity Q as one would do with x periodic
boundary conditions in a box of size Lx. In order to take into account the constant
shear in the boundary conditions, one therefore enforces periodic boundary condition in
a Lagrangian view known as ‘shearing sheet’: Q(−Lx/2, y, z) = Q(Lx/2, y + qΩLxt, z),
which can be represented graphically as in figure 14.

In the azimuthal direction, periodic boundary conditions are the most natural choice.
In the vertical direction, however, no obvious choice comes to mind. Depending on the
problem at hand, one can use outflow, free-slip or even periodic boundary conditions.

5.2.3. Stress and accretion measurement
One of the goals of the shearing box approach is to measure directly the turbulent stress

in the global dynamical equations (4.21). One therefore needs to quantify

Wxy = ρwxwy − BxBy

4π
(5.17)

which is Hill’s equivalent of the radial stress term in (4.21). Despite a non-zero radial
stress, the shearing box model does not exhibit any accretion owing to this component.
This is because the shearing box model is a local asymptotic expansion. The terms leading
to accretion are higher-order terms in H/R0, which have been neglected, and which would
break the in–out symmetry of Hill’s potential.

5.2.4. Conserved quantities
The shearing box model is very useful in the sense that it allows one to have

a tight control on the conserved quantities of the flow: vertical and radial magnetic
flux, momentum and energy are all conserved thanks to the relatively simple boundary
conditions used in the horizontal direction. We thus define

〈·〉 ≡
∫∫∫

dx dy dz. (5.18)
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Mass, momentum and flux conservation equations eventually read

∂t〈ρ〉 + [
ρvz
]

z=zb
= 0 (5.19)

∂t〈ρw〉 +
[
ρwwz +

(
P + B2

8π

)
ez − 1

4π
BBz

]
z=zb

= −2Ω0ez × 〈ρw〉

+ qΩ0〈ρwx〉ey −Ω2
0 〈ρz〉ez (5.20)

∂t〈B〉 + [
wzB − Bzw

]
z=zb

= −qΩ0〈Bx〉ey + non-ideal terms. (5.21)

Interestingly, the momentum equation exhibits source terms connected to the effective
potential and the Coriolis force. The vertical magnetic flux is found to be exactly conserved
whereas the horizontal flux is not necessarily conserved. Horizontal flux can escape the
box through the vertical boundary or, alternatively, can be amplified thanks to theΩ-effect
that shows up as a source term of toroidal field. These simple conservation laws allows one
to control very carefully the box physics. Moreover, because the vertical flux is conserved,
one can classify shearing-box setup as a function of the average vertical flux. It is also
possible to do this for the toroidal component in the y direction, though conservation can
be violated by flux escape at the boundary.

Energetics of the shearing box may be found by dotting the momentum equation with w
and the induction equation with B. One eventually obtains an equation for the mechanical
energy (kinetic plus magnetic) in the box

∂tEMech + ∇ · FMech = P∇ · w + ENI · J + qΩ0

(
ρwxwy − BxBy

4π

)
−Ω2

0ρwzz, (5.22)

where

EMech = 1
2
ρw2 + 1

8π
B2,

FMech = 1
2
ρw2w + 1

4π

(
B2w − (w · B)B − cENI × B

)+ Pw.

⎫⎪⎪⎬
⎪⎪⎭ (5.23)

This set of equations is the local equivalent of (4.17). Several comments can be made on
the energetics. First, we find an energy flux made of three contributions, kinetic energy,
Poynting flux (split into advective, magnetic and non-ideal contributions) and a pressure
term. Second, we find several source/sink terms.

(i) PdV work. This term is usually small when thermal effects are negligible, but can
become important in thermally driven winds for example.

(ii) Non-ideal effects. For Ohmic and ambipolar diffusion, ENI ∼ −J , hence for these
two terms, EOhm/ambipolar · J < 0. Meanwhile, the Hall effect has no contribution to
this term because J × B · J = 0. Overall, the non-ideal term therefore appears as a
sink of mechanical energy, as expected. Energy is dissipated into heat.

(iii) Radial stress. We recover the radial stress term of the global angular momentum
equation (4.21), which appears as a source term here.

(iv) Potential work. The last term denotes the work done by the vertical gravity on the
gas, which can become important in ejecting disc models. In this case, this term is
negative.
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(v) Viscous terms (not shown). When the flow is turbulent, viscous terms can become
important at the small scale. In this case, they show up as an additional sink term in
the mechanical energy equation.

Overall, unless strong thermal effects are present, the only source of mechanical energy
in this system is the radial stress term, which is therefore positive definite, as already
pointed out in the global version of this equation. The dynamics of the disc will therefore
be dictated by how this source term is balanced by the various loss/flux terms in the
energetics.

Let us finally point out that in a shearing box, the energy flux FMech is periodic/shear
periodic. If we average the energy equation, we find that the only relevant flux component
is that escaping through the vertical boundaries, as for the mass and momentum fluxes.

6. The linear MRI in local models
6.1. Lagrangian analysis

6.1.1. Linear hydrodynamic stability
Let us now consider a particle evolving in Hill’s effective potential under the influence

of the effective gravity and the Coriolis force. The particle is initially at rest at (x, y) = 0.
Magnetic fields are neglected in this first approach. The equation of motion for the fluid
particle may be written

d2x
dt2

= 2qΩ2
0 x + 2Ω0

dy
dt
, (6.1)

d2y
dt2

= −2Ω0
dx
dt
, (6.2)

d2z
dt2

= −Ω2
0 z. (6.3)

We first note that the vertical and horizontal equations of motion are separable. In the
vertical direction, it describes oscillations of the fluid particle around the midplane at
frequency Ω0.

In the horizontal direction, the equations describes epicycles. To show it, let us first
integrate (6.2):

L = dy
dt

+ 2Ω0x, (6.4)

where L is the local angular momentum of the particle, as defined in (5.16). Our particle
being initially in equilibrium at (x, y) = 0, it has L = 0 and we can write the radial
equation of motion as

d2x
dt2

= −2Ω2
0 (2 − q)x (6.5)

hence, our effective gravitational potential, which was initially unstable (∂xψeff,Hill < 0), is
stabilised thanks to the conservation of angular momentum, provided that q < 2 (q = 3/2
for astrophysical discs). The oscillations described by this particle have a frequency

ω2 = 2Ω2
0 (2 − q) ≡ κ2. (6.6)

This characteristic frequency is named epicyclic frequency. In the particular case of a
Keplerian disc (q = 3/2), we find κ2 = Ω2, i.e. the epicyclic frequency coincides with the
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FIGURE 15. Epicyclic oscillations of a fluid particle orbiting a point mass resulting in an
closed elliptic orbit.

orbital frequency. As a result, orbits are closed, a well-known property of the two-body
problem (e.g. figure 15).

This shows that at the linear level, pure Keplerian flows are stable. This does not mean
that non-linear (or subcritical) instabilities cannot exist in these flows, given that the shear
is a natural reservoir of free energy to trigger instabilities. Such non-linear instabilities
are well known to develop in non-rotating sheared flows and in pipe flows. This question
of subcritical instabilities is at the origin of many experiments, numerical simulations
and theoretical developments. Today, there seems to be a consensus on the fact that pure
Keplerian flows appear to be stable for Reynolds numbers up to a few million. However,
thermal effects, such as heating and vertical stratification, are known to affect this picture,
leading to thermally driven linear and non-linear instabilities. This is a whole field of
research, which is not covered here. The interested reader may consult Fromang & Lesur
(2019) for a more detailed overview of this topic.

6.1.2. Linear MHD stability
As we have shown, PPDs are hydrodynamically stable at the linear level. In MHD,

however, things start to become a bit more interesting (see also Balbus & Hawley 1998
for a similar treatment). Let us embed our disc in an external and constant magnetic field
B0, which we assume is vertical. Assuming we still consider infinitesimal displacements
around the equilibrium position of the fluid particles, the velocities are infinitely small,
and the induction equation for magnetic fluctuations δb reads

∂δb
∂t

= B0
∂v

∂z
. (6.7)

Clearly, the stability will now depend on how we move the particles with respect to each
other. Let us consider a set of particles initially at (x, y) = 0 and let us perturb these
particles with a vertical harmonic perturbation

x = x0 exp(ikz), (6.8)

the resulting magnetic perturbation can be obtained by integrating the induction equation
with respect to time:

δb = ikB0x. (6.9)
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In order to model how the field affects the dynamics, we have to include the Lorentz
force F L in the equation of motion. In the horizontal direction, only the magnetic tension
term B · ∇B appears, so we have

F L

ρ
= B0 · ∇δb

4πρ

= −k2B2
0

4πρ
x

= −V2
Ak2x, (6.10)

where VA is the Alfvén speed. The horizontal equations of motion are therefore reduced to

d2x
dt2

= 2qΩ2
0 x + 2Ω0

dy
dt

− V2
Ak2x,

d2y
dt2

= −2Ω0
dx
dt

− V2
Ak2y,

⎫⎪⎪⎬
⎪⎪⎭ (6.11)

where it is clear that the magnetic forces are acting as a restoring force (hence, the
usual representation of a spring for the Lorentz force). Note also that angular momentum
conservation is now broken by the azimuthal tension force. It is this effect that leads to an
instability.

To show this, let us assume x = x exp(σ t). The equations of motion lead to the following
eigenvalue problem

(σ 2 + V2
Ak2)x = 2qΩ2

0 x + 2Ω0σy,

(σ 2 + V2
Ak2)y = −2Ω0σx,

}
(6.12)

which allows us to obtain the dispersion relation

(σ 2 + V2
Ak2)2 − 2qΩ2

0 (σ
2 + V2

Ak2)+ 4Ω2
0σ

2 = 0, (6.13)

where we recover epicyclic oscillations when VA = 0 with σ 2 = −2Ω2
0 (2 − q) = −κ2

and pure Alfvénic oscillations whenΩ0 = 0 with σ 2 = −V2
Ak2. Expanding this dispersion

relation leads to

σ 4 + σ 2 (κ2 + 2V2
Ak2)+ V2

Ak2 (V2
Ak2 − 2qΩ2

0

) = 0. (6.14)

This dispersion relation describes a linear instability when σ 2 is positive, i.e. when

V2
Ak2 − 2qΩ2

0 < 0. (6.15)

This instability is the MRI. It appears when the magnetic tension force is not too strong,
as suggested by (6.15). It is possible to solve the full dispersion analytically to obtain the
eigenvalues (see figure 16). When VAk <

√
2qΩ0, positive eigenvalues are found,which are

the signature of the MRI. The maximum growth rates are obtained for VAk = √
2qΩ0/2

with σmax = qΩ/2. Above the limit (6.15), the unstable branch becomes a stable Alfvén
wave, which shows that the MRI is mostly an Alfvénic perturbation. In addition to this
pair of branches, we find a pair of epicyclic modes which are stable for all kVA (figure 16),
and have a non-zero frequency for VA = 0. If compressibility is added, the degeneracy
between slow magnetosonic and Alfvén waves is lifted. In this case, it can be shown that
the MRI arises from the slow magnetosonic mode (Balbus & Hawley 1992).
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FIGURE 16. Real part (black) and imaginary part (red dashed line) of the solutions of (6.14)
with q = 3/2. The MRI appears for weak enough fields VAk <

√
3Ω0.

FIGURE 17. Physical representation of the MRI mechanism (see the text).

The physical interpretation of the MRI is straightforward: consider two fluid particles
attached to a vertical field line and assume we slightly move these particles radially. First,
they will start an epicyclic motion and drift azimuthally (figure 17). As they drift away,
the azimuthal magnetic tension will act as a spring bringing back the particles together,
slowing down the inner particle and accelerating the outer particle. This results in a loss
of angular momentum for the inner particle, which falls further down, and conversely
for the outer particle. This mechanism can only work if the radial magnetic tension
is sufficiently weak; otherwise, the particles return to their initial point resulting in an
Alfvénic oscillation. It is this radial component of the Lorentz force that is the stabilising
agent of the MRI.
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FIGURE 18. MRI growth rate as a function of the Alfvén frequency ωA (black). Quantised
modes accessible to a disc model with VAz = 0.2 ΩH are shown in red with increasing n from
left to right. Only four modes are MRI-unstable in this example (see the text).

6.2. Application of the MRI to local models
In real disc models, the disc is characterised by a mean vertical and potentially a mean
azimuthal magnetic field, as in the linear analysis. However, the vertical wavelength of the
perturbation cannot be larger than the disc scale height.10 In other words, kz,min � 1/H,
which implies that any disc model threaded by a vertical field has a minimal Alfvén
frequency ωA ≡ kzVAz. In addition, the vertical wavenumbers accessible to a disc are
quantised because of the limited vertical extension (see § 6.4.6), hence kz = nkz,min and
ωA is also quantised. As an example, we show in figure 18 the modes accessible to a disc
threaded by a vertical field with VAz = 0.2 ΩH. In this particular example, only the four
smallest n are MRI-unstable, the most unstable mode being n = 2.

This quantisation of MRI modes also indicates that the MRI can be stabilised for
sufficiently strong fields. Indeed, as the field strength increases, quantised unstable modes
drift to the right of figure 18 because kz,min increases. The MRI is entirely stabilised when
the lowest n enters the stable regime, i.e. when VAz >

√
2qΩ/kz,min. With kz,min � 1/H this

implies in Keplerian discs

VAz �
√

3ΩH → Stability. (6.16)

For this reason, the MRI is often seen as a ‘weak field’ instability, even though technically,
this is more a result of the geometrically thin disc approximation. Note also that this
criterion is not an effect of compressibility, as is sometimes thought. Indeed, because
ΩH = cs, the previous criterion implies that the disc stabilises for vertical field strength
above equipartition. This is, however, just a coincidence resulting from the vertical
equilibrium in a geometrically thin disc. The MRI also exists well above equipartition
in a slightly modified form, provided that large enough wavelengths are allowed (Kim &
Ostriker 2000).

10We return more quantitatively to this point in § 6.4.6.
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6.3. Non-axisymmetric MRI
We start from (5.12)–(5.15) in which we assume the disc is threaded by a mean field having
a vertical and azimuthal components: B = B0,yey + B0,zez. In this subsection, we relax the
axisymmetry hypothesis used previously, but we still assume the flow is incompressible,
and neglect vertical gravity and stratification. We then consider the following set of
equations:

∂tw + w · ∇w − qΩx∂yw = −∇Π + B · ∇B
4πρ

+ 2Ωwyex − (2 − q)Ωwxey, (6.17)

∂tB + w · ∇B − qΩx∂yB = B · ∇w − qΩBxey, (6.18)

∇ · w = 0. (6.19)

We are going to linearize this system, assuming the field can be decomposed as B = B0 +
b. The presence of the advection term qΩx∂y, however, leads to some technical difficulties
as it involves an explicit spatial dependency whenever modes are non-axisymmetric. We
therefore follow Kelvin (1880) and Craik & Criminale (1986) using decomposition into
time-dependent ‘waves’,11 which, for any quantity X̃, assumes as spatial decomposition

X̃ = X (t) exp(ik(t) · x). (6.20)

Using this decomposition, it is easy to show that

∂tX̃ − qΩx∂yX̃ = Ẋ + iX
(
k̇ · x − qΩxky

)
. (6.21)

As it is the only term that shows this explicit x dependency in the equations of motion, and
because these equations are assumed to be valid for all x, we are forced to conclude that
the term in parentheses cancels out:

k̇x − qΩky = 0; k̇y = 0; k̇z = 0. (6.22a–c)

Without loss of generality, we can therefore assume a decomposition into ‘shearing
waves’, defined as

k(t) = k0 + qΩtkyex (6.23)

which is solution to the set of equations described previously. Using this shearing wave
decomposition, we obtain

ẇ = −ikΠ + i
k · B0

4πρ
b + 2Ωwyex − (2 − q)Ωwxey, (6.24)

ḃ = i(k · B0)w − qΩbxey, (6.25)

k · w = 0, (6.26)

where we have dropped the explicit time dependency of k and the ˜ symbols for simplicity.
We next take the time derivative of (6.26):

qΩkywx + k · ẇ = 0. (6.27)

11Although these solutions are often called ‘waves’, these are not normal modes of the physical system, but they are
just a convenient way to decompose solutions in a sheared flow.
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This allows us to express the generalised pressure

Π = − i
k2

(
2Ωwykx − 2Ω(1 − q)wxky

)
. (6.28)

Thus, finally, the equations of motion read

ẇ = i
k · B0

4πρ
b + 2Ωwy(1 − gxx)ex + 2(1 − q)Ωwxgxyex

− qΩwxgyyey − (2 − q)Ωwx(1 − gyy)ey − 2Ωwygxyey

+ 2(1 − q)Ωwxgyzez − 2Ωwygxzez, (6.29)

where we have introduced gij = kikj/k2.
It is not possible to go any further without making any approximation. Indeed, although

by construction k · B0 does not have any time dependency, the pressure factors gij do have
one, so that a standard normal mode decomposition is prone to failure. It is possible to
numerically integrate these equations as a function of time (see, e.g., Balbus & Hawley
1992). This always leads to transiently growing solutions, i.e. perturbations that only grow
for a finite time. To understand why this is always the case, let us continue our analysis
using a first-order Wentzel–Kramers–Brillouin (WKB) approximation.

To obtain a dispersion relation, one needs to assume that k is ‘almost’ steady, i.e. ky � kx
so that d log k/dt � Ω . This limit is often described as a strongly leading or strongly
trailing wave. This limit implies that we can neglect all the gyj terms in the previous
expansion. Assuming X = X̃ exp[σ t + ik(t) · x)], we then obtain

σw = i
k · B0

4πρ
b + 2Ωvy(1 − gxx)ex − (2 − q)Ωvxey − 2Ωvygxzez, (6.30)

σb = i(k · B0)v − qΩbxey. (6.31)

These equations clearly exhibit an Alfvén mode in the z direction, with σ = ±i(k ·
V A,0) and V A,0 ≡ B0/

√
4πρ as one would expect. We can then solve independently the

horizontal problem to obtain the dispersion relation:

σ 4 + σ 2(2ω2
A + 2(2 − q)Ω2gzz)+ ω2

A(ω
2
A − 2qΩ2gzz) (6.32)

where we have defined the Alfvén frequency ωA = k · V A,0. This equation describes both
the traditional MRI mode and the non-axisymmetric MRI, as its close resemblance with
(6.14) suggests. It should, however, be noted that in the kz/k → 0 limit, the instability is
lost because gzz → 0 and the last term of the dispersion relation, responsible for the MRI,
vanishes. Physically, this happens because the pressure gradient balances the Coriolis force
in the x component of the equation of motion.

Now, it should be kept in mind that this dispersion relation is derived for a shearing
wave whose k is slowly evolving with time. As t → ∞, one then expects |kx| → ∞ and
therefore gzz → 0. Hence, by nature, shearing waves automatically quench the growth
of the MRI as they evolve. For this reason, non-axisymmetric structures, even without
any dissipation, are necessarily transiently growing solution, and therefore never lead
to a genuine linear instability. That being said, non-axisymmetry is required when only
a large-scale toroidal field is available in the system, because one needs k · B0 �= 0.
Therefore, there is no ‘toroidal field MRI’ as is sometimes presented in the literature. There
is just a transient growth in the linear phase, which can be described as a temporary MRI
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in the WKB approximation, but only a non-linear feedback can re-excite new shearing
waves to keep increasing the energy of the fluctuations.

It should be stressed that the absence of any linear non-axisymmetric instability is
observed only in the local limit (i.e. shearing box). If one considers a global disc, including
curvature and radial boundaries, then a genuine linear instability can be recovered (e.g.
Curry & Pudritz 1996), with properties similar to that found in the WKB approximation
presented previously.

6.4. MRI in non-ideal MHD
6.4.1. Historical background

The linear MRI in the non-ideal MHD regime has been explored by many researchers.
After the discovery of the MRI in the disc context by Balbus & Hawley (1991), it
was soon realised that PPDs, but also discs in cataclysmic variables could be in the
non-ideal MHD regime, casting doubts on the applicability of this instability to these
objects. Blaes & Balbus (1994) were the first to consider this problem, by working out
the ambipolar-dominated MRI in the two-fluid approximation. Ohmic diffusion was first
considered by Jin (1996) in unstratified models and Sano & Miyama (1999) in stratified
discs, which led to the dead zone model of PPDs (Gammie 1996). Later, Wardle (1999)
considered the three non-ideal MHD effects in simple axial geometry whereas Desch 2004
considered also oblique modes and toroidal fields. Balbus & Terquem (2001) isolated
the physics of the Hall-MRI and Kunz (2008) demonstrated that one of the Hall-MRI
branches was actually a new instability: the HSI. Finally, ambipolar diffusion was revisited
in the single-fluid approximation by Kunz & Balbus (2004), demonstrating the existence
of oblique ambipolar modes and their origin.

In the following, we revisit and discuss each of these effects with a unified notation and
geometry. Note, however, that our approach and dispersion relation is formally identical to
that of Desch (2004).

6.4.2. Linearised equations
As in the cases described previously, we start from (5.12)–(5.15) in which we assume

the disc is threaded by a mean field having a vertical and azimuthal components: B =
B0,yey + B0,zez. In the following, we consider small axisymmetric12 perturbations of the
equilibrium. We seek solutions of the form w = u exp[k · x + σ t] and B = B0 + b exp[k ·
x + σ t], where k = kxex + kzez is the wavenumber and σ is the linear growth rate of the
instability. We moreover neglect vertical stratification and vertical gravity and assume the
flow is incompressible, which implies that we consider the SSB approximation. As we
show later, this is enough to capture most of the physics relevant to the problem. We
explore in § 6.4.6 the effect of the vertical stratification on linear modes.

Under these assumptions, the linearised equations read

σu = −ikΠ + i
k · B0

4πρ
b + 2Ωuyex − (2 − q)Ωuxey, (6.33)

σb = i(k · B0)u − qΩbxey − ηOk2b + ηH

(
k · B̂0

)
k × b,

− ηA

[(
k · B̂0

)2
b −

(
b · B̂0

) ([
k · B̂0

]
k − k2B̂0

)]
, (6.34)

12In Hill’s approximation, non-axisymmetric linear perturbations only lead to transiently growing solutions, which
ultimately decay (Balbus & Hawley 1992). These transient ‘modes’ are, however, important for the MRI dynamo once
non-linear feedback is taken into account (Lesur & Ogilvie 2008a).
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k · u = 0, (6.35)

k · b = 0. (6.36)

The expression of the non-ideal terms can be interpreted in the following way. First,
Ohmic diffusion acts as a pure linear damping operator, as expected. The Hall term is
proportional to k × b, which means it rotates the magnetic perturbation around the k
direction, keeping its norm constant. Note that the direction of rotation is given by the
sign of ηH , which shows that the handedness given by the Hall effect is connected directly
to the microphysics of the plasma (see § 3.4.1). Finally, ambipolar diffusion involves an
anisotropic diffusion term that we discuss in the following.

The solenoidal conditions can be used to eliminate uz and bz from the equations in favour
of the horizontal components, leading to a fourth-order problem

σux = i
k · B0

4πρ
bx + 2Ω

k2
z

k2
uy, (6.37)

σuy = i
k · B0

4πρ
by − (2 − q)Ωux, (6.38)

σbx = i(k · B0)ux − ηOk2bx − ηH

(
k · B̂0

)
kzby − ηA

B2
0

(
k2B2

0,zbx − kxB0,y (k · B0) by
)
,

(6.39)

σby = i(k · B0)uy − qΩbx − ηOk2by + ηH

(
k · B̂0

) k2

kz
bx

− ηA

B2
0

([
(k · B0)

2 + k2B2
0,y

]
by − k2

k2
z

kxB0,y(k · B0)bx

)
. (6.40)

The role played by ambipolar diffusion here is a bit more self-explanatory. We observe
that the diagonal terms in the second pair of equations are always negative definite, hence
ambipolar diffusion is really acting as a diffusion term on the diagonal components with
an amplitude controlled by the magnitude, but also the orientation of B0. However, there
are also off-diagonal terms proportional to kxB0,y. As we show, these terms can lead to
oblique unstable modes (see also Kunz & Balbus 2004).

We next solve the set of equations for σ described previously and look for unstable
eigenvalues. We follow Pandey & Wardle (2012) and first obtain an equation for the
velocity fluctuations

u = ik · B0

4πρ(σ 2 + κ2)

(
σ 2Ω

−(2 − q)Ω σ

)
b, (6.41)

so that the induction equation becomes, in matrix form,⎡
⎢⎣
⎛
⎜⎝ σ + ηOk2 + τAk2V2

Az 
HωAkz − τAkxVAyωA

qΩ − k2

k2
z

(

HωAkz + τAkxVAyωA

)
σ + ηOk2 + τA(ω

2
A + k2V2

Ay)

⎞
⎟⎠

+ ω2
A

σ 2 + k2
z

k2
κ2

⎛
⎝ σ 2Ω

k2
z

k2

−(2 − q)Ω σ

⎞
⎠
⎤
⎥⎥⎦ b = 0 (6.42)
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where we have introduced the Alvén speed VA = B0/(4πρ)1/2, the Alfvén frequency ωA ≡
k · V A, the Hall length 
H ≡ ηH/VA, the ambipolar time τA ≡ ηA/V2

A and the epicyclic
frequency κ2 ≡ 2Ω2(2 − q).

After a long but straightforward calculation, one eventually obtains the dispersion
relation which can be written

σ 4 + C3σ
3 + C2σ

2 + C1σ + C0 = 0 (6.43)

with

C3 = 2ηOk2 + τA(k2V2
A + ω2

A), (6.44)

C2 = k2
z

k2
κ2 + 2ω2

A + η2
Ok4 + τ 2

Aω
2
Ak2V2

A + qΩτAωAkxVAy + 
HkzωA

(
k2

k2
z


HkzωA − qΩ
)
,

(6.45)

C1 = C1

(
ω2

A + k2
z

k2
κ2

)
, (6.46)

C0 =ω2
A

⎛
⎜⎜⎝ω2

A −2qΩ2 k2
z

k2︸ ︷︷ ︸
MRI

⎞
⎟⎟⎠+κ2k2

z k2η2
O+
HωAkz

⎛
⎜⎜⎝ (4 − q)Ωω2

A︸ ︷︷ ︸
ion-cyclotron instability

−qΩ
k2

z

k2
κ2︸ ︷︷ ︸

HSI

+
HωAkzκ
2

⎞
⎟⎟⎠,

+ κ2τ 2
Aω

2
Ak2

z V2
A + qΩτAkxVAyωA

(
k2

z

k2
κ2 + ω2

A

)
︸ ︷︷ ︸

Oblique ambipolar modes

. (6.47)

The stability of this linear system can be analysed in the vicinity of σ = 0. In this case,
a necessary and sufficient condition for instability is C0 < 0. This allows us to identify
three sources of instability: the usual MRI, the ion-cyclotron instability, the Hall-shear
instability (HSI) and the term at the origin of Oblique ambipolar modes, which is not a
genuine instability branch.

Before exploring the non-ideal regime, let us point out that in the ideal MHD limit,
this dispersion relation shows that modes with kx �= 0 have a lower growth rate than
kx = 0 modes. As a result, kx = 0 modes are always the most unstable eigenmodes of the
system. These modes are often called ‘channel modes’ as they do not have any horizontal
spatial dependency. They are also exact non-linear solutions of the full MHD equations
(Goodman & Xu 1994). For this reason, they are very robust and they often show up in the
non-linear regime, as we show later.

6.4.3. Ohmic diffusion
The effect of Ohmic diffusion on the stability of the MRI is physically very intuitive:

it stabilises MRI modes, starting from the largest ωA of the system (see figure 19). The
stability condition in the presence of Ohmic diffusion is deduced from the condition C0 =
0 and reads

2qΩ2

k2V2
Az

− 1 < κ2 k2

k2
z

η2
O

V4
Az

→ Stability. (6.48)

Clearly, the modes with kx = 0 are the last to be stabilised when one increases Ohmic
diffusion. Let us focus on this case and assume the flow is Keplerian so that κ = Ω
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FIGURE 19. MRI growth rate as a function of the Ohmic Elsasser number ΛO for a Keplerian
disc (q = 3/2) with kx = 0. Note the damping of the most unstable mode for ΛO = 1/

√
3 and

the survival of low growth rate modes in the limit ωA → 0, ΛO → 0.

and q = 3/2. The stability of the most unstable ideal mode is often considered as a proxy
for the stability of the flow. This mode has ωA = √

3Ω/2 so that the inequality reduces to

Λ2
O <

1
3

→ Stability of the most unstable ideal MRI mode. (6.49)

Note, however, that this does not imply that all of the modes available to the disc are stable,
and that the disc is stable. A more constraining criterion results from this and requires that
the mode with the largest length scale is MRI stable, i.e. that

3Ω2

k2
z,minV2

Az
− 1 < Λ−2

O → General disc stability. (6.50)

6.4.4. Hall effect
Hall-driven linear waves: The Hall effect is known to be at the origin of new linear

waves. These waves can be captured by letting Ω → 0 and neglecting Ohmic and
ambipolar diffusion. In this case the dispersion relation (6.43) gives

0 = σ 4 + σ 2 (2ω2
A + 
2

Hω
2
Ak2)+ ω4

A

= (
σ 2 + iσ
HωAk + ω2

A

) (
σ 2 − iσ
HωAk + ω2

A

)
. (6.51)

We recognise two waves with frequency ω ≡ iσ given by

ω = ωA

⎡
⎣±
Hk

2
+
√

2

Hk2

4
+ 1

⎤
⎦ , (6.52)

where ‘+’ waves are known as whistlers or electron-cyclotron modes, whereas ‘−’ waves
are ion-cyclotron modes. The whistler frequency ωH = ωA
Hk increases as k2 in the limit
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k → ∞ whereas the ion-cyclotron frequency tends to a constant ωIC = ωA/(
Hk). Hence,
these two waves behave very differently at the small scale. For positive 
H , whistlers are
right-handed polarised wave whereas ion-cyclotron are left-handed. Physically, whistlers
are essentially an oscillation of the electrons fluid (or of the lightest charged particle),
leaving all of the other components of the plasma unaffected. Whistler and ion-cyclotron
waves become standard right and left-handed circularly polarised Alfvén wave in the limit
k → 0.

HSI: The HSI13 is a new branch of instability (Kunz 2008), which is often confused with
the traditional MRI, despite its different physical origin. It is essentially an instability of
whistler waves under the action of shear.

To capture the HSI, one can let ωA → 0 while keeping 
HωA > 0. This ‘low
magnetisation’ limit allows one to decouple the ions from the electrons, as is evident from
(6.42). Neglecting Ohmic and ambipolar diffusion, one obtains the following dispersion
relation (

σ 2 + k2
z

k2
κ2

)[
σ 2 + 
HωAkz

(
k2

k2
z


HkzωA − qΩ
)]

= 0, (6.53)

which exhibits a linear instability when


HVAzk2
z

(
k2
HVAz − qΩ

)
< 0 → HSI unstable. (6.54)

Interestingly, the HSI shows up only when q
HVAz > 0 or, in other words, when the vertical
field points in the same direction as the rotation axis in Keplerian discs,14 assuming

H > 0. When the whistler frequency becomes too large (k2
HVAz > qΩ), the instability
disappears. For a given kz, the most unstable mode has kx = 0, hence k = kz. For this
reason, the HSI often shows up as channel-like mode in simulations, in a similar way to
the MRI. Last, the maximum growth rate is identical to the MRI σmax = qΩ/2 and is
obtained for k2
HVAz = qΩ/2.

Physically, this instability is a result of sheared whistler waves. If we look at the disc
from the top with the vertical field pointing towards us, the magnetic perturbation of a
whistler wave will tend to rotate counter-clockwise (figure 20). If the vertical field is
positive (i.e. aligned with the rotation axis), the Keplerian shear is going to stretch the
perturbation in the opposite direction, amplifying the toroidal field from the radial field
and feeding the instability. In contrast, if the vertical field is anti-aligned with the rotation
axis, the direction of rotation of whistler perturbations is that of the shear, resulting in a
damped whistler wave.

Ion-cyclotron instability: The ion-cyclotron instability15 is more difficult to isolate
compared with the HSI because ion inertia cannot be neglected in this case. However, it is
still possible to filter out whistler waves by letting kz → ∞ and keeping constant kx � kz.
In this case, the whistler wave frequency ωH becomes infinite whereas the cyclotron
frequency remains finite. As we are looking for a finite growth rate, we assume σ is finite
when k → ∞. Neglecting ambipolar and Ohmic diffusion and keeping only O(k4) terms,
the dispersion relation (6.43) becomes (see also Simon et al. 2015)

σ 2
2
Hk2ω2

A + [
ω2

A + (2 − q)Ω
HωAkz
] [
ω2

A + 2Ω
HωAkz
] = 0. (6.55)

13This instability is also named ‘diffusive instability’ (DI) by Pandey & Wardle (2012) to emphasise that rotation is
unimportant for this instability, in contrast to the MRI.

14Physically, it is not the rotation but the background shear of the flow S ≡ ∂xVy that matters. The general criterion
is therefore SVAz < 0.

15This instability is also named ‘diffusive MRI’ (DMRI) by Pandey & Wardle (2012).
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(a)

(b)

FIGURE 20. Physical principle of the HSI. The magnetic perturbation (in green) is rotated
(a) clockwise or (b) counter-clockwise by the Hall effect depending on the polarity of the mean
field B0. When B0 > 0, the rotated perturbation is amplified by the shear (in blue) while it is
damped by the shear when B0 < 0.

This relation clearly describes ion-cyclotron modes because in the limit Ω → 0, we
recover the ion-cyclotron frequency σ = ±iωCI. It describes unstable modes, resulting
from the interaction between ion-cyclotron waves and epicyclic motions, provided that

− V2
Az

(2 − q)Ω
< 
HVAz < − V2

Az

2Ω
→ Ion-cyclotron unstable. (6.56)

This inequality brings up two remarks: (i) the ion-cyclotron instability appears for
anti-aligned field configurations, i.e. field configuration opposite to the HSI; (ii) this
instability does not vanish in the limit kz → ∞. Therefore, there is no small-scale
quenching similar to the MRI and the HSI, but there is a field strength limit.

General case: In the general case, one cannot compute the growth rate of the Hall-MRI
easily. To illustrate the general growth rate of the Hall-MRI, we present in figure 21 the
growth resulting from (6.43) in the Hall-only case. To quantify the intensity of the Hall
effect, we have defined a Lundquist number based on the vertical wavenumber

L∗
H = 1


Hkz
= VA

ηHkz
. (6.57)

We have chosen the most unstable modes kx = 0 and assumed kz > 0 so that ωA < 0
corresponds to B0z anti-aligned withΩ . As can be seen in figure 21, we recover the MRI in
the limit LH → ∞, which gives identical growth rates under the symmetry ωA → −ωA.
As L∗

H decreases and the Hall effect increases, this symmetry is broken.
For ωA > 0 (aligned field configuration), the MRI becomes the HSI, and the optimum

growth rate starts to move to lower ωA. This is expected from our analysis because the
maximum growth rate of the HSI is found for ωA/Ω � L∗

H/2. We show in white filled
contours the stability limit of the HSI obtained from (6.54). This limit matches the full
dispersion relation for L∗

H � 0.3.
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FIGURE 21. Hall-MRI growth rate as a function of the modified Hall Lundquist number L∗
H =

(
Hkz)
−1 for a Keplerian disc (q = 3/2) with kx = 0. We have assumed kz > 0 so that ωA <

0 corresponds to the anti-aligned case VAz < 0. The white plain line corresponds to the HSI
stability limit (6.54) and the white dashed lines to the ion-cyclotron stability limits (6.56).

For ωA < 0 (anti-aligned field configuration), the MRI becomes the ion-cyclotron
instability and the optimum growth rate moves to higher |ωA|. The stability contours of
the ion-cyclotron instability (6.56) are shown as dashed white lines. As for the HSI, they
match the full dispersion relation for L∗

H � 0.3.
Effect of Ohmic diffusion on the Hall-MRI: As shown previously, Ohmic diffusion

tends to damp MRI modes, starting from the largest ωA and moving to lower ωA as ΛO
decreases. On the other hand, the Hall effect creates two distinct branches from the MRI,
depending on the field alignment configuration. As Ohmic diffusion suppresses first high
|ωA| modes, the ion-cyclotron instability will be the first to be stabilised. On the other hand,
because the HSI is living at lower |ωA| compared with the MRI, it will be less affected
by Ohmic diffusion than the MRI. This effect is illustrated in figure 22, demonstrating
that HSI modes survive more easily to Ohmic diffusion, even when ideal MRI modes are
suppressed.

We can go further and estimate the stability limit of the HSI in the limit ωA → 0
while keeping 
HωA > 0. In this limit, the dispersion relation of the HSI including Ohmic
diffusion reads

(
σ 2 + k2

z

k2
κ2

)[(
σ + ηOk2)2 + 
HωAkz

(
k2

k2
z


HkzωA − qΩ
)]

= 0, (6.58)

from which we can deduce a general instability criterion. For the most unstable HSI mode,
this criterion reads

Λ2
O <

1
2
Λ2

H → Stability of the most unstable HSI mode, (6.59)
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FIGURE 22. Same as figure 21 but including Ohmic diffusion with ΛO = 0.1. Note the
complete stabilisation of the ion-cyclotron branch and the strong damping of ideal MRI modes.
Only HSI modes subsist at low L∗

H with growth rates comparable with the ideal MRI case.

where ΛH is the Hall Elsasser number (see § 3.4.2). This expression can be compared
directly with the Ohmic-only criterion (6.49), and shows that, as expected, the HSI can
make the system unstable even when ΛO � 1, provided that ΛH � 1 as well.

For this reason, some researchers have proposed that the MRI could be ‘resuscitated’ in
regions having a strong Ohmic diffusion thanks to the presence of the Hall effect, which
could be dominant in some parts of the disc (Wardle & Salmeron 2012). The physical
interpretation of this effect is relatively simple. In the case of the MRI, the maximum
growth rate is found for ωA ∼ Ω , in other words, the Alfvénic and rotation frequencies
match. In the HSI case, it is the whistler and rotation frequencies ωH ∼ Ω that have to
match. In the limit of strong Hall effect, ωH = 
HkzωA. Therefore, when 
Hkz � 1, the
scale at which the whistler frequency matches the rotation frequency is much larger than
the scale at which the Alfvén frequency matches the rotation frequency. In other words,
the optimum HSI mode has a much larger wavelength than its MRI counterpart. For this
reason, the HSI is less sensitive to diffusion than the MRI, because diffusion first damps
small-scale modes.

Although these statements are true in the linear regime, the non-linear saturation
of the HSI is not guaranteed to be similar to that of the MRI. Effectively, the linear
analysis is unable to predict the turbulent angular momentum transport one could obtain
from the HSI. As we show in § 8.4, the HSI in the non-linear regime is indeed full of
surprises.

6.4.5. Ambipolar diffusion
The linear ambipolar diffusion is a non-diagonal operator as shown in (6.42).

The non-diagonal terms are non-zero only when kxVAy �= 0, i.e. when both non-axial
wavevectors and guide fields are considered. Otherwise, ambipolar diffusion acts as a
usual diffusion operator by damping magnetic perturbation. Note, however, that even in
this case, it does not act as a scalar diffusion, unless kx = 0 and VAy = 0.
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Diagonal case (kxVAy = 0): In this case, the stability criterion is very similar to that of
Ohmic diffusion. By requiring C0 > 0, one obtains

2qΩ2

k2V2
Az

− 1 < κ2τ 2
A

(
VA

VAz

)2

→ Stability. (6.60)

This criterion shows that, as for Ohmic diffusion, the most unstable modes have kx = 0.
Moreover, it shows that the stability condition is affected by the toroidal field strength, a
stronger VAy leading to a more stable system. As for Ohmic resistivity, we can derive a
criterion for the stability of the most unstable ideal MRI mode in Keplerian flows, which
reads

Λ2
A <

1
3

(
VA

VAz

)2

→ Stability of the most unstable ideal MRI mode, (6.61)

and a criterion for the stability of all the modes available smaller than the minimum
vertical wavenumber kz,min:

3Ω2

k2
z,minV2

Az
− 1 < Λ−2

A

(
VA

VAz

)2

→ General disc stability. (6.62)

This shows that the MRI can be stabilised even for ΛA > 1 provided that the toroidal
field dominates over the poloidal field. The field topology is therefore a key point for the
stability under the action of ambipolar diffusion. The physical reason for this is relatively
simple. The MRI mechanism is only sensitive to the magnetic tension, which is due to Bz in
the absence of non-axisymmetric perturbations. In contrast, ambipolar diffusion increases
with the total field strength. Hence, an increase in VAy results in an increase of the effective
diffusion ηA, whereas the MRI feedback loop is left unperturbed.

Non-diagonal case (kxVAy �= 0): In this case, the non-diagonal terms of ambipolar
diffusion can act as a positive feedback loop in the induction equation. The criterion
for this positive feedback is easily obtained from the dispersion relation (6.43):
qΩkxkzVAyVAz < 0. An illustration of the effect of this term on the general stability
property is shown in figure 23 where we have assumed VAy = VAz, q = 3/2 andΛA = 0.4.
We observe that oblique modes (kx �= 0) tend to be more unstable than axial modes when
ΛA < 1. It can be shown that oblique modes are always unstable, albeit with a vanishing
growth rate, in the limit ΛA → 0 provided that kx/kz is sufficiently large (Kunz & Balbus
2004).

6.4.6. Vertical stratification
All of the results described previously were computed ignoring vertical stratification.

It should, however, be pointed out that because discs are vertically stratified, unstratified
results should be taken with care. Let us emphasise here a few important results regarding
the effect of stratification on MRI modes. In this section, we assume that the disc is
vertically isothermal (see § 4.2) and is only threaded by a vertical field (no toroidal field).
We quantify the intensity of the imposed field with the plasma beta parameter in the
midplane:

βmid ≡ 8πPmid

B2
= 2c2

s

V2
Az(z = 0)

. (6.63)

Ideal MRI: The ideal MRI case with an isothermal disc is presented in details by Latter,
Fromang & Gressel (2010). We therefore just summarise here the main conclusions.
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FIGURE 23. MRI growth rate with ambipolar diffusion and ΛA = 0.4. We have chosen VAy =
VAz and kx �= 0 to illustrate the effect of non-diagonal ambipolar terms. The most unstable mode
in this case is found for kx < 0 and a weakly unstable branch exists for kx/kz � 3.5 in the limit
ωA → ∞. We name these modes ‘oblique ambipolar modes’. Note, however, their low relative
growth rate.

First, stratified eigenvalues (growth rates) satisfy the same dispersion relation (6.14) as
non-stratified modes with VA = VA(z = 0). Vertical wavenumbers k are quantised, but
eigenmodes are not simple harmonic functions in the z direction. Latter et al. (2010)
have shown that the first eigenmodes have knH = 1.1584, 2.0796, 2.9829, 3.8798, . . . for
n = 1 . . . 4. Taking k1 as the lowest wavenumber accessible to the system, the MRI is stable
for all possible eigenmodes in Keplerian discs (q = 3/2) if VAz(z = 0) >

√
3Ω/k1, i.e. if

βmid <
2(k1H)2

3
� 0.89 → Stability. (6.64)

This value can vary slightly depending on the boundary conditions for the perturbation as
z → ∞. Overall, it is safe to assume that the MRI exists provided that βmid � 1.

Second, eigenmodes come in two symmetries: odd symmetry modes (which
corresponds to odd n) have odd vx,y(z), even Bx,y(z) and exhibit a maximal magnetic
perturbation at the midplane and no velocity perturbation at this location. Even symmetry
modes (even n), on the other hand, have a velocity jet in the midplane and no magnetic
perturbation at z = 0 (see figure 24). The MRI does not choose specifically any symmetry
in these local stratified models: both even and odd n follow the same dispersion relation.

Third, the fastest growing modes tend to be more oscillatory in the disc midplane at
higher βmid. This is because qualitatively, one expects kVAz ∼ Ω for the fastest growing
mode, hence in the midplane, one obtains kzH ∼ √

βmid. An example of such a mode is
shown in figure 25.

Ohmic and ambipolar diffusion: As shown in the non-stratified section, Ohmic and
ambipolar diffusion tend to suppress the MRI when the Elsasser numbers are less than 1.
Typically, this situation occurs in the densest regions of the disc (see figure 10). We show
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(a) (b)

(c) (d )

FIGURE 24. (a,b) MRI eigenmodes computed at βmid = 5 for n = 1 (left, odd mode, σ =
0.72Ω) and n = 2 (right, even mode σ = 0.67Ω). (c,d) Schematic representation of the field
perturbation owing to odd (left) and even (right) modes.

FIGURE 25. Fastest growing MRI eigenmode (σ = 0.75Ω) in a stratified model for
βmid = 103. Note the strongly oscillating behaviour close to the midplane.

in figure 26 the most unstable MRI eigenmode with β = 103 resulting from our fiducial
metal-free mode at R = 1 AU. As expected, the MRI is strongly suppressed whereΛO < 1.
Ambipolar diffusion tends to reduce the overall growth rate but does not affect the shape
of the eigenmode significantly. This is a perfect linear illustration of the historical ‘layered
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(a) (b)

FIGURE 26. Fastest growing MRI eigenmode in a stratified model for βmid = 103 using the
diffusivity profiles from figure 10 at R = 1 AU. (a) Including Ohmic diffusion only (σ = 0.72Ω)
and (b) including Ohmic and ambipolar diffusion (σ = 0.56Ω). Note the lack of perturbations
in the disc midplane due to Ohmic diffusion and partially to ambipolar diffusion. Equivalent
eigenmodes with the same growth rates are found on the z > 0 side of the disc.

accretion’ paradigm where the MRI still survives at the surface of the disc, leaving the disc
midplane up to one to two scale-heights essentially magnetically dead (Gammie 1996).

Note that when the linear eigenmodes do not propagate in the disc, as is the case here,
there are no well-defined ‘odd’ and ‘even’ modes. Instead, there are two families of modes
localised either at the top or the bottom side of the disc, with identical growth rates. It is,
in principle, possible to combine these top and bottom modes to reconstruct even and odd
modes, but here we have chosen here to stress the lack of propagation through the disc of
the perturbation.

Hall effect: As discussed previously, the Hall effect can potentially revive dead zones
when the field is aligned with the rotation axis, thanks to the HSI branch of the Hall-MRI.
This effect is illustrated in figure 27 where the MRI eigenmode now propagates in the
midplane resulting in a fully active disc column at R = 1 AU when VAzΩ > 0. In this
case, however, the growing perturbation is mostly magnetic and velocity perturbations are
mostly absent in the midplane of the eigenmode. This is because the HSI is an unstable
whistler mode, which is essentially an electronic perturbation leaving the ions (and the
neutrals) unperturbed. When the field is anti-aligned, we recover results similar to the
purely diffusive case, albeit with a slightly reduced growth rate.

7. The helicoidal MRI

The helicoidal MRI (HMRI) was first identified by Hollerbach & Rüdiger (2005) using
a spectral analysis of a rotating Taylor–Couette flow. This instability is known to work
for arbitrarily low magnetic Reynolds numbers in rotating sheared flows, implying that it
could work both in liquid sodium experiments and in weakly ionised astrophysical discs
such as PPDs. For the sake of completeness, let us show here the origin of this instability
and discuss its application to Keplerian discs.

In contrast to the non-axisymmetric MRI (which is fully local), the HMRI is tightly
linked to the presence of curvature in the physics of the system, hence it cannot be
captured in Hill’s approximation (even though a WKB analysis can capture it in the
global geometry; see Kirillov, Stefani & Fukumoto (2014) and the following discussion).
Therefore, let us return to the evolution equations in global geometry.
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(a) (b)

FIGURE 27. Fastest growing MRI eigenmode in a stratified model for βmid = 103 using the
diffusivity profiles from figure 10 at R = 1 AU including Ohmic, Hall and ambipolar diffusion:
(a) assuming VAzΩ > 0 (σ = 0.65Ω) and (b) assuming VAzΩ < 0 (σ = 0.51Ω). The ‘dead
zone’ is now subject to long-wavelength perturbations when VAzΩ > 0, as a result of the HSI.

7.1. Full set of equations in cylindrical geometry
We consider the motion of a conductive fluid in cylindrical coordinates. We denote the
velocity of the fluid u and the magnetic field B. We consider the inviscid, incompressible
and ideal equations of MHD, which reads, component by component,

∂tuR + uR∂RuR + uφ
R
∂φuR − u2

φ

R
+ uz∂zuR

= − 1
ρ0
∂R

(
P + B2

8π

)
+ 1

4πρ0
BR∂RBR + 1

4πρ0

Bφ
R
∂φBR − 1

4πρ0

B2
φ

R
+ 1

4πρ0
Bz∂zBR

(7.1)

∂tuφ + uR∂Ruφ + uφ
R
∂φuφ + uRuφ

R
+ uz∂zuφ

= − 1
ρ0

1
R
∂φ

(
P + B2

8π

)
+ 1

4πρ0
BR∂RBφ + 1

4πρ0

Bφ
R
∂φBφ + 1

4πρ0

BRBφ
R

+ Bz∂zBφ

(7.2)

∂tuz + uR∂Ruz + uφ
R
∂φuz + uz∂zuz

= − 1
ρ0
∂z

(
P + B2

8π

)
+ 1

4πρ0
BR∂RBz + 1

4πρ0

Bφ
R
∂φBz + 1

4πρ0
Bz∂zBz (7.3)

for the equation of motion, which we combine into the induction equation,

∂tBR + uR∂RBR + uφ
R
∂φBR + uz∂zBR = BR∂RuR + Bφ

R
∂φuR + Bz∂zuR (7.4)

∂tBφ + uR∂RBφ + uφ
R
∂φBφ + uz∂zBφ + uφBR

R
= BR∂Ruφ + Bφ

R
∂φuφ + Bz∂zuφ + uRBφ

R
(7.5)
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∂tBz + uR∂RBz + uφ
R
∂φBz + uz∂zBz = BR∂Ruz + Bφ

R
∂φuz + Bz∂zuz, (7.6)

and the continuity equation,

1
R
∂RRuR + 1

R
∂φuφ + ∂zuz = 0. (7.7)

7.2. Linearisation
We linearise the equations with respect to a background flow

u0 ≡ RΩ(R)eφ, (7.8)

where Ω(R) is the angular velocity profile of the mean flow (arbitrary, for the moment).
In addition, we consider the case with a mean magnetic field defined as

B0 = Bφ,0(R)eφ + Bz,0ez (7.9)

so the only spatial dependency is in the R direction for the toroidal component of the field.
In addition, we are going to assume that the flow is axisymmetric, so that we can cancel
∂φ derivatives.

The velocity and magnetic fields are then expanded as

u = u0 + v,

B = B0 + b,

}
(7.10)

where deviations are assumed to be infinitely small compared with the means. The
linearised equations of motion eventually read

∂tvR = −∂RΠ − 2Bφ,0bφ
4πρ0R

+ 1
4πρ0

Bz,0∂zbR + 2Ωvφ

∂tvφ = 1
4πρ0

bR
1
R
∂RRBφ,0 + 1

4πρ0
Bz,0∂zbφ − (2Ω + R∂RΩ)vR

∂tvz = −∂zΠ + 1
4πρ0

Bz,0∂zbz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.11)

whereas the induction equation reads

∂tbR = Bz,0∂zvR,

∂tbφ = bRR∂RΩ + Bz,0∂zvφ − vRR∂R
Bφ,0

R
,

∂tbz = B0,z∂zvz.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (7.12)

In order to make the notations more concise and consistent with the usual MRI derivation,
we define the following coefficients

q ≡ −d logΩ
d log R

,

p ≡ −d log Bφ,0
d log R

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (7.13)
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It should be noted that the particular case p = 1 corresponds to a case where no axial
current is present in the system. This is the reference case considered by Hollerbach &
Rüdiger (2005)

Using this notation, the equations eventually read

∂tvR = −∂RΠ − 2Bφ,0bφ
4πρ0R

+ 1
4πρ0

Bz,0∂zbR + 2Ωvφ

∂tvφ = −( p − 1)
Bφ,0

4πρ0R
bR + 1

4πρ0
Bz,0∂zbφ −Ω(2 − q)vR

∂tvz = −∂zΠ + 1
4πρ0

Bz,0∂zbz

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.14)

whereas the induction equation reads

∂tbR = Bz,0∂zvR,

∂tbφ = −qΩbR + Bz,0∂zvφ + ( p + 1)
Bφ,0

R
vR,

∂tbz = B0,z∂zvz.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (7.15)

7.3. WKB approximation and pressure
We are going to look for a local solution, i.e. a solution with fast variation compared with
R. We therefore focus on a tiny region around a fiducial radius R0 defining x ≡ R − R0,
and expand the solution as

v, b ∝ exp
[
σ t + i(kxx + kzz)

]
, (7.16)

thus we obtain

σvR = −ikRΠ − 2ωAφbφ + iωAzbR + 2Ωvφ,

σvφ = −( p − 1)ωAφbR + iωAzbφ −Ω(2 − q)vR,

σvz = −ikzΠ + iωAzbz,

⎫⎪⎬
⎪⎭ (7.17)

whereas the induction equation reads

σbR = iωAzvR,

σbφ = −qΩbR + iωAφvφ + ( p + 1)ωAφvR,

σbz = iωAzvz,

⎫⎪⎬
⎪⎭ (7.18)

where we have defined the Alfvén frequency ωAz = kzB0,z/
√

4πρ0 and the toroidal Alfvén
frequency ωAφ = Bφ,0/(R0

√
4πρ0). It is obvious from here that the vertical equation of

motion and induction are just fed by the horizontal problem, but they do not have any
feedback in the horizontal plane. We therefore consider only the horizontal equations
without loss of generality. In order to solve for the pressure, we dot the equation of motion
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by k to obtain an equation for Π . This gives

Π = 2ikRωAφbφ
k2

− 2iΩvφ
kR

k2
. (7.19)

This eventually leads to the following linear problem⎛
⎜⎜⎜⎝

−σ 2Ωgzz iωAz −2ωAφgzz

−(2 − q)Ω −σ −( p − 1)ωAφ iωAz

iωAz 0 −σ 0
( p + 1)ωAφ iωAz −qΩ −σ

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
vr

vφ

br

bφ

⎞
⎟⎟⎟⎠ = 0, (7.20)

where gzz = k2
z/k

2. This has non-trivial roots provided that the matrix determinant cancels
out. This condition leads to a dispersion relation on σ :

σ 4 + σ 2 [2ω2
Az + κ2gzz + 2( p + 1)ω2

Aφgzz
]− 8iσωAzωAφΩgzz

+ ω2
Az

[
ω2

Az − 2qΩ2gzz + 2( p − 1)ω2
Aφgzz

] = 0. (7.21)

We recognise the usual MRI-related form of the dispersion relation in the last term. The
case p = 1, which corresponds to the HMRI initially derived by Hollerbach & Rüdiger
(2005), therefore does not affect the original MRI criterion. As we show later, the HMRI
driving term is actually the linear term in σ .

7.4. HMRI with resistivity
Adding resistivity η means that the linearised induction equations are modified as follows:

σbR = iωAzvR − ηk2bR,

σbφ = −qΩbR + iωAφvφ + ( p + 1)ωAφvR − ηk2bφ,

σbz = iωAzvz − ηk2bz.

⎫⎪⎪⎬
⎪⎪⎭ (7.22)

The resulting linear system is then transformed into⎛
⎜⎜⎜⎝

−σ 2Ωgzz iωAz −2ωAφgzz

−(2 − q)Ω −σ −( p − 1)ωAφ iωAz

iωAz 0 −σ − ηk2 0

( p + 1)ωAφ iωAz −qΩ −σ − ηk2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
vr

vφ

br

bφ

⎞
⎟⎟⎟⎠ = 0, (7.23)

which results in the following dispersion relation

σ 2(σ + ηk2)2 + σ(σ + ηk2)
[
2ω2

Az + 2( p + 1)ω2
Aφgzz

]+ (σ + ηk2)2κ2gzz

− iωAzωAφΩgzz
[
(8 − 2q)(σ + ηk2)+ 2qσ

]
+ ω2

Az

[
ω2

Az − 2qΩ2gzz + 2( p − 1)ω2
Aφgzz

] = 0. (7.24)

This can be combined into a standard fourth-order polynomial in σ :

σ 4 + 2σ 3ηk2 + σ 2 [2ω2
Az + κ2gzz + 2( p + 1)ω2

Aφgzz + η2k4]
− σ

[
8iωAzωAφΩgzz − 2ηk2 (ω2

Az + κ2gzz
)]

+ ω2
Az

[
ω2

Az − 2qΩ2gzz + 2( p − 1)ω2
Aφgzz

]
− (8 − 2q)iωAzωAφΩgzzηk2 + η2k4κ2gzz = 0, (7.25)
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which is formally equivalent to Kirillov et al. (2014, appendix B). Although this dispersion
relation contains both the MRI and the HMRI in the resistive regime, it is difficult to
disentangle the two instabilities. We therefore follow Liu et al. (2006) and consider the
limit where the resistivity is much larger than the other terms.

7.5. Inductionless limit
In the inductionless limit, we neglect magnetic induction by considering roots σ � ηk2.
We therefore introduce a small parameter ε = 1/ηk2, and expand the dispersion relation at
first order in ε. This suppresses the strongly damped magnetic modes, having σ ∼ −ηk2,
which are primarily damped Alfvén waves and on which the usual MRI lives. For this
reason, the inductionless limit allows us to suppress (stabilised) MRI modes. Following
this limit, we get a second-order dispersion relation:

σ 2 + σε
[
2ω2

Az + 2( p + 1)ω2
Aφgzz

]+ κ2gzz − 2iεωAzωAφΩgzz(4 − q) = 0. (7.26)

The roots are simple to obtain and give at first order in ε:

σ = ±iκg1/2
zz + ε

[
± 1
κ
ωAzωAφΩg1/2

zz (4 − q)− ω2
Az − ( p + 1)ω2

Aφgzz

]
. (7.27)

As can be seen, this growth rate describes a small deviation from pure epicyclic
oscillations. Therefore, in contrast to the MRI, which is an instability of the (slow) Alvén
branch, the HMRI is an overstability of the epicyclic branch. This explains, in part, its
survival in the limit of small magnetic Reynolds numbers.

The instability clearly arises for the + sign of the roots, when

1
κ
ωAzωAφΩg1/2

zz (4 − q)− ω2
Az − ( p + 1)ω2

Aφgzz > 0 → Instability. (7.28)

As this condition is on a second-order polynomial on ωAφ , it is strictly equivalent to
requiring that the discriminant of the polynomial is positive, i.e. that

(4 − q)2

2(2 − q)
− 4( p + 1) > 0. (7.29)

Assuming κ2 > 0, this is again equivalent to asking that

q2 + 8qp − 16p > 0 (7.30)

which is (again) a second-order polynomial in q, which we ought to resolve. The stability
condition is then simply

q > 4(
√

p(1 + p)− p) or q < −4(
√

p(1 + p)+ p) → Instability. (7.31)

In the current-free configuration (p = 1), we recover the so-called Liu limit (Liu et al.
2006) q > 4(

√
2 − 1) � 1.657, i.e. that a current-free toroidal field is stable in the

Keplerian regime. It is the main reason why this instability has been mostly neglected
in the astrophysical context.

However, if one allows for an axial current in the system (p �= 1), it is possible to recover
the instability for Keplerian rotation profiles. This can be deduced from (7.30):

p <
q2

8(2 − q)
→ Instability. (7.32)

In the Keplerian regime, we therefore require p < 9/16 = 0.5625.
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The maximum growth rates are obtained from the mean of the two roots of (7.28), which
is simply

ωAφ,max = 1
2κ
ωAzΩg1/2

zz (4 − q). (7.33)

The maximum growth rate is then given by

σmax = iκg1/2
zz + V2

Az

η

[
gzz

(4 − q)2

2(2 − q)( p + 1)
− 1

]
, (7.34)

which turns out to be spatially scale-free. From these results, we can deduce a few
important results for Keplerian discs with q = 3/2. First, one finds that the growth
rate in units of the local orbital frequency scales like the Ohmic Elsasser number, i.e.
Im(σmax)/Ω � ΛO. This implies relatively low growth rates in PPDs, unless they are
hosting a dynamically strong vertical field (with VAz ∼ ΩH where H is the disc thickness).
In addition, these ‘optimum’ growth rates can only be reached for ωAφ ∼ ωAz (from (7.33)).
Combining these constraints, we find that VAφ ∼ RΩHk. Given that, by construction,
Hk > 1 (because the vertical wavelength needs to fit in the disc), this shows that the
azimuthal Alfvén velocity needs to be of the order of the Keplerian velocity (or larger).
This is a very strong azimuthal field, well above equipartition. Among other things, such a
strong field implies that the disc is no longer Keplerian as the radial tension and magnetic
pressure forces are of the order of the central gravity.

For these reasons, the role played by the HMRI in the context of PPDs has been mostly
ignored, as it lives in a parameter regime probably distant from that of real systems, which
are known to be in Keplerian rotation, and hence for which ωAφ � Ω .

PART THREE: Non-linear saturation of the MRI

The saturation of the MRI has been mostly studied in local shearing box simulations. As
the seminal paper by Hawley et al. (1995), several studies have been dedicated to non-ideal
effects and the role they play in the MRI saturation.

Let us first distinguish unstratified and vertically stratified shearing box models. In the
unstratified model, the box is periodic in the vertical direction, making the system much
simpler to analyse. It corresponds to the SSB model of Umurhan & Regev (2004) (see
also § 5.2). When vertical stratification is included, the flow is usually allowed to escape
through the vertical boundary conditions, potentially leading to outflows. Here, we first
focus on unstratified models before moving to stratified models.

It is also important to separate simulations with and without a mean field. Although
the MRI (the linear instability) does require a mean field to exist, it has been shown that
in the non-linear regime, MHD turbulence exists without any mean field. We call this
case the ‘MRI dynamo’. Although this was initially a mere curiosity, it turned out to be
the fiducial configuration for many stratified and even global simulations owing to the
technical difficulties associated with simulations with a mean field.

In all of these models, one uses box averages, defined for a quantity Q by

〈Q〉 =
∫∫∫

d3xQ. (7.35)

One of the key elements is then to quantify the α parameter from the turbulent stress,
which is defined as

α ≡ 1
〈P〉

〈
ρwxwy − BxBy

4π

〉
, (7.36)

which is also sometimes averaged in time.
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8. Unstratified models

Except in rare circumstances, unstratified models are periodic in the vertical direction.
In this case, the energy conservation equation (5.22) reads

∂t〈EMech〉 = 〈P∇ · w〉 + 〈ENI · J 〉 + qΩ0

〈
ρwxwy − BxBy

4π

〉
. (8.1)

In numerical experiments, because MRI turbulence is subsonic, the contribution of the
P dV term is small whereas the x–y stress term is definite positive (it is the term driving
accretion). Therefore, a quasi-steady turbulent state for which Emech ∼ constant necessarily
implies that non-ideal effects (or viscous effects, which have been ignored here) are
non-negligible. This statement can be understood in terms of Kolmogorov’s turbulent
cascade argument. In the energy equation, the stress is a source of mechanical energy.
In the cascade argument, it corresponds to the energy injection rate. For the cascade to be
in a steady state, some dissipative effect must enter the picture at some scale to dissipate
what has been injected at the beginning of the cascade. One concludes from this argument
that there is no such thing as ideal MRI turbulence.

Here, we keep the terminology ‘ideal MRI’ in cases where dissipation is sufficiently
small to be negligible on large scales ΛO,H,A � 1, or when no physical dissipation is
considered explicitly in the numerical method (an approach referred to as ‘implicit large
Eddy simulations’ (ILES)). Nevertheless, numerical dissipation is always actively playing
a role in these models, which is not without consequences, as we shall show.

Configurations with a mean field are often characterised by the plasma β parameter of
the mean field, as defined by

βmean ≡ 8π〈P〉
〈B〉2

. (8.2)

This should not be confused with the turbulent plasma β parameter

〈β〉 ≡
〈

8πP
B2

〉
, (8.3)

which is not a control parameter of the physical system because usually B � 〈B〉.
In principle, the vertical box extension Lz does not necessarily match the pressure scale

height H = cs/Ω because vertical stratification is ignored in these models. However, in
most of the simulations published today, it is the case, so that the two scales can be
identified. This allows us to obtain an alternative expression for βmean, which can be useful
to interpret numerical simulations

βmean ≡ 2Ω2L2
z

V2
Az

. (8.4)

It is this expression for β that is used in incompressible simulations.

8.1. Ideal MHD
8.1.1. With a mean field

The first historical models of MRI turbulence (Hawley et al. 1995) tested both mean
vertical and toroidal fields and were computed in the ideal MHD framework. MRI unstable
modes grow, break up presumably thanks to secondary instabilities that are essentially
Kelvin–Helmholtz-type modes (Goodman & Xu 1994; Latter, Lesaffre & Balbus 2009)
and end up in fully developed MHD turbulence.
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In the mean vertical field case, Hawley et al. (1995) found that and α � 6.7β−1/2
mean .

However, it was later pointed out by Bodo et al. (2008) that, in the presence of a mean
vertical field, the box aspect ratio used by Hawley et al. (1995) was prone to recurrent
channel mode solutions, which was absent in wider boxes (more elongated in x). This
implies that α and 〈β〉 are overestimated by a factor of two compared with wider boxes
(Bodo et al. 2008). We therefore correct (Hawley et al. 1995) for this and obtain the
following scaling law in the range 400 < βmean < 5 × 104:

α � 0.61〈β〉−1,

α � 3.3β−1/2
mean ,

}
(8.5)

a scaling which has also been verified in incompressible simulations (Longaretti & Lesur
2010). The extrapolation down to β → 1 suggests that α � 1 could be reached. However,
it is very difficult to explore this limit numerically because the MRI in this case becomes
very strong and channel modes never break up into developed turbulence (Hawley et al.
1995). Lesur & Longaretti (2007) explored this limit in the incompressible regime and
found that turbulence was in this case very intermittent with long ‘quiet’ episodes of linear
growth followed by strong and sudden bursts of turbulence. In this situation, a constant α
is probably not a good model of the disc physics.

In the mean toroidal field case, the scaling deduced from Hawley et al. (1995) in the
range 2 < βmean < 1200 gives lower α values:

α � 0.51〈β〉−1,

α � 0.35β−1/2
mean .

}
(8.6)

8.1.2. Zero mean field: the ‘MRI dynamo’
The existence of an MRI-driven dynamo was first demonstrated by Hawley, Gammie

& Balbus (1996). In this configuration, no external field is imposed and turbulence
regenerates a field on which the MRI can grow, feeding back turbulent motions. Owing to
this feedback loop, the system needs a finite-amplitude perturbation to sustain turbulence
(Rincon et al. 2008), implying that the instability is in this case subcritical. The dynamo
feedback loop has been the subject of intense studies after the discovery of dynamo cycles
(Lesur & Ogilvie 2008b), both based on a quasi-linear theory of the toroidal MRI (Lesur
& Ogilvie 2008a) and on a dynamical system approach (Herault et al. 2011; Riols et al.
2013).

According to Hawley et al. (1996), the MRI dynamo yields α ∼ 0.01. However, it
was later realised that the value of α in ideal MHD simulations (where no physical
dissipation is introduced) depends on the numerical resolution (Fromang & Papaloizou
2007), with α ∝ 1/N where N is the number of grid points in one direction.16 This
problem of numerical convergence (because numerics do not seem to be converging as
one increases the resolution) implies that the estimation for α from zero net flux simulation
is intrinsically flawed. Obviously, this is most probably a result of numerical dissipation
(the only dissipation channel of these simulations), which is not acting as a real physical
dissipation operator. If one introduces explicit viscosity ν and resistivity ηO in the system,
α then converges to a finite value, which seems to depend only on Pm ≡ ν/ηO (Fromang
2010) and no longer depend on the resolution. This, however, leads to another complication
known as the ‘Pm effect’.

16The scaling of α on N actually depends on the order of the spatial reconstruction scheme as shown by Bodo et al.
(2011).
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8.1.3. The Pm effect
The Pm effect shows up in quasi-ideal simulations both with and without a mean

vertical field. When one introduces only a small amount of viscosity ν and resistivity
ηO, the large-scale linear MRI modes are largely unaffected. For this reason, this regime
corresponds to a ‘quasi ideal-MHD’ regime. However, it turns out that the saturation level
depends on the magnetic Prandtl number. A lot of literature has been devoted to this effect
(Fromang et al. 2007; Lesur & Longaretti 2007). In simulations with a mean field (Lesur
& Longaretti 2007; Simon & Hawley 2009), the Pm effect results in an increase of α when
Pm increases. In the zero mean field case, the effect is even stronger because the MRI
dynamo, and therefore MHD turbulence, simply disappears when Pm � 1 (Fromang et al.
2007; Walker & Boldyrev 2017), giving α = 0 in that regime.

This effect shows up even in situations where the Reynolds and Elsasser numbers
are much larger than one, indicating that linear or quasi-linear theory cannot explain it
(Longaretti & Lesur 2010). Instead, it has been proposed that non-local energy transfers
in spectral space (Lesur & Longaretti 2011) could be responsible for this effect. If true,
because non-locality is necessarily bounded (Aluie & Eyink 2010), the Pm effect should
disappear as (ηO, ν) → 0. An alternative viewpoint is to separate the small ‘turbulent’
scales from the large scales where the dynamo mechanism is presumably lying. By
carefully computing the energy exchange between the scales, one finds that the small scales
act as an effective viscosity when Pm < 1 and tend to damp the large-scale mechanism
(Riols et al. 2013). This, however, is not fully satisfactory as it does not prove that the MRI
dynamo is non-existent in the limit Pm → 0 and Rm → ∞.

Despite numerous efforts, recent results indicate that the Pm effect is still very much
alive in simulations, up to Rm = 5 × 104 and ΛO = O(100) (Potter & Balbus 2017). This
effect is still a very open question regarding the MRI saturation level in the ‘quasi-ideal’
regime.

Note, finally, that the Pm effect is relevant only for the innermost parts of PPDs where
Rm � 1 is expected. For the regions above 1 AU, large-scale physics is dominated by
magnetic diffusion and the Pm effect is not relevant.

8.2. Ohmic diffusion
In non-stratified shearing box simulations with a net vertical flux, the presence of at least
one MRI unstable mode is given by (6.50). Using the expression for βmean, and assuming
that kz,min = 2π/Lz, the stability condition of a non-stratified shearing box reads

Rm >
βmean√

3
2π2

βmean − 4

→ Instability. (8.7)

The effect of a strong Ohmic diffusion on the non-linear saturation of the MRI was first
explored by Sano, Inutsuka & Miyama (1998) in two dimensions and Fleming, Stone
& Hawley (2000) in three dimensions. In the case with a mean field, it is found that
when ΛO � 1 (or, equivalently, Rm � βmean) and (8.7) is verified so that the system is
MRI-unstable, MRI turbulence is affected: α becomes lower than in the ideal case, and
turbulence becomes intermittent, with periods of linear growth followed by rapid decay
owing to reconnection events. As in the low-β ideal case, it is unclear whether this regime
can be modelled with a constant α coefficient.

In the zero mean field case, Fleming et al. (2000) found that the MRI was disappearing
below a critical Reynolds number 103 < Rmc < 104. Whether Rmc depends on resolution,
as the saturation level of the MRI dynamo does, is an open question.
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FIGURE 28. MRI turbulence regions as a function of Rm and βmean in the Ohmic diffusion case.
The red line corresponds to the linear stability criterion (8.7), the blue line to the limit ΛO = 1
and the green line to the zero net field limit Rmc = 103.

One can combine these results into a global map showing how turbulence saturates
in simulations with and without a net flux (figure 28). We have assumed that in the
limit βmean → ∞, the zero net flux subcritical threshold was to be considered instead
of the linear stability limit. As a result, the region βmean > 105 follows the zero mean
field criterion, whereas βmean < 105 shows a transition region between fully developed
turbulence with ΛO > 1 and a linearly stable flow, which we have named intermittent
turbulence, in reference to Fleming et al. (2000). As the data is sparse, we do not have any
clear estimate of the values α in the intermittent turbulence region.

8.3. Ambipolar diffusion
The role played by ambipolar diffusion on the saturation level of the MRI was first studied
by Hawley & Stone (1998) in the two-fluid limit. They found that MRI turbulence was
unaffected by ambipolar diffusion for ΛA � 100. Because PPDs are strongly collisional,
the two-fluid approach is not very efficient because numerical time steps are limited by
the collision timescale. For this reason, this problem was revisited using the single-fluid
approach by Bai & Stone (2011). They found that MRI is progressively suppressed by
ambipolar diffusion as ΛA decreases.

Starting from Bai & Stone (2011) results, it is possible to create a simple phenomenology
for MRI saturation under the effect of ambipolar diffusion. First, let us recall from (6.62)
that the linear stability criterion with kz,min = 2π/Lz is given by

ΛA > ΛA,crit
VA

VAz
→ Instability,

with ΛA,crit ≡ 1√
3

8π2
βmean − 1

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8.8)

The linear stability of a box with a pure vertical field is therefore very similar to the
Ohmic case. However, as the instability grows, 〈VA〉 increases, which eventually leads
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FIGURE 29. MRI turbulent transport deduced from (8.11) and (8.5) in the ambipolar-dominated
regime with a mean vertical field. These estimates match the numerical values of Bai & Stone
(2011) at ±50 %. The white dashed line corresponds to the marginal stability limitΛA = ΛA,crit.
The region below this line has α = 0 in the net vertical field case, but can reach α ∼ 10−4 when
a mean toroidal field component is introduced, thanks to the presence of unstable oblique modes
(see the text).

to the violation of the stability criterion. This self-suppression effect of MRI-turbulence
allows us to deduce the saturation level by assuming that at saturation

ΛA = ΛA,crit

(
VA

VAz

)
sat
. (8.9)

The ratio of Alfvén speeds can be evaluated by 〈β〉:(
VA

VAz

)
sat

�
(
βmean

〈β〉 + 1
)δ
. (8.10)

In principle, one would naïvely expect δ = 0.5. However, we find that this estimate does
not fit the numerical results of Bai & Stone (2011). This is because the large-scale field
VA is not necessarily proportional to the instantaneous 〈β〉 computed from the fluctuations
at all scales. Instead, we therefore choose δ = 1, which presents a better correlation to
the available data. Noting that, similarly to the ideal case of Hawley et al. (1995), Bai &
Stone (2011) found that 〈β〉 � (2α)−1, we obtain a simple estimate for α by combining the
previous expression:

α � 1
2βmean

(
ΛA

ΛA,crit
− 1

)
. (8.11)

Of course, this estimates diverges asΛA → ∞ because the saturation mechanism owing
to ambipolar diffusion becomes non-existent. In this case, the ideal-MHD estimate (8.5)
should be used instead. A sample of predicted α from this saturation estimation is given in
figure 29. These estimates are within 50 % of the calculated value with a pure vertical
field of Bai & Stone (2011) and can be used as a proxy to estimate the transport in
ambipolar-dominated discs. This estimate also successfully recovers the ideal regime when
ΛA � 50, as reported by numerical simulations.
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FIGURE 30. Evolution of the turbulent transport as a function of the intensity of the Hall effect
in the mean vertical field case. Data from Sano & Stone (2002) (SS02) and Kunz & Lesur
(2013) (KL13). Here LH < 0 corresponds to anti-aligned field configuration. Note that the KL13
βmean = 104 case is linearly stable for L−1

H = 0 because of Ohmic diffusion, and exemplify the
reactivation of the linear MRI under the action of Hall (see § 6.4.4). Note that the α values from
Sano & Stone (2002) have been renormalised to match the definition of α in Kunz & Lesur
(2013).

In the case of a pure azimuthal field, Bai & Stone (2011) have shown that no turbulence
is sustained below ΛA � 3, and α progressively drops to 0 from the ideal MHD value at
ΛA = 100.

Finally, in the case of a mixed mean vertical and azimuthal field, the subsistence of
oblique modes (see § 6.4.5) even at ΛA � 0.1 creates a weak transport with α ∼ 3 × 10−4

for VAy ∼ VAz (Bai & Stone 2011). Above ΛA ∼ 1, the scaling (8.11) is approximately
recovered as oblique modes become unimportant.

8.4. Hall effect
The effect of the Hall effect on the saturation level of MRI turbulence was first explored
by Sano & Stone (2002) with a relatively weak Hall effect (LH � 20). They found that
with a mean vertical field, α increases with decreasing LH in the aligned case, whereas α
decreases in the anti-aligned case. However, PPDs are likely to have lower LH than those
studied by Sano & Stone (2002) (typically LH ∼ 1 as in figure 10). For this reason, this
problem was revisited by Kunz & Lesur (2013) with simulations in the LH ∼ 1 regime. In
the case with a mean vertical field aligned with the rotation axis, it is found that despite
being violently unstable from the linear point of view owing to the HSI, the flow settles
down into a quasi-laminar state for LH � 5, with negligible turbulent transport (figure 30).
This ‘low transport state’ is characterised by a self-organised flow where the vertical field
is concentrated in a narrow region in the x direction (which can be identified as a ring
in global geometry). The mechanism behind self-organisation in Hall-MHD is detailed in
§ 8.5.

In the zero net-flux case, Sano & Stone (2002) found evidence that Rmc decreases from
around 104 in the ideal MHD regime possibly down to a few times 103 for LH � 20. At
the same time, α increases by a factor of a few compared with the ideal case. For stronger
Hall effects (LH � 5), a low transport state similar to the case with net flux is observed.
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FIGURE 31. Turbulent transport α as a function of time in zero net flux simulations including
the Hall effect. For a weak Hall effect (LH � 10), α is larger than in the case without Hall
effect by a factor ∼3. When the Hall effect increases, the system enters the low transport state
(LH � 5). In contrast to the net field case, it periodically switches back to a high transport state,
resulting in bursts of α.

However, in this case, the system switches back to a turbulent state periodically, resulting
in short bursts of turbulence in the system (figure 31).

Overall, it is found that despite a powerful large-scale instability, the MRI in the
Hall-dominated regime does not result into an efficient turbulent transport of angular
momentum in unstratified boxes. This surprising result, however, does not hold in stratified
boxes, where the Hall effect effectively leads to an enhanced radial stress (see § 9.2.2).
Hence, the low transport state of Kunz & Lesur (2013) is really a peculiarity of the
unstratified setup.

8.5. Self-organisation
Self-organisation is a process by which a disorganised (i.e. turbulent) flow creates
large-scale and long-lived structures. There are several examples of self-organisation
in nature, the best-known being probably the great red spot of Jupiter, resulting from
small-scale turbulent motions which cascade to large scales forming a giant anticyclone.
Self-organisation is a spontaneous symmetry-breaking process: the system starts from a
statistically homogenous state and ends up in a heterogeneous state with well-identified
structures. As such, self-organisation should be distinguished from local instabilities such
as Kelvin–Helmholtz or the Rossby wave instability (RWI; Lovelace et al. 1999) that result
from a special location in the flow (e.g. vortensity extremum).

Although self-organisation was clearly pointed out as a key phenomenon in Hall-MHD
by Kunz & Lesur (2013), this phenomenon (or a weaker version of it) has been observed
in ideal MHD simulations of MRI turbulence by several authors since early 2000. It
is also a very promising mechanism to explain some of the structures observed in the
sub-millimetric range (§ 1.4). Let us overview the different mechanisms that have been
proposed to explain this phenomenon.

8.5.1. Ideal MHD
Hawley (2001) and Steinacker & Papaloizou (2002) were among the first to note

the formation of ‘ring-like’ structures in MRI simulations with net vertical flux.
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The simulations are in these cases semi-global: vertical stratification is neglected whereas
the radial curvature is retained, leading to a cylindrical setup. It is found that the net
vertical flux is trapped in a low-density region, forming a gap. In these gaps, α can reach
values as high as 1, consistently with the fact that these gaps correspond to low βmean
regions. Hawley (2001) proposed that this could be the signature of a viscous instability: a
local density minimum results in a local decrease of βmean (assuming the mean field is kept
at its initial value). As α ∝ β−1/2

mean (see (8.5)), α increases in this region, which removes
mass from the region because of angular momentum conservation. Unfortunately, this
proposition has never been investigated further, leaving the origin of self-organisation in
these simulations unexplained.

The same phenomenon was reported in local shearing box models with a mean vertical
field by Bai & Stone (2014). They proposed that the non-diagonal components of the
turbulent resistivity tensor (Lesur & Longaretti 2009) could be at the origin of the effect by
acting as an ‘effective negative diffusivity’. This explanation is, however, dubious because
several authors have measured the turbulent resistivity tensor of MRI turbulence (Fromang
& Stone 2009; Guan & Gammie 2009; Lesur & Longaretti 2009) and found that the
effective resistivity was always positive. Strikingly, Bai & Stone (2014) simulations clearly
show that despite having a globally concentrated field Bz(x), the turbulent electromotive
force E = 〈w × B〉 does not depend on x (Bai & Stone 2014, figure 3). Hence, the turbulent
resistivity prescription E = ηturb∇ × 〈B〉 likely breaks down altogether and should be
replaced with a more elaborate closure scheme.

In simulations without net flux, Fromang & Nelson (2005) reported the spontaneous
formation of giant anticyclones, though this could be a boundary condition artefact
(Fromang, private communication). Johansen, Youdin & Klahr (2009) also reported the
formation of ‘pressure bumps’ that are caused by large-scale fluctuations of α. In contrast
to the simulations with a mean field vertical field, the features observed in the zero net
field case are transient and only survive for a limited time, which depends on the box
size. Johansen et al. (2009) proposed a model based on a stochastic α, which predicts
long-lived axisymmetric structures in quasi-geostrophic equilibrium, as observed in their
simulations.

8.5.2. Hall-MHD
The first mention of self-organisation in Hall-MHD appears in Kunz & Lesur (2013),

where self-organisation has a dramatic effect on the saturation level of Hall-dominated
MRI (see § 8.4). Self-organisation appears in an obvious manner by looking at the vertical
field component of the flow (figure 32). Although in the ideal-MHD case, self-organisation
appears as a ‘second-order’ effect on top of MRI turbulence, in the Hall-MHD case,
self-organisation is the main saturation mechanism of the MRI. In other words, turbulence
is mostly suppressed by self-organisation. Self-organisation shows up when LH � 5, and
α essentially vanishes as a result of the lack of turbulence (figure 30). This surprising
result also holds in the case with zero net flux or in the mixed case having both a mean
azimuthal and vertical magnetic flux.

The origin of Hall-driven self-organisation can be tracked down to the induction
equation in the presence of a Hall effect. Indeed, When the Hall length is constant, the
induction equation reads

∂tB = ∇ × (w × B)+ 
H∇ ×
(

∇ · −BB
4π

)
, (8.12)

which highlights the role of the Maxwell stress in the induction equation. Guided by
numerical simulations that show the appearance of a vertical magnetic field with variations
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(a)

(b)

FIGURE 32. Vertical field component in snapshots of MRI turbulence. (a) Ideal-MHD
simulation with βmean = 3200. (b) Hall-MRI simulation with βmean = 3200 and LH = 1.75.
Figure from Kunz & Lesur (2013).

in the x direction, let us define an average

Q̄ =
∫∫

dy dzQ (8.13)

so that the induction equation for the ‘mean’ vertical field reads

∂tBz = ∂x
(
wzBx − wxBz

)+ 
H∂
2
x
−BxBy

4π
, (8.14)

where we recognised the radial Maxwell stress term Mxy = −BxBy/4π, also present in the
angular momentum conservation equation (4.21). This demonstrates that in Hall-MHD,
the transport of magnetic flux is tightly linked to the transport of mass. Owing to energetic
constraints, Mxy > 0 (see § 5.2.4) in shear-driven instabilities/turbulence. Therefore, a
concentration of magnetic field owing to the Hall effect is possible at local stress
minimum. In a turbulent flow, short-lived stress minima occur randomly in the flow, and
these minima tend to accumulate vertical magnetic flux according to the previous equation.
When the Hall effect is strong enough, a local minimum can accumulate enough flux to
become stable for the HSI. In this case, the flow becomes stable and the local turbulent
stress vanishes, becoming a permanent minimum. This minimum continues to accumulate
magnetic flux thanks to the remaining stress present on both sides until the flux outside
of the minimum of stress becomes negative. At this point, the stress also vanishes in
the regions Bz < 0 and the systems settles down into a quasi-stationary state with very
low-stress level (see also figure 33).

Although this process was initially identified in unstratified shearing box simulations, it
was later unambiguously identified in cylindrical unstratified simulations (Béthune, Lesur
& Ferreira 2016). However, vertically stratified simulations do not seem to exhibit this
process, for reasons not yet identified to date (Lesur et al. 2014).

8.5.3. Ambipolar diffusion
Self-organisation owing to ambipolar diffusion was first mentioned by Bai & Stone

(2014) in unstratified shearing boxes. It was also observed in cylindrical simulations
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(a) (b)

(c) (d )

FIGURE 33. Hall self-organisation phenomenology. We start from a local fluctuation of the
stress Mxy (a). This minimum creates a local maximum of Bz, which overshoot the maximum
Bz allowed by the HSI. Because the flow becomes locally stable, the stress vanishes (b). On
the boundaries of this stable region, the Maxwell stress still transport magnetic flux towards
the stable region, making it larger and emptying the rest of the domain (d). At some point, the
total flux in the rest of the domain becomes negative, and it becomes HSI-stable. The stress
therefore vanishes in this region as well, leaving only the interface with a minimal stress (c).
Figure inspired by Kunz & Lesur (2013).

including ambipolar diffusion by Béthune et al. (2016), albeit at a very low level. However,
whether ambipolar diffusion plays an active role in the self-organisation mechanism is
an open question. Clearly, the ‘strength’ of self-organisation (quantified by the ratio
Bzmax/Bzmin) in the ideal-MHD case is larger than the ambipolar diffusion case by a
factor 10 (figure 2 in Bai & Stone 2014). In addition, the mechanism proposed for
self-organisation only involves ideal-MHD terms (Bai & Stone 2014). Finally, the existence
of zonal flows in this configuration (non-stratified, ambipolar diffusion dominated) largely
depends on the box aspect ratio. Bai & Stone (2014) largely explored the situation
with Lx = Ly = 4H. However, a choice of box with Ly > Lx tends to break zonal flows
(figure 34). Overall, it is very possible that self-organisation in ambipolar-dominated
unstratified shearing boxes is a mere numerical artefact.

9. Stratified shearing boxes

Stratified models have been mostly explored in the zero mean field configuration. When
a mean vertical field is included, simulations lead to ‘high magnetic pressures that disrupt
the vertical structure of the disk before the flow makes the transition to MHD turbulence’
(quoting Stone et al. 1996 p. 659, § 3). Although the situation is less dramatic when more
adapted boundary conditions are used (see below), this statement explains the lack of
simulations with a net vertical field until recently. The situation with a mean toroidal field
is less interesting since the toroidal component can usually escape through the vertical
boundaries, eventually leading to a situation identical to that without a mean field.
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(a)

(b)

(c)

FIGURE 34. The y–z average of Bz as a function of time for non-stratified MRI simulations
with ΛA = 3 and βmean = 1000: (a) Lx = Ly = 4H; (b) Lx = 4H, Ly = 8H; and (c) Lx = 4H,
Ly = 16H. Note the disparity in zonal flows when Ly > Lx. All three simulations have been
computed with a fixed resolution per scale height in the three spatial directions nx,y,z = 64 pts/H
using the Snoopy code (Lesur & Longaretti 2007).

As in the non-stratified case, we define the plasma β parameter of the mean vertical
field threading the disc

βmean ≡ 8π〈P〉z=0

〈Bz〉2
z=0

, (9.1)

where averages are taken in the disc midplane. In the following, we use a definition of α
using the box averaged pressure, i.e.

α ≡ 1
〈P〉

〈
ρwxwy − BxBy

4π

〉
, (9.2)

which does not depend on the vertical extension of the simulation domain (provided that
all of the significant stress is contained in the box). However, some authors such as Stone
and coworkers usually defines α from the vertically averaged stress and the midplane
pressure P0 ≡ P(z = 0), which leads to predicted α values two or three times smaller than
those obtained with the previous definition (Davis, Stone & Pessah 2010). Note also that
Stone’s definition yields α, which decreases as the box size increases. Indeed, the stress
being concentrated in the region z � 2H, the vertically averaged stress decreases as the
box size increases above 2H. These differences in the definition of α should be kept in
mind when comparing results from different groups.

9.1. Zero mean field
9.1.1. Ideal MHD

The zero mean field stratified case was first explored by Brandenburg et al. (1995) and
Stone et al. (1996). They first noted the spontaneous appearance of a ‘butterfly’ diagram
when looking at the space–time behaviour of the x–y average toroidal magnetic field
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FIGURE 35. The x–y average of By (By) as a function of time and z for zero vertical net flux
stratified MRI simulations. Note the presence of a butterfly pattern indicating a periodic reversal
of the toroidal field followed by its increase away from the disc midplane.

(figure 35; see also Davis et al. 2010 and Simon, Beckwith & Armitage 2012). This
diagram shows quasi-periodic flip of the toroidal field, with a periodicity close to 10
local orbital periods. Whether this butterfly diagram leads to observational counterpart
by modulating the turbulent transport is still debated (see, e.g., Hogg & Reynolds 2016 for
an example). On the theoretical side, it is well reproduced by mean field models (Gressel
2010; Gressel & Pessah 2015), but we are still lacking a first principle theory for this
dynamo.

In principle, once vertical stratification is included, one needs to specify both the vertical
density and temperature profile as well as an equation of state. However, most of the
literature has focused on isothermal simulations, in which the temperature is constant.
In this case, it is found that

α � 0.02 ± 0.01 (Stratified, isothermal, zero vertical flux) (9.3)

(e.g. Stone et al. 1996; Davis et al. 2010). In the outer region of PPDs, radiative transfer
calculations tell us that the vertical temperature profile is approximately constant, so the
isothermal approximation is probably a good model in this case.

Nevertheless, some researchers have explored non-isothermal models, such as Hirose
and collaborators (Hirose, Krolik & Stone 2006; Hirose, Blaes & Krolik 2009; Hirose
et al. 2014), Flaig and collaborators (Flaig, Kley & Kissmann 2010; Flaig et al. 2012) and
Bodo and collaborators (Bodo et al. 2013, 2015). It is found that when the vertical profile
becomes unstable for convection (i.e. it violates the Schwarzschild criterion), the turbulent
transport of angular momentum can increase by up to an order of magnitude (Hirose et al.
2014), thanks to a mechanism which is yet to be fully elucidated.

Following the numerical convergence issue pointed out by Fromang & Papaloizou
(2007) in unstratified simulations (see § 8.1), numerical convergence in stratified setups
has also been tested. Initial explorations were limited by numerical resources to 128 points
per scale height (Davis et al. 2010) and showed the convergence of α as a function of
the number of grid points, which led to the conclusion that ‘stratification saves the day’.
However, this issue was tackled again with higher-resolution simulations: 200 points per
scale height (Bodo et al. 2014) and 256 points per scale height (Ryan et al. 2017). These
recent results show a weak dependence on the resolution with α ∝ N−1/3 at the resolution
explored, albeit with a different vertical boundary condition (Davis et al. (2010) used
periodic boundary conditions while Ryan et al. (2017) used outflow boundary conditions).
Overall, these results indicate that numerical convergence is also an issue in stratified
models.

9.1.2. Non-ideal MHD
Realistic Ohmic diffusion profiles were introduced in zero net flux stratified simulations

for the first time by Fleming & Stone (2003). These simulations exemplified (Gammie
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1996) layered accretion model with a mid-plane dead zone and an active surface layer.
The debate then crystallised on the thickness of the active layer, which, depending on the
model, could lead to accretion rates compatible with observations.

This layered accretion paradigm, however, omits ambipolar diffusion and the Hall effect.
Ambipolar diffusion is particularly important at low densities, right in the active layers of
Gammie (1996). It was quickly realised that ambipolar diffusion could dramatically reduce
the strength of MRI turbulence in this layer, and even suppress it, because ΛA � 1 in this
region (Perez-Becker & Chiang 2011a,b; Dzyurkevich et al. 2013). This is confirmed by
direct numerical simulations including Ohmic and ambipolar diffusion but no Hall effect
(Bai & Stone 2013b; Simon et al. 2013b). These simulations suggest dramatically low
values for α, with α � 3 × 10−6 at 1 AU (Bai & Stone 2013b) to α � 10−3 at 100 AU
(Simon et al. 2013b).

These results imply accretion rates Ṁ � 10−10 M�/yr in the region 1–30 AU, which
are too low by at least two orders of magnitude compared with observational constraints.
However, the zero mean field configuration is rather artificial. Indeed, PPDs are expected
to form from a collapsing cloud that has dragged some fraction of its initial magnetic flux.
Therefore, a non-negligible poloidal flux is likely to be present in these objects, which
motivated the need for simulations including a mean poloidal field.

9.2. Mean field and outflows
9.2.1. Ideal MHD

The first viable shearing-box simulation of a vertically stratified disc with a mean
vertical field was performed by Suzuki & Inutsuka (2009) and Suzuki, Muto & Inutsuka
(2010), thanks to more robust numerical techniques compared with the initial attempts of
Stone et al. (1996) and carefully designed vertical boundary conditions. Their simulations
have a relatively weak field βmean � 104, but show significant deviations from the zero
mean field scenario and, in particular, the presence of a strong outflow, quantified by the
mass flux leaving the disc. In a box with Lz = 8H, they find a vertical mass flux 100 times
larger with βmean = 104 compared with the zero net field case (Suzuki & Inutsuka 2009).

This problem was revisited by a large number of authors, both in the strong field limit
βmean � 1 (Moll 2012; Ogilvie 2012; Lesur, Ferreira & Ogilvie 2013, figure 36), and in the
intermediate regime βmean = 103–104 (Fromang et al. 2013; Bai & Stone 2013a). It was
quickly demonstrated that these outflows were a variation of Blandford & Payne (1982)
magneto-centrifugal paradigm (Fromang et al. 2013; Lesur et al. 2013) with a strong
time-dependency. Despite this connection to well-known launching mechanisms, some
properties of shearing box outflows are intrinsically flawed.

First, the mass loss rate depends on the vertical box extension (Fromang et al. 2013),
taller boxes leading to lower mass loss rates. This surprising result is actually expected
from the shape of the gravitational potential in a shearing box (§ 5.1), which is unbounded
when z → ∞. Some authors have proposed to fix this issue by adding higher-order terms
to the vertical gravity force, making it possible to escape at z = ±∞ with a finite amount
of mechanical energy (Suzuki et al. 2010; McNally & Pessah 2015). This approach,
however, violates the conservative nature of gravitation, because the resulting force does
not derive from a potential anymore. A more rational approach would be to include all
of the third-order terms in Hill’s approximation. This, however, also introduces radial
curvature terms, making the shear-periodic boundary conditions unadapted.

Second, the geometry of the outflow is problematic. In principle, shearing boxes allow
both vertically even and odd magnetic configuration (figure 37). At the linear level (see
§ 6.4.6), the two symmetries show similar growth rates and properties. However, in the
non-linear regime, the odd symmetry is problematic for the physical interpretation of
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(a) (b)

(c) (d )

FIGURE 36. Growth and saturation of the MRI in the presence of a strong vertical field
(βmean = 10) in ideal MHD. Tubes are magnetic field lines whereas gas density is represented
with volume rendering. Note the initial growth of the linear mode in the disc midplane, which
eventually saturates into a quasi-laminar outflow configuration similar to Blandford & Payne
(1982) paradigm. From Lesur et al. (2013).

(a) (b)

FIGURE 37. Symmetries of the outflow configuration allowed in a shearing box. Poloidal field
lines are represented in green whereas the toroidal field component By < 0 is shown in blue
and By > 0 in red: (a) odd symmetry configuration; (b) even symmetry configuration. The usual
(Blandford & Payne 1982) picture corresponds to the even symmetry in a shearing box model.
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the outflow. By simply looking at the poloidal field topology (figure 37), it is clear that
the odd symmetry connects the bottom side of the disc to the central star, whereas the
top side is connected to R → +∞. Physically, it means that no angular momentum is
actually extracted from the disc: angular momentum comes from an unknown source at
z → −∞ and flows through the disc up to z → +∞. The angular momentum conservation
equation (4.21) clearly describes this situation: in the odd symmetry case, one has
ByBz(z) = ByBz(−z), so the surface stresses on both sides of the disc cancel out and the
disc is not accreting any material.

Naturally, this situation is rather unrealistic and the only physical configuration is the
even symmetry one (or at least, a configuration where ByBz have a different sign on both
sides of the disc). However, it turns out that shearing boxes tend to settle into the odd
configuration when βmean � 103 (Salvesen et al. 2016). The reason for this unexpected
result is still debated. It is certainly related to the fact that the shearing box has ‘too many
symmetries’, and does not differentiate x → ±∞. Some authors have enforced the even
symmetry manually (Lesur et al. 2013), which leads to physical outflow configurations.
However, this is not satisfactory as the flow symmetry should be enforced by the
global geometry of the disc and its surrounding, which is not captured in shearing box
models.

Despite these difficulties with outflows, it is possible to measure the turbulent stress in
these simulation. A systematic exploration of shearing box models with βmean ∈ [10,∞]
(Salvesen et al. 2016) shows that

α = 10.1β−0.53
mean for βmean < 105 (9.4)

with α recovering the zero net flux value when βmean > 105. This scaling leads to α values
about 3 times larger than the unstratified estimate (§ 8.1). As in the unstratified case,
the level of turbulent stress depends on the magnetic Prandtl number, α increasing with
increasing Pm (Fromang et al. 2013), so caution is still needed when using these scalings
in phenomenological models.

The characterisation of winds in a shearing box is always a bit difficult because of the
symmetry issues noted previously. In addition, the usual MHD outflow invariants (§ 11) are
only defined in global geometry, making them inaccessible in local models (but see Lesur
et al. (2013) for local equivalents of the global invariants). Despite these difficulties, one
usually defines an outflow rate ζ and a torque parameter υ, which measure the mass and
angular momentum evacuated by the magnetised wind, respectively.

It is customary to define the outflow rate as

ζ ≡ ρwz|top − ρwz|bottom

ρmidcs
, (9.5)

where ‘top’ and ‘bottom’ subscripts denote the top and bottom of the disc (which, in
principle, can be chosen freely) and denotes a horizontal averaging procedure. In a
real (global) disc, the local domain is emptied by the wind, but it is also replenished by
the divergence of the accretion flow, so that a steady state is locally achieve. As there is
technically no accretion flow in shearing boxes, this replenishment is absent, leading to
boxes that slowly lose mass. The typical timescale over which a box loses a significant
fraction of it mass is given by τloss ∼ (ζΩ)−1. This implies that the shearing box model is
really valid in the limit ζ � 1.

The outflow rate is known to depend on several key parameters. First, it should
be noted that the outflow rate depends on the box extension, both horizontal and
vertical. In the horizontal plane, it seems that convergence is reached for Lx,Ly � 4H
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(Fromang et al. 2013). In the vertical direction, however, as the box gets higher, the outflow
rate decreases. Fromang et al. (2013) and Lesur et al. (2013) showed that doubling the
vertical extension of the box divides ζ by a factor of three for βmean = 104 and by a factor
of 1.6 for βmean = 10. In any case, this indicates that the outflow rate does not converge in
shearing boxes. This is because it is not possible to escape to infinity in the gravitational
potential of Hill’s approximation (see the discussion in § 5.1). Hence, the ‘border’ of the
gravitational potential is set artificially by the location of the physical boundary in the z
direction of the shearing box.

Assuming Lz � 10H, the combination of the data published by Suzuki & Inutsuka
(2009), Bai & Stone (2013a) and Fromang et al. (2013) leads to

ζ � 5 × 10−5 + 10
βmean

for β � 102. (9.6)

This relation gets shallower for βmean < 102 (Bai & Stone 2013a; Lesur et al. 2013), and
eventually leads to a sharp decrease of ζ when β � 1 (see figure 9 in Lesur et al. 2013).
It is also expected that the prefactor is a decreasing function of Lz and could trace the
geometrical aspect ratio H/R of the disc, which is not captured in shearing boxes (Bai
& Stone 2013a). However, this dependence is complex because it likely depends on the
magnetisation. It should also be pointed out that this relation is close to that found in
RMHD simulation of the MRI in the context of dwarf novae (Scepi et al. 2018). Hence,
the disc thermodynamics do not seem to greatly affect the outflow rate. Nevertheless, this
scaling should be taken with caution, and is probably only an upper bound to the real
outflow rates one would obtain solving for the global problem.

The second parameter characterising the outflow is the angular momentum extracted by
the wind, υ, defined as

υ ≡ Tyz|top − Tyz|bottom

Pmid
, (9.7)

where we have defined the stress tensor Tyz = ρwywz − ByBz/4π. This quantity directly
enters the angular momentum conservation law (see § 4.5) so that, once it is known, one
can automatically compute the accretion rate associated with the wind. Evaluating υ is,
however, notoriously difficult in shearing boxes because its sign is not well-defined (see
the symmetry discussion given previously). A naïve temporal averaging therefore leads to
a negligible value of the angular momentum extracted by the wind. In order to circumvent
this difficulty, several strategies have been used: Fromang et al. (2013) computed υ on a
short time period, during which the polarity remains fixed, whereas Bai & Stone (2013a)
and Scepi et al. (2018) computed the time-averaged absolute value of υ. Another difficulty
lies in the altitude at which this quantity is evaluated. Bai & Stone (2013a) evaluated it at
the box boundary, whereas Scepi et al. (2018) computed its maximum as a function of z.
In all these cases, the results behave like the scaling inspired from Scepi et al. (2018):

υ � (4 ± 3)× 10
βmean

[(
βmean

4.7 × 104

)2

+ 1

]0.3

, (9.8)

where the uncertainty is a result of the different methods of measurement found in the
literature. As for ζ , this scaling probably gets shallower for βmean < 102. However, this has
never been properly evaluated in the literature.

It should be noted that for βmean > 1, υ < α. Hence, the vertical stress is always weaker
than the radial stress, by a factor O(β1/2

mean). However, the respective contribution of these
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(a)

(b)

(c)

FIGURE 38. Maxwell stress Mxy averaged horizontally as a function of t and z in simulations
with Ohmic diffusion only (a), Ohmic and ambipolar diffusion (b) and Ohmic, ambipolar and
Hall effect (c). Simulations computed at 1 AU assuming a MMSN, with a mean vertical field
βmean = 105. From Lesur et al. (2014).

two terms to the mass accretion rate in the disc is proportional to (R/H)(υ/α) (see § 4.5),
implying that the vertical stress is the dominant mass accretion mechanism whenever
βmean � (R/H)2 (Fromang et al. 2013; Bai & Stone 2013a).

9.2.2. Non-ideal MHD
Simulations with a mean vertical field first focused on the effect of Ohmic and ambipolar

diffusion (Bai & Stone 2013b; Simon et al. 2013a), neglecting the Hall effect for technical
reasons. It was found that the presence of a mean field allows the formation of a magnetised
outflow at the disc surface ionised by far UV radiation, leading to accretion because of the
angular momentum extracted by the outflow. Complete models including also the Hall
effect (Bai 2014; Lesur et al. 2014; Bai 2015; Simon et al. 2015) showed similar outflows,
with, in addition, the presence of a midplane laminar stress owing to the Hall effect (Lesur
et al. 2014).

The difference between Ohmic only, Ohmic + ambipolar, and Ohmic + ambipolar +
Hall effect is demonstrated in figure 38 for an MMSN disc at 1 AU. In the Ohmic-only
case, one recovers the turbulent surface layer and a dead midplane. Adding ambipolar
diffusion leads to a different picture where the disc surface becomes mostly laminar, with
a weakly magnetised outflow. This might be surprising at first sight because the linear
analysis shows little difference between the Ohmic and Ohmic+ambipolar cases regarding
the localisation and growth rates of the eigenmodes (see figure 26). The difference between
Ohmic and ambipolar cases is a result of the fact that ηA ∝ B2 whereas ηO does not depend
on B. As eigenmodes grow, the horizontal field grows as well and ηA increases. This rapidly
leads to the saturation of the eigenmode by diffusion, in a way similar to § 8.3. In the
end, the perturbation never grows to the large-enough amplitudes required to break up in
developed turbulence, as in the Ohmic case.

When the Hall effect is eventually added, the disc midplane is subject to a laminar
stress in the region 1–10 AU, in addition to the weak surface outflow that subsists. The
midplane stress is tightly linked to the field polarity: a negative mean field (Ω · B < 0)
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leads to its disappearance. This laminar stress is a result of the HSI (Lesur et al. 2014),
which only shows up for positive polarities (see the discussion in §§ 6.4.4 and 6.4.6).
Hence, the Hall effect is indeed able to revive the MRI in dead zones provided that the
mean field has a positive polarity, as already deduced from the linear theory. However, it
saturates as a laminar stress. This effect is recovered up to R ∼ 30 AU but disappears at
100 AU in MMSN models (Simon et al. 2015) because the Hall effect is much weaker
in the outermost regions of the disc. The presence of this laminar stress suggests that the
correlation lengths of the midplane structures are larger than the horizontal box size, which
contradicts the spirit of the shearing box approximation and calls for global simulations to
properly characterise this transport process.

The top/down symmetry in non-ideal MHD models is also problematic in simulations
including non-ideal MHD effects. When βmean < 105, these simulations exhibit most of
the time an odd symmetry with respect to the disc midplane, which implies that the
outflow is not extracting any net angular momentum from the disc. There is today no
clear explanation for this trend. It could be that the midplane current layer required by
the odd symmetry configuration is expelled by the strong Ohmic or ambipolar diffusion
(Bai & Stone 2013b), or that the HSI spontaneously saturates in an even configuration
(Lesur et al. 2014), or a combination of these effects. Using similar techniques to
that used in ideal-MHD shearing box, several groups have managed to measure the
transport coefficient in non-ideal MHD simulations, computing the vertical stress on one
side, or computing its absolute value. A representative summary of the results is given
in figure 39.

Several trends can be seen in this figure. First and foremost, all of the transport
coefficients are reduced by the non-ideal MHD effects (with the notable exception of
one run from Lesur et al. (2014) with a very strong Hall effect at 1 AU). The most
reduced coefficient is the radial angular momentum transport α, whereas the vertical
(wind) transport υ appears to be the less affected. This difference in behaviour is the main
reason why winds are today favoured in PPDs: the efficiency of wind-driven transport
is less affected by non-ideal MHD effects than radial angular momentum transport. In
addition to these remarks, one should note that the sensitivity to the field polarity is
more pronounced at 1 AU than at 30 AU, as expected from the profile of dimensionless
Hall number (figure 10). As already guessed in the previous discussion, aligned fields
tend to have a larger α, ζ and υ. It is interesting to also note that, for simulations at 30
AU, the scaling with βmean is similar to that found in ideal MHD, apart from a constant
offset.

9.2.3. Outflow-induced self-organisation
There is much evidence of self-organisation in stratified shearing boxes. The first piece

of evidence can be seen in the space–time diagrams of Simon & Armitage (2014). Bai
(2015) then explicitly reported the spontaneous formation of self-organised flows, which
is particularly strong for βmean � 104. The same process was later identified by Simon
et al. (2018) and Riols & Lesur (2019). Self-organisation is clearly dissociated from the
Hall effect in stratified flows, as it appears also in simulations where the Hall effect is
absent (Simon & Armitage 2014; Simon et al. 2018; Riols & Lesur 2019).

This self-organisation shows again a very tight intricacy between the field and the gas:
magnetic field lines tends to concentrate into ‘gaps’, leaving regions with a lot of mass
but no poloidal field (figure 40). Several scenarios have been proposed to explain this
effect. Bai & Stone (2014) proposed that this is a result of the anisotropy of the turbulent
diffusivity tensor, following the unstratified box argument (§ 8.5.1).
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(a) (b)

(c)

FIGURE 39. Measurements of transport coefficients in the literature, assuming ionisation
structures at 1 AU and at 30 AU. The ideal MHD relations (9.4), (9.6) and (9.8) are shown
in black dashed lines. We have used data from Lesur et al. (2014)=L14, Bai (2014)=B14, Bai
(2015)=B15 and Simon et al. (2015)=S15. Simulation with the vertical field aligned with the
rotation axis are in red, simulations with vertical field anti-aligned are in blue and simulations
without Hall effect are in green. Note that Bai (2014) has two chemical models at 1 AU, with and
without grains, hence the presence of two sets of points. Note that points on the same βmean have
been slightly shifted horizontally to improve readability.

(a) (b)

FIGURE 40. Shearing box simulation exhibiting self-organisation with ambipolar diffusion
only. (a) Magnetic configuration, with poloidal field lines and colours showing the toroidal
field component amplitude. (b) Density map (colour) and poloidal velocity streamlines. Note
the poloidal field concentration in the region (x, z) � 0, associated with a minimum of density
(=‘gap’). Figure from Riols & Lesur (2019).
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(a) (b)

(d ) (c)

FIGURE 41. Self-organisation feedback loop proposed by Riols & Lesur (2019). Consider a
small density deficit (a), this deficit induces a radially converging flow (b), which drags the
poloidal field line inwards (c). The stronger field, leads to a more efficient local ejection index
that empties the region even more (d).

An alternative viewpoint was proposed by Riols & Lesur (2019) who noted that, in
the presence of vertical stratification, the average radial flow was converging towards the
region of flux accumulation, and hence in the gap. This counter-intuitive finding implies
that gaps are necessarily emptied by the outflow, and the radial flow is simply trying to
replenish the gaps. This radial flow drags the poloidal field towards the gap (cf. figure 41),
and is therefore a pure advection process, not a turbulent anti-diffusion effect as proposed
by Bai & Stone (2014). The stronger field in the gap leads to a more efficient ejection, as
observed in the ejection ‘plume’ (cf.figure 40), leading to a quasi-steady state from the
disc viewpoint . This feedback loop turns out to be a linear instability of the wind-emitting
disc, with predictable growth rate and optimum disturbance. Let us note that the linear
instability criterion is simply

− d log ζ
d logβmean

> − d logα
d logβmean

→ Instability, (9.9)

which essentially compares the time needed to empty the disc by the outflow to the
time needed to refill the disc by ‘viscous’ diffusion (Riols & Lesur 2019). As shown
previously, this criterion is generally satisfied in stratified shearing box models, so this
‘wind instability’ mechanism could potentially explain the self-organisation observed in
stratified models.

10. Conclusion

In ideal MHD, the MRI is found to be a robust angular momentum transport mechanism,
but in the absence of an external poloidal field, it fails to account for observed accretion
rates if one includes the relevant non-ideal MHD effects.

When a mean field is added, magnetised outflows are found as a result of the
saturation of the MRI. In ideal MHD, outflows are expected to be the dominant angular
momentum transport mechanism when βmean � (R/H)2. When non-ideal effects are
introduced, however, the radial transport of angular momentum is reduced significantly,

https://doi.org/10.1017/S0022377820001002 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001002


86 G. R. J. Lesur

whereas outflows are much less affected. As a result, when non-ideal MHD effects are
strong, magnetised outflows are expected to become the dominant mechanism of angular
momentum transport, even for relatively weak fields.

We note, however, that the shearing box approach cannot model these outflows properly
because of several inconsistencies (top/down symmetry of the outflow, mass loss rate
depends on boundary conditions). In addition, the presence of a laminar midplane stress
owing to the HSI and the existence of a self-organisation mechanism associated with the
outflow make the shearing box ill-suited to study the dynamics of these objects. The
only way to connect our local understanding of the physics to the global dynamics of
these objects is, therefore, to perform global simulations, in which outflows are modelled
properly.

PART FOUR: Global models of PPDs

In this section, we revisit the physical concepts underlying ejection in accretion discs.
We then use these concepts to interpret the most recent numerical models of PPDs that
exhibit accretion and outflows.

11. Some outflow definitions and properties

Before exploring the connection between a weakly ionised disc and an outflow, let us
underline a few important definitions and properties on outflows. To this end, let us work
first in the ideal MHD approximation and assume for the moment that the outflow is
stationary and axisymmetric. In a cylindrical frame (R, φ, z), the conservation of mass
and momentum read

∇ · ρup = 0 (11.1)

ρup · ∇uR = ρΩ2r − ∂RP + JφBz

c
− JzBφ

c
− ρ∂Rψ (11.2)

1
R
ρup · ∇ΩR2 = 1

R
∇ ·

(
R

BpBφ
4π

)
(11.3)

ρup · ∇uz = −∂zP − ∂z

(
B2
φ + B2

R

8π

)
+ BR∂RBz

4π
− ρ∂zψ (11.4)

where the index p denotes the poloidal components (R, z) of the vector fields, Ω ≡ uφ/R
(Ω is not necessarily Keplerian) and ψ = GM/(R2 + z2)1/2 is the gravitational potential,
assumed to be solely a result of the central star. Equation (11.3) can be recast in
conservative form to obtain an angular momentum conservation equation

∇ ·
(
ρupΩR2 − R

BpBφ
4π

)
= 0, (11.5)

which shows that the magnetic field can carry angular momentum in the Maxwell stress
BpBφ .

In addition to the equation of motion, one needs to solve the induction equation in the
ideal regime in the poloidal and azimuthal directions

∇ × (
up × Bp

) = 0, (11.6)

∇ · 1
R

(
ΩRBp − Bφup

) = 0. (11.7)
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Finally, the magnetic field has to satisfy the solenoidal condition ∇ · B = 0. In an
axisymmetric configuration this can be used to express the poloidal field components as a
function of a scalar streamfunction a:

Bp = 1
R

∇a × eφ. (11.8)

By construction, the value of a is constant along a poloidal field line. Hence, we can label
each poloidal field line with the value of its streamfunction. From these equations, it is
possible to derive several physical constants of motion that are useful to interpret outflow
solutions.

11.1. Frozen-in condition
The frozen-in condition is derived from mass conservation (11.1) and the poloidal
induction equation (11.6). Let us first start with the vertical component of the induction
equation, which reads

1
R
∂

∂R
R (uzBR − uRBz) = 0, (11.9)

from which one deduces that

uzBR − uRBz = β(z)
R
, (11.10)

where β is an unknown scalar function (physically, β/R is the φ component of the
electromotive force Eφ). Using the radial induction equation, we may see that ∂zβ = 0
so that β is a constant. To avoid any singularity for Eφ at R = 0, we are then forced to have
β = 0 and hence Bp and up are parallel, i.e.

up = μ(R, z)Bp. (11.11)

We can inject this relation in the mass conservation equation to obtain

Bp · ∇(ρμ) = 0, (11.12)

which indicates that η ≡ ρμ is a constant along magnetic field lines, i.e. η = η(a). We
can then recast (11.11) into

up = η(a)
Bp

4πρ
, (11.13)

which constitutes the frozen-in condition where η describes the amount of mass loaded
along a poloidal field line. Here η is a direct measure of the gas density ρA at the Alfvén
surface, which is the region defined by up = V A,p = Bp/

√
4πρ:

η(a) =
√

4πρA(a). (11.14)

Note regarding the applicability of the frozen-in condition in shearing boxes: when
deriving the frozen-in condition, we have used a regularity condition at R = 0 for the
electromotive force. Such a condition does not exist in the shearing box approximation
so that Eφ can be non-zero in principle. This implies that in a stationary shearing box
solution, the poloidal field and velocity are not necessarily parallel (Lesur et al. 2013).
Physically, it means that field lines can be indefinitely dragged radially inward or outward,
without affecting the stationarity condition, thanks to the assumed radial periodicity. This
is physically impossible from a global point of view, but it illustrates once again the
numerous drawbacks of the shearing box model when dealing with outflows.
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11.2. Magnetic surface rotation
The rotation of magnetic surfaces is obtained by substituting the frozen-in condition
(11.13) into the azimuthal component of the induction equation (11.7):

Bp · ∇
(
Ω − Bφη(a)

4πρR

)
= 0, (11.15)

which allows us to define a new invariant along field lines

Ω∗(a) ≡ Ω − η(a)
4πρR

Bφ = ΩA − VAφ(RA)

RA
, (11.16)

where the A indices denote quantities evaluated at the Alfvén surface and RA is the Alfvén
radius, where the outflow becomes super-Alfvénic. It can easily be checked that in a frame
rotating at Ω∗(a), the total field is parallel to the total velocity. In other words, there
is no induced electromotive force in the frame rotating at Ω∗(a). Therefore, Ω∗ can be
interpreted as the rotation speed of magnetic surfaces. By combining (11.13) and (11.16),
we can express the total velocity as a function of the magnetic field,

u = η(a)
4πρ

B + RΩ∗(a)eφ. (11.17)

This illustrates the fact that only the poloidal components of the field and the velocity are
parallel in general. In the particular case where η = 0 (no motion along the poloidal field
lines), we recover Ferraro’s iso-rotation law Ω = Ω∗(a).

11.3. Angular momentum
The angular momentum invariant is easily deduced from the angular momentum
conservation equation (11.5):

Bp · ∇
(
ΩR2 − RBφ

η(a)

)
= 0 (11.18)

from which we deduce the angular momentum invariant L(a):

L(a) ≡ ΩR2 − RBφ
η(a)

, (11.19)

= Ω∗(a)R2
A, (11.20)

where the last equality has been obtained at the Alfvén surface using (11.14). Hence, the
amount of angular momentum transported by the outflow is an invariant made of two parts:
the classical kinetic contribution and a magnetic part stored in Bφ .

11.4. Bernoulli invariant
The Bernoulli invariant is obtained from the scalar product of the poloidal equations of
motion (11.2)–(11.4) with u. One obtains

up · ∇
[

u2

2
+ ψG

]
= −up · ∇P

ρ
+ u · J × B

ρc
, (11.21)
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where ψG = GM/(R2 + z2)1/2 is the gravitational potential. We then use (11.17) to obtain
the work of the Lorentz force:

u · J × B
c

= RΩ∗(a)
J p × Bp

ρc

= Ω∗(a)
Bp · ∇ (RBφ

)
4πρ

= up · ∇
(

RΩ∗(a)Bφ
η(a)

)
. (11.22)

In addition, we may express the work of pressure forces using the enthalpy per unit
mass H

up · ∇P
ρ

= up · ∇H + δQ (11.23)

in which we have also considered the effect of an additional heating term owing to radiative
heating/cooling δQ. Putting all the terms together and integrating along one particular
streamline a, we find that the quantity

B ≡ u2

2
+ ψG + H − RΩ∗(a)Bφ

η(a)
+
∫
S(a)

δQ ds (11.24)

is conserved along poloidal field lines and streamlines. Note that because the heating term
is not a proper differential, it depends on the integral of the heating term along the chosen
streamline S(a). Of course, for an outflow to escape up to z → ∞, one needs B > 0 on the
streamlines (assuming H > 0). In the midplane of a Keplerian disc, one has u2/2 + ψG =
−v2

K/2 where vK is the Keplerian velocity, so that additional ingredients are required to
produce an outflow. Two extreme situations can be identified.

Thermal winds: Here magnetic effects are neglected and ejection is possible because
the disc is hot (large initial enthalpy) or because a lot of heating is applied along the
streamlines (named photo-evaporation in the PPDs community).

Cold MHD winds: Here thermal effects are neglected and the toroidal field acts as an
energy reservoir to launch the outflow.

11.5. Dimensionless numbers characterising an outflow
Based on the MHD invariants, it is possible to define a series of dimensionless numbers
that characterise an outflow streamline unambiguously. These numbers use the physical
properties at the base of the outflow. Let us therefore write Ω0 as the rotation rate at the
base of the outflow and R0 as its cylindrical radius (one typically has Ω0 = ΩK(R0)), and
B0 as the poloidal field strength threading the disc at the location where the outflow is
launched. We then define

κ ≡ η
Ω0R0

B0
,

ω∗ ≡ Ω∗

Ω0
,

λ ≡ L
Ω0R2

0
= ω

(
RA

R0

)2

,

e ≡ B
Ω2

0 R2
0/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.25)
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The Bernoulli invariant can be easily expressed in terms of the other invariants, using the
dimensionless rotation rate ω ≡ Ω/Ω0:

e = u2
p

Ω2
0 R2

0
+ ω2 R2

R2
0

− 2R0√
R2 + z2

+ 2ω∗
(
λ− ω

R2

R2
0

)
+ θ, (11.26)

where θ = 2
[H + ∫

a=cste δQ ds
]
/Ω2

0 R2
0 is the dimensionless thermal energy content of

the flow. This expression clearly demonstrates the contribution of λ to the energy content
of the flow. This parameter, often called the magnetic level arm, is of key importance, as
can be seen if one computes its value at the outflow base, assuming up � Ω0R0, ω = 1
and R = R0:

e � 2ω∗(λ− 1)+ θ − 1. (11.27)

Obviously, for the outflow to be able to propagate up to infinity, one needs e > 0. We
recover here the two extreme limits discussed previously: purely thermal winds, which
have λ = 1 and require θ > 1; or cold MHD winds with θ = 0, which need

2ω∗(λ− 1) > 1. (11.28)

For all practical applications of MHD outflows, one has ω∗ � 1 to a very good
approximation. This implies that an outflow can exist only if

λ > 3
2 . (11.29)

11.6. Ejection efficiency
The existence of an outflow is tightly linked to the process of accretion happening inside
the disc because the energy of the wind is obtained from the accretion power of the disc.
To understand this connection, let us first define the accretion rate of the disc

Ṁacc(R) ≡ −
∫ z+

z−
dz
∫ 2π

0
R dφρur, (11.30)

where the integration is performed on the box vertical extension, defined by z− and z+. It
is also useful to define the outflow rate of the wind between the inner radius of the disc Rin
and the radius under consideration

Ṁwind(R) ≡
∫ R

Rin

dR
∫ 2π

0
R dφ[ρuz]z+

z− . (11.31)

These two quantities are connected by the continuity equation (4.20):

2π
∂Σ

∂t
+ 1

R
∂

∂R

(
Ṁwind − Ṁacc

) = 0. (11.32)

At this stage, it is useful to introduce the ejection efficiency index

ξ ≡ d log Ṁacc

d log R
(11.33)

= 1
Ṁacc

dṀwind

d log R
, (11.34)

which quantifies what fraction of the mass is being lost in the wind, the second line
being obtained from the continuity equation, assuming stationarity. As expected, ξ = 0
corresponds to a situation without any wind.
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One can also relate the accretion rate to the ejection rate using the angular momentum
conservation equation (4.21) as

Ṁacc = 4π

ΩK

⎡
⎢⎢⎣ 1

R
∂

∂R
R2WRφ︸ ︷︷ ︸
τR

+ R〈Wzφ〉z+
z−︸ ︷︷ ︸

τz

⎤
⎥⎥⎦ , (11.35)

where we have defined the stress tensor Wiφ ≡ ρvivφ − BiBφ/4π. This allows us to define
the radial and vertical contribution to the accretion of the disc τRφ and τzφ . It is then useful
to introduce the ratio of these two quantities

Λ ≡ τz

τr
(11.36)

so that the accretion rate is simply

Ṁacc = 4π

ΩK
τz

1 +Λ

Λ
. (11.37)

It is then possible to relate the vertical torque τzφ to the mass ejection rate by noting that
the torque is evaluated high above the disc midplane, so that the kinetic contribution to
the stress is negligible, which implies τzφ � −[RBφBz/4π]z+

z− � −RB0Bφ(z+)/2π where
the second equality assumes the outflow is top/down symmetric and that the poloidal field
strength does not vary much between the midplane and the disc surface. It is then simple
to show that the vertical torque is directly connected to the MHD invariants

τz � 2(Ω∗R2
A −Ω0R2

0)[ρuz](z+). (11.38)

The vertical mass flux being directly related to the radial derivative of the outflow rate, we
can express the accretion rate as

Ṁacc � 2
R2

0Ω0

1 +Λ

Λ
(Ω∗R2

A −Ω0R2
0)

dṀwind

d log R
. (11.39)

From which we obtain an expression for the mass ejection index

ξ � Λ

2(Λ+ 1)
1
λ− 1

. (11.40)

This relation reveals several key features of MHD outflows. First, it shows that large
level arms λ are associated with small ejection indices. Interestingly, this result does not
depend on the radial contribution to the angular momentum budgetΛ. Second, the energy
constraint (11.29) imposes an upper bound on ξ in cold MHD winds: ξ � Λ/(Λ+ 1) � 1.
Note that this relation allows for outflows approximately as massive as the mass accretion
rate, but it does not allow for outflows vastly more massive than this. Outflows with ξ � 1
therefore necessarily require some thermal energy driving to escape the potential well, as
one would expect.
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11.7. Connection to shearing box simulations
In the previous part, we had to introduce several local quantities to characterise outflows
in local shearing box models. As pointed out, however, shearing boxes lack global
constraints, which implies that some of the solutions are likely unphysical. As a first step,
it is therefore useful to relate these local quantities to global MHD invariants to test the
domain of validity of shearing box solutions. In this subsection, we make the assumption
that the global outflow is top/down symmetric, so that the invariants are the same on both
sides of the disc.

We first start with the outflow rate ζ (defined in (9.5)), which can be easily connected
to the mass loading parameter κ

κ = 1
4

R
H
βmeanζ. (11.41)

The magnetic level arm can also be related to υ (defined in (9.7)), provided that we neglect
the kinetic contribution to the vertical stress, which is valid if we choose the disc upper
boundary to lie high enough above the midplane

λ = 1 + H
R
υ

ζ
. (11.42)

The energetic constraint (11.29) therefore leads to a new constraint in shearing boxes:
2ζ/υ < H/R. This constraint cannot be satisfied by the shearing box scalings (9.6) and
(9.8) when H/R � 0.2. Hence, shearing box wind solutions always eject too much mass
with too little energy to escape the global potential well of discs with realistic aspect ratios.
In other words, if one puts a shearing box wind solution in a global disc configuration, the
ejected material should fall back onto the disc.

Finally, we can relate the stress rate Λ to α and υ. For this, let us assume that the
disc surface density follows a power law: Σ = Σ0(R/R0)

−p, that α and H/R are constant
with radius, and that the disc is vertically isothermal. Under these assumptions, the
contributions to the mass accretion are

τR = αΩ2
0 R2

0

(
H
R

)2

(1 − p)Σ

τz = 1√
2π
υΩ2

0 R2
0
H
R
Σ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (11.43)

so that the ratio simply reads

Λ = 1√
2π(1 − p)

υ

α

R
H
. (11.44)

The scalings (9.6) and (9.8) then suggest thatΛ → 0 when βmean → ∞. Combining these
results with (11.40), this implies that the ejection index ξ tends to decrease as βmean → ∞,
as one would expect.

12. Outflow phenomenology

The launching of an outflow is tightly linked to physics of the accreted material because
the outflow energy eventually comes from the accretion power of the disc. Let us divide
the overall structure into a ‘disc region’ and an ‘outflow’ region (figure 42) and describe
the physical processes in each region.
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FIGURE 42. Global disc–wind interaction scheme. We distinguish a disc region in dashed lines
from the outflow region. The poloidal field line is represented in red and the poloidal streamlines
in green. In addition, the toroidal field component is shown in blue in a frame corotating at
ΩK(R0).

12.1. Disc region
In the disc region, the flow is mostly accreted, whereas the field lines are stationary. The
fact that poloidal field and streamlines are not parallel implies that non-ideal MHD effects
are necessarily present in the disc. Historically, these non-ideal effects have been treated in
two ways: (i) assuming that the disc ionisation fraction is extremely low as in PPDs, so that
ambipolar and Ohmic diffusion are very large (Konigl 1989; Wardle & Konigl 1993); or
(ii) assuming that the disc was turbulent, the turbulence leading to a ‘turbulent resistivity’
modelled as a non-isotropic diffusivity tensor (Ferreira & Pelletier 1993).

The toroidal component of the magnetic field Bφ is the key ingredient of the interaction
between the disc and the outflow. In the disc, the toroidal field is produced by the shearing
of the radial field by the differential rotation of the disc ∂tBφ � BRR∂RΩ . This effect is
actually the main energy source for the outflow, which converts shear energy into magnetic
energy stored in Bφ at the disc surface. It is often assumed that outflows are top-down
symmetric to satisfy the global symmetries of the system, so that BR(z = 0) = 0 and
Bφ(z = 0) = 0 follows. The bending of poloidal field lines in the disc implies ∂zBR > 0
for z > 0 and hence ∂zBφ < 0 up to the disc surface. The actual value of Bφ depends on
the competition between the shearing of BR and the magnetic diffusion which damps the
shear amplification. Overall, one can estimate B+

φ at the disc surface by balancing shear
and diffusion

B+
φ ∼ Bz tan(θ)

Ωh2

η
, (12.1)

where h is the disc scale height, η is the magnetic diffusivity and θ is the inclination of the
poloidal field at the disc surface (see figure 42). Accretion of the disc material naturally
follows from the profile of Bφ(z). The toroidal field is responsible for an azimuthal
magnetic tension force Bz∂zBφ/4π, which slows down the rotating material and leads
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to accretion. We can deduce the accretion rate from (4.21):

ρuR ∼ B+
φ Bz

4πΩh
∼ B2

z tan(θ)h
4πη

, (12.2)

where ρ is measured in the middle of the accretion flow (which, in general, is the disc
midplane, but can also be off-midplane for dissymmetric outflows). This accretion is
physically a result of a transfer of angular momentum from the accreted material to the
toroidal field. In the end, the angular momentum is stored in B+

φ and is eventually used to
launch the outflow.

The outflow base has to be replenished by the disc. Hence, a net positive vertical
acceleration is required in the disc region to push material upward, even if at modest
velocities. A careful examination of (11.4) allows us to isolate the role played by each
term in the vertical acceleration: the magnetic pressure is necessarily directed downward
because B2

R and B2
φ are both increasing functions of z. Gravity is also directed downward.

The magnetic tension term is usually small (it involves a radial derivative whereas the
other terms involve vertical derivatives, which are larger by a factor of R0/h), and typically
directed downward if we assume the most natural situation with Bz decreasing with radius.
Hence, the only term leading to an upward acceleration is the vertical thermal pressure
gradient. The role played by the thermal pressure at the base of the outflow has often
been missed. However, it has some important consequences. For instance, B+

φ cannot
reach arbitrarily large values that would otherwise prevent thermal pressure from pushing
materials to the wind base and vertically squeeze the disc. Ejection therefore requires
(B+

φ )
2/8π � P+ (Ferreira 1997).

A summary of the physics of the disc region is as follows.

(i) The region is non-ideal as the gas has to be allowed to stream through poloidal field
lines which are stationary.

(ii) The toroidal field at the disc surface stores the energy and angular momentum taken
from the accreted material.

(iii) The upward motion needed to replenish the outflow base is a result of the vertical
thermal pressure gradient. This sets a limit to the amount of toroidal field that can be
stored at the disc surface because magnetic pressure prevents this upward motion.

12.2. Outflow region
In order to understand the dynamics of the outflow from its base, it is convenient to
introduce the Alfvénic Mach number ξ defined as

ξ ≡ up

VA,p
= η

√
4π

ρ
, (12.3)

where the second equality is deduced from (11.13). In the outflow, we can expect a
continuous acceleration of the flow, so that ξ is an increasing function as one moves along
a poloidal streamline, with ξ ∼ 0 at the outflow base. We can eliminate Bφ in favour of
the angular velocity by combining the magnetic surface rotation invariant (11.16) and the
angular momentum invariant (11.19) to obtain

Ω = Ω∗
(

1 − ξ 2(RA/R)2

1 − ξ 2

)
. (12.4)

This expression looks singular for ξ = 1, which corresponds to the Alfvén point. However,
at this particular point, R = RA so that Ω is actually smooth across this point. Second, in
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the limit of low Mach numbers ξ � 1, which corresponds to the base of the outflow, we
can expand this expression to obtain

Ω � Ω∗
[

1 − ξ 2

(
R2

A

R2
− 1

)
+ O(ξ 4)

]
. (12.5)

Hence, the outflow is rotating at a constant angular velocity up to the point where
ξ 2 � 1/(R2

A/R
2 − 1). Physically, the angular momentum stored in B+

φ by the disc is
progressively used to accelerate the flow via the azimuthal magnetic tension force, leading
to the apparent solid rotation profile. This works until most of the toroidal field has been
used and the angular momentum is all in kinetic form. On the opposite limit ξ → ∞, we
find Ω � Ω∗RA/R2, i.e. a constant angular momentum rotation profile, as expected.

The vertical acceleration of the outflow results from angular momentum conservation.
As demonstrated previously, angular momentum stored in Bφ is converted into kinetic
angular momentum. Hence, Bφ decreases along the streamline. This leads to a magnetic
pressure force ∂zB2

φ directed upward in (11.4) and, hence, a vertical acceleration of the
outflow. As the outflow bends toward the vertical axis, BR decreases as well, leading to
an additional magnetic pressure term ∂zB2

R accelerating the outflow vertically. Overall, the
vertical acceleration is a magnetic pressure effect owing to the decrease of Bφ and BR along
the streamlines.

One can use the Bernoulli invariant to characterise the topology of the outflow close to
the wind base. For simplicity and following Blandford & Payne (1982), let us assume that
the wind base is located at (R0, z = 0). We consider a fluid particle, initially following a
Keplerian rotation orbit at (R0, z = 0) and we assume this particle follows the streamline
of the outflow so that at a later time, the particle is located at (R0 + δR, δz). As we focus on
the launching region of the outflow, we assume that Ω � Ω∗. During this displacement,
the Bernoulli invariant should be conserved, so we should have

−1
2
(Ω∗R0)

2 + ψG(R0, 0) > −1
2

[Ω∗(R0 + δR)]2 + ψG(R0 + δR, δz)

→ 1
2
(Ω∗R0)

2

(
−3
(
δR
R0

)2

+
(
δz
R0

)2
)
< 0, (12.6)

where the inequality comes from the assumption that up(R0 + δR, δz) > up(R0, 0) (i.e. the
flow accelerates). It can be converted into a criterion on θ : tan θ > 1/

√
3 or θ > 30◦. This

well-known criterion, initially derived by Blandford & Payne (1982), is valid provided
that thermal effects (enthalpy, heating) are negligible, i.e. in cold winds. This critical
angle is usually interpreted in the framework of the ‘magneto-centrifugal acceleration’
of Blandford & Payne (1982): magnetic field lines are assumed to behave as rigid poloidal
wires on which fluid particles are drifting (‘bead on a wire’ analogy). If the field lines are
inclined sufficiently, the particles can overcome the vertical gravity and are accelerated by
the centrifugal force.

This simple physical interpretation based on the Bernoulli invariant close to the wind
base is very useful as a first approach to outflow physics, but it should not be taken
too strictly as it leads to several misconceptions about the very nature of outflows. Let
us underline the main physical differences between the magneto-centrifugal acceleration
picture and the processes at work in an outflow.

(i) Magnetic field lines do not behave as rigid poloidal wires. As shown previously,
the magnetic configuration has a strong toroidal field at the wind base B+

φ , which
indicates that the field is wound up in this region.
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(ii) The constant angular velocity approximation is only valid close to the wind base
(and far from the Alfvén radius). It is a result of the toroidal field tension, which
accelerates the flow azimuthally, hence the necessity of a wound field configuration.
Winds having RA/R0 ∼ 1 will therefore experience a very small region of solid
rotation (if any).

(iii) As discussed previously, vertical acceleration is always a magnetic pressure effect
that does not rely on gravity, centrifugal acceleration or magnetic tension.

As proposed by Contopoulos & Lovelace (1994) and Ferreira (1997), it is therefore
preferable to qualify outflows as ‘magnetically driven’ instead of ‘centrifugally driven’.

Let us summarise here the physics of a cold outflow close to the launching region up to
the Alfvén point.

(i) The flow is accelerated azimuthally by the magnetic tension owing to Bφ . This results
in a transfer of angular momentum from Bφ to the gas as it accelerates.

(ii) As B2
φ (and, possibly, B2

R) decreases with z, the flow is accelerated vertically by
magnetic pressure.

(iii) Close to the launching point and far from the Alfvén radius, the outflow is
approximately in solid rotation.

(iv) In a cold wind, energy conservation at the wind base implies θ > 30◦.

13. Global numerical models

Many numerical models of PPDs have been published in the literature. Here, we focus
on models tackling the effect of non-ideal MHD effects and winds on the dynamics of
a disc, because we focus on the outer parts of PPDs. We therefore exclude ‘ideal MHD’
models and simulations without a large-scale magnetic field.

The first model to investigate this regime was published by Gressel et al. (2015).
However, the limited vertical extension of this work (typically four scale heights) makes
the interpretation of outflow properties difficult. Therefore, we focus on models with a
larger vertical extension such as those published by Béthune, Lesur & Ferreira (2017) and
Bai (2017).

13.1. Global topology
One of the main problems with shearing-box models is the presence of an odd symmetry
for the solution, leading to difficulties to interpret the role played by the outflow. The use
of global models avoids this problem because, in this case, the gravitational potential is
not symmetrical with respect to r. Many models seem to converge towards dissymmetric
outflows, i.e. outflows that are neither even or odd, but are essentially odd for −3H < z <
3H and exhibit a strong current sheet on one side of the disc. In this configuration, the
outflow is dissymmetric, and more mass ejected from one side of the disc than the other
(with ratios of Ṁw reaching a factor of a few). This kind of solution was found both with
only Ohmic and ambipolar diffusion (Gressel et al. 2015) and with all three non-ideal
effects (Bai 2017; Béthune et al. 2017).

The presence of an odd symmetry in the midplane region is reminiscent of the shearing
box solutions described in § 9.2. However, this symmetry is not verified far away from
the midplane as global effects enter the scene. Gressel et al. (2015) have proposed
that the global field structure was playing a significant role in shaping the outflow.
Indeed, by choosing initially a field configuration with ∂RBz > 0, it is possible to produce
outflows directed inwards (towards the star). It has therefore been proposed that the global
radial magnetic pressure gradient was responsible for the symmetry breaking observed in
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FIGURE 43. Global simulation for a wind in a PPD which exhibits a dissymmetric outflow.
Black lines are poloidal magnetic field lines, green arrows represent the poloidal velocity and
the background colour traces the azimuthal field Bφ . Close to the midplane, the configuration
has an odd symmetry, as found in shearing box models and a current sheet is found at z ∼ 3H.
Figure from Béthune et al. (2017).

these models. In addition, the vertical rotation profile (and therefore the vertical
temperature structure) might be playing a role by shearing the poloidal field (Gressel et al.
2015). The question of the origin of the global outflow configuration therefore remains
open (figure 43).

Outflows are not always dissymmetric. Indeed, both Béthune et al. (2017) and Bai (2017)
have reported symmetric (even) outflow configurations. These symmetric configurations
seem to be found mostly when Bz is weak enough (βmid � 104) (Bai 2017; Béthune et al.
2017) and for anti-aligned cases (BzΩ < 0). The sensitivity of the outflow configuration on
the field polarity suggests that the HSI is partly responsible for the outflow configuration.
However, there is no one-to-one correspondence between the field alignment/strength and
the outflow configuration, and the choice of initial conditions also seems to be playing a
non-negligible role. If true, it might be desirable to start from a magnetic configuration as
close as possible to the configuration expected from core collapse calculations (Bai 2017).

13.2. Accretion
The question of the engine driving accretion can be directly addressed in global
simulations. Indeed, one can measure individually each term in the angular momentum
conservation equation

Ṁacc = 4π

RΩK

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∂

∂R
R2

[
ρvφvr − BφBr

4π

]
︸ ︷︷ ︸

τr

+
[

R2ρvφvz − R2 BφBz

4π

]+h

z=−h︸ ︷︷ ︸
τz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (13.1)
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FIGURE 44. Measured accretion rate as a function of time in a non-ideal model. The accretion
rate and torque contributions have been average radially. Most of the accretion is a result of the
wind (τz term) whereas the radial stress does not seem to contribute to the angular momentum
budget. Figure from Béthune et al. 2017.

where we have defined the mass accretion rate Ṁacc = −2πRρvr and the radial and vertical
torques τr,z. An example of such a measure is given in figure 44. We find that accretion
is mostly a result of the wind, the surface torque being the main contribution to angular
momentum extraction in the disc.

Note, however, that the fact that the radial torque is negligible does not imply that the
radial stress is also negligible. As can be seen from (13.1), one can cancel the radial torque
if the radial stress is proportional to 1/R2. In Béthune et al. (2017), a strong laminar
radial stress is indeed present in the disc, with effective α values reaching a few times
10−2. However, because of the surface density profile, the net torque exerted on the disc
mostly cancels out. Similar behaviours have been obtained by Bai (2017), with disc regions
exhibiting positive and negative torques.

Overall, it is clear that in these models, the wind torque is playing a significant if not
dominant role in the mass accretion rate. The radial torque, on the other hand, is less
straightforward as it depends on the initial conditions chosen for the model. Accretion,
decretion or both can be obtained from the radial torque, despite the presence of a relatively
strong positive laminar radial stress when the field is aligned with the vertical rotation axis,
as in shearing box models (see § 9.2.2).

Despite the uncertainties, these models predict mass accretion rates Ṁacc ∼ 10−8 −
10−7 M�/yr. However, even these values should be interpreted with care, as they are
usually measured in the middle of the simulation domain, typically 5–20 AU from the
central star. If an outflow is indeed present and carrying mass away, the mass accretion
rate onto the star can be significantly smaller than that derived in the bulk of the disc.
From the definition of the ejection efficiency (11.33), we have

Ṁacc(R) = Ṁacc(R0)

(
R
R0

)ξ
. (13.2)

Large ejection efficiencies (ξ = O(1)) such as that found in recent global models therefore
lead to dramatically reduced mass accretion rates at the inner radius of the disc.
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Unless one assumes an ionisation rate much higher than that expected in these objects
(see § 3.4), the flow is mostly laminar, with a very low time-dependency. Hence, the radial
stress measured in these models is not the usual turbulent stress found in ideal simulations,
but really a purely magnetic term with no velocity counterpart. This implies that dust
grains present in the disc will be less subject to turbulent fluctuations and will therefore
settle towards the disc midplane more rapidly.

13.3. Ejection and mass loss rate
The outflow is not only responsible for carrying angular momentum away from the
disc, but it also contributes significantly to the mass loss of the disc. All of the
simulations published up to now find that the mass loss rate in the outflow is, broadly
speaking, comparable with or even larger than the mass accretion rate in the disc (Ṁw �
10−8–10−7 M�/yr), which implies ξ ∼ 1.

The mass outflow rate is tightly connected to the amount of flux threading the disc,
with Ṁw ∝ β

−1/2
mid (Béthune et al. 2017), indicating that the mass flux is proportional to the

magnetic flux threading the disc. Interestingly, similar scalings are obtained in non-ideal
shearing box models (Bai & Stone 2013b; Lesur et al. 2014) whereas steeper dependences
are found in ideal shearing box models (Suzuki & Inutsuka 2009; Bai & Stone 2013a).

The engine driving ejection can be isolated first by looking at the magnetic level
arm of these outflows. Most of the models published up to now find level arms λ < 2.
This is coherent with the very high mass loss rates found in these simulations (high ξ ,
see (11.40)). Although it is, in principle, possible to obtain cold outflows with low λ
and high ξ in discs threaded by a weak field (βmean � 1, see for instance Jacquemin-Ide,
Ferreira & Lesur 2019), some of the outflows published to date in PPDs have λ < 3/2 (e.g.
Béthune et al. 2017), which violate the cold MHD wind constraint (11.29). Hence, these
outflows are not purely magnetically driven.

This conclusion can also be reached by analysing directly the Bernoulli function of the
outflow (e.g. figure 45). Such an analysis shows that thermal effects (enthalpy and heating
terms) both contribute significantly to the energetics of the outflow (Béthune et al. 2017).
Still, magnetic effects are clearly not negligible at the base of the outflow, where magnetic
pressure helps pushing the flow upward.

For these reasons, these outflows have been labelled ‘magneto-thermal’. This kind of
outflow has already been identified in self-similar solutions by Casse & Ferreira (2000).
Compared with historical cold wind solutions, they are (obviously) warmer, denser and
slower. They reach high ξ values (typically ξ > 0.1) and have moderate λ. Of course, the
fact that they extract angular momentum from the disc and that the initial acceleration is a
result of magnetic effects implies that they are not purely thermal.

13.4. Self-organisation
Self-organisation was unambiguously identified in global simulations by Béthune et al.
(2017) for simulations with βmid � 103 (e.g. figure 46), but it is absent from the models of
Gressel et al. (2015) and Bai (2017), who only considered β � 104. It is most of the time
found in simulations exhibiting dissymmetric wind configurations, but does not seem to
prefer one given field polarity, as would be expected from Hall-driven self-organisation.
A careful examination of the flow shows that the poloidal field lines are concentrated
in low-density regions. Hence, magnetic effects are playing a very important role in the
mechanism.

It is possible to identify which process is responsible for self-organisation by looking
closely at the non-ideal induction equation. It is then found that ambipolar diffusion
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FIGURE 45. Bernoulli invariant B measured in an outflow driven from a non-ideal PPD.
Magnetic contribution are B2

⊥v and w, thermal contributions comes from the enthalpy H and
external heating Q whereas kinetic energy terms are represented by v2

φ and v2
p . Magnetic terms

contribute significantly close to the launching point, whereas thermal energy becomes important
higher up in the outflow. The ideal MHD region starts for z � 5h. Figure from Béthune et al.
(2017).

(a)

(b)

FIGURE 46. (a) Self-organisation in a simulation with βmid = 102 computed in 2.5 dimensions.
The density is represented in colormap whereas magnetic field lines are in white lines and
velocity field is shown in green arrows. Note that field lines are accumulated in regions of
reduced density in the midplane. Figure from Béthune et al. (2017). (b) Volume rendering of
a similar model, this time computed in the full three dimensions. Note that the flow remains
axisymmetric.
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is the only term responsible for the accumulation of magnetic flux in narrow regions,
whereas Ohm and Hall effects are both diffusing the field away (Béthune et al. 2017).
Hence, despite the presence of a rather strong Hall effect in these simulations, it is not
the Hall-driven self-organisation that is at work in these models, but ambipolar-driven
self-organisation. In essence, the mechanism seems to be similar to that driving
self-organisation in stratified shearing box models subject to ambipolar diffusion only
(Bai 2015). The local configuration found in the global simulations is indeed identical to
the configuration found in shearing boxes (see figure 40), making the shearing box model
a valuable tool to understand self-organisation in this regime.

Unfortunately, there is today no general theory predicting in which situation
self-organisation is occurring nor what are the general properties of the structures that
are formed.

14. Conclusions

In conclusion, the global modelling of the weakly ionised part of PPDs (R � 1 AU) is
still in its infancy. The inclusion of non-ideal MHD effects confirms that the disc midplane
is mostly laminar, whereas the disc is still accreting thanks to magnetised outflows. Owing
to the low magnetisations used in these models (βmid � 102–103), the outflow is not purely
magnetically driven as external heating and thermal pressure are found to contribute to
the global energy budget. This implies that it is difficult to draw systematic conclusions
regarding the accretion rate and mass loss rate, as these can depend both on the ionisation
structure but also on the thermodynamics of the disc wind, both of which are plagued by
huge uncertainties.

It would be tempting to consider stronger field models with β = O(1) which are known
to lead to historical ‘cold wind’ models (Ferreira 1997). However, such models would also
have larger average accretion velocities which are typically sonic. If one wants to keep an
accretion rate approximately compatible with observation, such a model would imply a
disc surface density reduced by at least one order of magnitude (most likely two), which
would be incompatible with the disc masses inferred from observations. Hence, the fact
that the disc is massive, with an average accretion velocity much smaller than the speed
of sound implies that if outflows exist in these regions, they must be due to a weak field:
βmean � 1.

Self-organisation is also a very promising mechanism to explain some of the observables
in PPDs. However, the theoretical background for these features remains limited. The
fact that they are seen both in global and local simulations is encouraging, but, clearly,
a detailed theoretical work is needed before any satisfactory prediction can be made and
tested against observational data.

PART FIVE: Summary and future directions
15. Summary

These are exciting times for PPD modelling and planet formation theory in general.
Indeed, we now start to have direct observational constraints for these astrophysical
objects, ranging from large resolved structures, such as rings and non-axisymmetric
bumps, to turbulent velocity dispersion measurements. Even magnetic field strength and
topology are now beginning to be probed at the disc scale, giving more constraints to
models.

The plasma in these discs is, however, relatively cold and therefore weakly ionised,
reaching an ionisation fraction of ξ ∼ 10−13 in the disc midplane around 1 AU. This
implies that non-ideal MHD effects (Ohmic, ambipolar and Hall effect) are essential to
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obtaining a proper description of the plasma. The amplitude of these effects, however,
is poorly constraint. Because ionisation is mostly non-thermal, the amplitude of these
non-ideal effects depends on the details of the ionisation sources, the disc structure and
the plasma composition (especially the abundance of tiny dust grains). Overall, there is
an uncertainty of several orders of magnitude on these effects, implying that very detailed
models including complex reaction networks are likely unnecessary at this stage because
the input parameters (disc composition and environment) are largely unknown.

In order to explain the observed accretion rates in these discs, and because angular
momentum is a conserved quantity, one needs to find a way to remove the disc angular
momentum, either by transporting it radially outwards in the disc bulk, or by transporting
it vertically away in a magnetised wind. Although radial transport has been historically
favoured thanks to its simplicity and elegance (the well-known α disc model), vertical
transport is now believed to be key in several astrophysical objects because of its high
efficiency.

The most favoured mechanism to explain angular momentum transport in discs is the
MRI, a linear, ideal MHD instability found in rotating sheared flows. This instability has
been the subject of intense studies since the early 1990s and it is known that it is strongly
affected by the non-ideal effects present in PPDs. Most notably, it is suppressed in the
regions where Ohmic and ambipolar diffusion are strong, and it gives a new branch, known
as the HSI, when the Hall effect is dominant, in the case where the poloidal field is aligned
with the rotation axis.

In the non-linear regime, the MRI behaviour strongly depends on the presence and
strength of a mean vertical field threading the disc. Historically, most of the simulations
published until early 2010 were in a regime without a mean field, commonly known
as the ‘MRI dynamo’. In ideal MHD, this regime is known to produced vigorous 3D
turbulence and radial transport of angular momentum, but in non-ideal MHD, turbulence
is suppressed, leading to a laminar flow, no angular momentum transport and no accretion.
This ‘dead-zone’ problem is circumvented by considering a mean vertical field threading
the disc. Doing so, the MRI can indeed be revived in the upper layers, as expected from
the linear analysis, but it then saturates into magnetised outflows, and the flow remains
mostly laminar. In this situation, angular momentum is transported, mostly in the vertical
direction, so accretion is saved, but its physical description then becomes fairly different
from that of an α disc.

This connection between the MRI and magnetised outflow in discs threaded by a mean
field was only realised during the past 10 years. In the presence of outflows, local models
are insufficient since the dynamics of outflow is dictated by the global geometry of the
system. In the case of PPDs, it is found that accretion driven by magnetised winds are
compatible with observed accretion rates for relatively weak mean fields, βmean = O(104),
which are compatible with the upper bounds on the field strength from observations.
Because the outflow is in a weakly magnetised regime, it is usually found that the mass loss
rate can be of the order of, or even larger than, the mass accretion rate measured at the inner
radius of the disc (this result being perfectly consistent with mass, angular momentum and
energy conservation). In addition, the outflow is highly sensitive to thermal effects, which
contribute significantly to the flow energetics, as is found in many models. Hence, these
outflows have been called ‘magneto-thermal’.

16. Perspectives

Research on this topic is now following several paths. First, the fact that thermal effects
can play a significant role implies that they should be modelled accurately. Several groups
are now working actively on this problem (e.g. Wang, Bai & Goodman 2019; Gressel
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et al. 2020). It should be realised that thermal driving is a very complicated problem, as
it involves heating by X-rays and UV photons, in addition to cooling, mostly by molecular
and atomic lines. The computation of thermal processes therefore rely on complex
chemical networks, coupled to radiative transfer codes, which are all computationally very
intensive. Eventually, one hope is to find a way to simplify this physics using prescribed
heating and cooling functions tested on complete models. This would allow a more
systematic exploration of the long-term impact of thermodynamics on these systems, and
make a connection to the winds observed in the sub-millimetric range.

A second question is the dynamical evolution of the mean magnetic field threading the
disc. As shown previously, this mean field is key for magnetised outflows. It is strongly
suspected that such a field should be present, as a direct result of the disc formation
process, which relies on the collapse of a magnetised molecular cloud. During the collapse,
a fraction of the magnetic field is trapped in the forming disc, and then plays the role of the
mean field for outflows. However, once the disc is formed, it would be desirable to describe
how this mean field evolves with time. It could be advected inwards by the accretion
flow, leading to a strongly magnetised inner region, or it could inversely diffuse outwards
because of non-ideal MHD effects. At the time of writing, this question is not settled, even
qualitatively. Numerical models suggest that the field is diffusing outwards (Bai & Stone
2017; Gressel et al. 2020) whereas analytical models suggest inwards transport (Leung &
Ogilvie 2019). If magnetised outflows are the dominant mechanism of accretion, then it is
essential to address quantitatively this question in order to be able to model the long-term
dynamics of these discs, because mass and magnetic flux are tightly linked. This flux
transport can be at the origin of complex dynamics in the disc, such as time variability or
even eruptions, which are also observed in these systems.

A third axis of research is the effect of this dynamics on planet formation, from the
dynamics and growth of dust grains to the migration of giant planets. Most of the literature
published to date rely on the α disc paradigm, which itself assumes that the disc is
turbulent. However, if accretion is driven by magnetised winds in a mostly laminar flow,
this framework has to be revised. Indeed, the lack of turbulence affects the dynamics of
large grains (�10 μm): vertical and radial settling, coagulation and disruption efficiency,
etc., are all strongly modified. In addition, the fact that accretion is driven by surface stress,
and not by turbulence is also going to reshape planet migration. It is not clear yet how type
I and type II migration processes react to this shift in accretion paradigm, but the first
attempts at including the wind stress in 2D planet migration numerical models already
show a very significant effect (Kimmig, Dullemond & Kley 2020). Even the long-term
evolution of the disc is quite different from that of a viscous disc, as viscous spreading is
absent for a wind-driven disc. These are only a few example, but it shows that many things
which were thought to be well established are now standing on wobbly foundations.
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