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Dispersive pressure and density variations in snow avalanches
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E-mail: bartelt@slf.ch

ABSTRACT. Snow avalanches possess two types of kinetic energy: the kinetic energy associated with
the mean velocity in the downhill direction and the kinetic energy associated with individual particle
velocities that vary from the mean. The mean kinetic energy is directional; the kinetic energy associated
with the velocity fluctuations is non-directional in the sense that it is connected to random particle
movements. However, the rigid, basal boundary directs the random fluctuation energy into the
avalanche. Thus, the random energy flux is converted to free mechanical energy which lifts and dilates
the avalanche flow mass, changing the flow density and increasing the normal (dispersive) pressure and,
as a consequence, changing the flow resistance. In this paper we derive macroscopic relations that link
the production of the random kinetic energy to the perpendicular acceleration of the avalanche’s center
of mass. We show that a single burst of fluctuation energy will produce pressures that oscillate around
the hydrostatic pressure. Because we do not include a damping process, the oscillations of the center
of mass remain, even if the production of random kinetic energy stops. We formulate relationships that
can be used within the framework of depth-averaged mass and momentum equations that are often used
to simulate snow avalanches in realistic terrain.

INTRODUCTION
A fundamental problem in natural hazard research is
to understand how velocity fluctuations in fast-moving,
gravitationally driven slides of snow, rock or earthen debris
produce a dispersive pressure that fluidizes the moving mass,
increasing mobility and danger (Issler and Gauer, 2008;
Bartelt and Buser, 2011). Dispersive pressure (Bagnold,
1954) arises in dense snow avalanches and other dry,
granular-type debris flows because of shear deformations
in the granular material, which consists of particles (snow
clods, rocks, earth clumps, woody debris and other detritus).
As the flow shears, collisions between particles produce
accelerations of the granular fluid perpendicular to the flow
direction. The pressure associated with the dilatative strains
(the dispersive pressure, p) raises the center of mass of the
avalanche, changing the normal pressure, N, and therefore
the shear resistance, S, of the flow on the ground.
The primary difficulty in the study of dispersive pressure

is to define an appropriate reference volume where we
can average the outcome of the particle collisions, the
source of p. Unlike Bagnold, who considered the dispersive
pressure in a constant volume, we consider a volume with
a free boundary, the top surface of the avalanche. Since
we cannot assume that all the particles have identical
velocity vectors (magnitude and direction), there must be
some variation about the mean. With this variation there
is an associated kinetic energy, that we term random.
By summing the random particle energies in a well-
defined reference volume we can find the density of
the random kinetic energy, R. In this paper we relate
temporal changes of R to the perpendicular acceleration of
the center of mass of the reference volume. The change
of R can be abrupt, as when the avalanche runs over
rough ground. To model how these bursts of R affect the
dispersive pressure we do not calculate the trajectory of each
individual particle by integrating well-known equations of
motion, including momentum exchanges arising from binary
collisions. Instead, by developing a macroscopic model for
dispersive pressure in an open volume, we find a strong

resemblance to the thermodynamic gas law; that is, density
and pressure changes are related to a change of the random
kinetic energy, known as the ‘granular temperature’.
However, by formulating a macroscopic model we lose

information concerning the individual particle trajectories
and, therefore, density distributions and any other micro-
scopic feature. At present, microscopic features of the flow
are extremely difficult to measure in real avalanches. Our
measurement of dispersive pressure necessarily involves
ensembles of many particle interactions that are true only on
average. Individual particle impact pressures at the bottom
will be higher than the mean p, but it is this mean,
macroscopic p that we measure (Platzer and others, 2007).
As the center of mass of the reference volume is also defined
by the ensemble of the individual particles, calculating
bulk changes in the perpendicular direction is not only a
mechanical consequence of the changes in the mean p,
but also results in a consistent formulation for continuum
avalanche flow models (Gubler, 1987; Norem and others,
1987; Salm, 1993; Naaim and others, 2004; Christen and
others, 2010). To study the role of dispersive pressure in
avalanches, we must therefore start by carefully defining our
reference volume and the energy density, R.

RANDOM KINETIC ENERGY
We consider a two-dimensional flow segment of an ava-
lanche filled with granular material (snow clods, rocks,
woody debris; Bartelt and McArdell, 2009), as shown in
Figure 1. The space between the snow clods is filled with
air and contains individual snow grains or ice crystals freed
by the abrasive interaction between larger snow clumps.
Because the mass of snow grains is small in comparison with
the mass of large debris, we consider the snow grains to be
part of the air phase. The flow segment extends from the base
of the avalanche, the running surface, to the top surface. The
base has unit area and therefore the flow volume is defined
by the flow height, h0. Because we assume an isotropic
(homogeneous) density, ρ0, the mass per unit area of the
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Fig. 1. Segment of a flowing avalanche with height h0 and
homogeneous density ρ0. The normal pressure on the bottom is
N0 = ρ0gzh0. Random kinetic energy is introduced into the
segment at the rate Ṙ. The flow height increases from h0 to h. The
center of mass moves with velocity W. The measured pressure on
the bottom will be N = N0 + p, where p is the dispersive pressure.

segment is m0 = ρ0h0. We term the homogeneous density,
ρ0, the reference density of the flow because it is associated
with the reference volume, V0. The flow segment moves in
the x-direction with mean velocity U. If a burst of fluctuation
energy occurs, the flow height increases from h0 to h and
the density decreases from ρ0 to ρ (Fig. 1). Although it is an
arbitrary choice, we usually take the deposition density for
the reference density, ρ0. The flow density, ρ, of the segment
will in general differ from the reference density.
Because there is no interaction with neighboring segments

or mass flux through the lower and/or upper segment
boundaries, the mass remains constant and therefore the
relationship m0 = ρ0h0 = ρh holds (Fig. 1). The assumption
of homogeneous density implies that some of the solid
material is in contact with the boundaries (bottom, sides and
top), corresponding to the perimeter of the closed volume.
The mean velocities parallel and perpendicular to the

slope, U and W, respectively, are found by averaging the
n granule velocities (Ui , Wi ) in the segment in the x- and
z-directions:

U =
1
n

n∑
i=1

Ui , W =
1
n

n∑
i=1

Wi . (1)

The velocity fluctuation of the ith granule can then be found,

ui = Ui −U, wi =Wi −W. (2)

These fluctuation velocities define the random kinetic energy
density, R, in the segment

R =
1
2h0

n∑
i=1

mi
(
u2i +w

2
i

)
, (3)

where mi is the mass of the ith granule. Dividing by the
segment volume, h0, and the unit basal area (1m2) we find
the mean specific energy. Thus, as the avalanche segment
moves in the downslope direction, it experiences changes
in both U and R. In general, the energy, R, is random in
nature and therefore R cannot perform mechanical work.
However, at the base of the avalanche a flux of R is deflected
by the running surface upwards into the segment (Fig. 1). The
granular burst is given by the flux, Ṙ. This energy flux raises
the center of mass, converting a random energy flux into

potential energy (it performs mechanical work). The rise in
the center of mass is associated with the dispersive pressure,
p. At present it is not necessary to know the exact nature
of the sources of random kinetic energy, Ṙ. It can arise from
basal shearing (Salm, 1993), i.e. sudden changes in surface
roughness and slope, or it can arise from internal shearing
movements between granules in a near-boundary slip
volume (Bartelt and others, 2006; Buser and Bartelt, 2009).

DISPERSIVE PRESSURE
The variable h is the height of the avalanche and is associated
with the avalanche’s center of mass, k = h/2 (homogeneous
density distribution). Thus,W = k̇ . The center of mass moves
in the z-direction. No friction, no bending, no shear motion
or any other form of damping is considered. For simplicity,
we assume only a homogeneous density distribution. By
denoting the z-location of the center of mass, k , we
underscore the importance of tracking the vertical velocity,
acceleration and change of acceleration of the center of
mass. Before we apply a granular burst of R, we assume
that the mean velocity in the perpendicular z-direction (the
velocity of the center of mass) is zero, W = 0, or at least
known.
The normal stress, N, acting on the ground is

N = N0 + p = ρ0h0
(
gz + k̈

)
, (4)

where N0 = m0gz = ρ0h0gz is due to the static weight of
the avalanche; gz is the z-component of the gravitational
acceleration. The pressure, p = ρ0h0k̈ , is the inertial force
per unit area associated with the acceleration of the center
of mass, k̈ . This is the dispersive pressure (or excess pressure
or reaction) that would be measured on the ground due to
accelerating the center of mass upwards. To measure N we
use a force plate that is sufficiently large, such that we do not
measure individual impacts. The time rate of change of N is

Ṅ = ṗ = ρ0h0
...
k . (5)

This equation assumes that the mass, ρ0h0, is constant during
the time interval over which we convert Ṙ to mechanical
work on the bottom boundary. In experiments where the
normal pressure is measured, the pressure, p, induced by
the acceleration, k̈ , cannot be discerned from an increase
in mass. Only by tracking the location of the center of mass,
k , in time can we decide how the random kinetic energy
influences the dispersive pressure. The dispersive pressure
cannot act continuously in time because this would mean
a constant k̈ , which implies a steady, ever-increasing height
(or, if it decreases, an infinite density, ρ). This is clearly not
the case. The normal force, N = N0 + p, fluctuates around
N0. This is why we have to calculate changes in k̈ .
We can attribute the change in random kinetic energy to

the change in inner energy, Nh, and from this we find the
relationship between R and h by solving

d
dt
(Nh) = Ṅh + ḣN = γṘh. (6)

This equation relates the change of inner energy, R, to the
change in pressure, N, and volume, h. It resembles the ideal
gas law, pV ∝ thermal temperature. Thus we assume that a
change in random kinetic energy corresponds to the change
in thermal energy in kinetic gas theory. In Equation (6),
the burst of R increases the inner energy and the potential
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Fig. 2. Two bursts of random kinetic energy are applied to an avalanche with initial flow height, h0 = 1m, and flow density, ρ = 300 kgm−3.
(a) Random kinetic energy input, Ṙ. Two bursts of random energy. (b) Calculated height, h, the true height of the avalanche. (c) Vertical
velocity of the center of mass, W. (d) Dispersive pressure, p. (e) Calculated flow density, ρ. After each burst the density decreases and
oscillates around a new level. In this case, ρ = 265 kgm−3 after burst 1 and ρ = 250 kgm−3 after burst 2. (f) Flow density and normal
pressure. The system starts in equilibrium N0. Because the mass does not change, the system oscillates around N0 where p = 0.

energy such that energy is conserved (γ = 1). Therefore,
the coefficient, γ, describes the efficiency of this process.
It can be defined, for example, to account for mass leaks,
or sideways transport of R, γ �= 1. Since R is the random
energy density, we multiply by h0 to find the mean random
kinetic energy per square meter. Clearly, the coefficient, γ,
will change, depending on the distribution of R in the vertical
direction. Substituting the equations for p (Equation (4))
and ṗ (Equation (5)) into the change-of-energy equation
(Equation (6)) leads to a third-order differential equation in h:

...
h
2
+
(
gz +

ḧ
2

)
ḣ
h
=

γṘ
m0

. (7)

This third-order equation can be solved in time as a system
of three first-order equations using a Runge–Kutta numerical
integration procedure (Boyce and DiPrima, 1977). Since
W = k̇ = ḣ/2, we find that Equation (7) is harmonic in
W, driven by a forcing function which is dependent on the
production, Ṙ:

Ẅ +
(
gz + Ẇ
k

)
W =

γṘ
m0

. (8)

Thus, if the avalanche is struck by an abrupt change in R,
caused by, say, a change in surface roughness, we expect
an upward acceleration and velocity of the center of mass
that may overshoot the equilibrium position, which is
given by the reference flow height, h0, h > h0. This is
demonstrated in Figure 2, where we apply two bursts of Ṙ
to an avalanche with initial flow height, h0 =1m, and flow
density, ρ0 = 300kgm−3 (Fig. 2a–d). The magnitude of the
overshoot defines the reduction in flow density (Fig. 2e).
Such overshoots are visible at the heads of dense flowing
avalanches, where flow densities are said to be ‘dilute’ and
appear to fluctuate (Gauer and others, 2007a,b; Turnbull and
McElwaine, 2007). Because gravity is always acting, the new
flow state is not sustainable and is continually changing,
unless, of course, the avalanche can maintain the production
of R. When R is constant, the density will oscillate around
some value. At this value, p = 0 and the normal stress, N,
is equal to the weight of the avalanche, N0 (Fig. 2f). The
center of mass oscillates with the circular frequency

ω2 =
(
gz + Ẇ
k

)
. (9)
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Higher frequencies are associated with smaller heights
and flatter slopes, as the vertical gravity component, gz ,
increases. Without random energy input, R will dissipate
and the mass will collapse to the reference height, h0; the
density will increase to ρ0.

CONCLUSIONS
A conclusion we draw from our analysis is that dispersive
pressures in an open volume cannot be of long duration.
Bagnold (1954) showed that shearing increases the pressure
in a closed volume. He found that as long as the granular
volume is sheared, the dispersive pressure remains. In a
shallow avalanche, being a system with an open boundary,
the dispersive pressure increases the height (center of
mass). The normal pressure oscillates around the hydrostatic
pressure. This result has been found in many experiments
(Bartelt and others, 2007; Platzer and others, 2007).
Excursions from the hydrostatic pressure (dispersive pressure)
alter the flow density of the avalanche. These changes in
density can be maintained over long flow periods, if the
production of random energy is in balance with its decay,
Ṙ = 0; that is, R is constant. This can easily occur on
steep and even moderately inclined slopes. On flat slopes
the dissipation of R will overcome the production and we
expect to see an increase in flow density and shear resistance
and therefore a decrease in avalanche speed.
Both the normal pressure and the flow height can be

measured in small-scale chute experiments with granular
materials (Bartelt and others, 2007) or large chute experi-
ments with snow (Platzer and others, 2007). However, in
granular experiments it is difficult to discern how changes in
flow height affect the flow velocity. Equation (7) provides
us with a tool to separate bulk changes in the normal
pressure caused by the mass flux from changes induced
by perpendicular accelerations and the associated changes
in density. Because the mean velocity can likewise be
measured, with high-speed cameras (Schaefer and others,
2010) or optical velocity sensors (Kern and others, 2009),
it might be possible in the near future to quantify how per-
pendicular accelerations influence the velocity of the flow.
Important relationships could be derived from experiments
that describe how these accelerations alter the frictional
shear stress, which determines the speed of the avalanche.
We derived Equation (7) with respect to the center of mass

of a flow segment. Equation (7) can therefore be coupled
with depth-averaged mass and momentum equations for
avalanche flow (Savage and Hutter, 1989, 1991). The third-
order equation can be decomposed into three first-order
equations for k , k̇ and k̈ . By including the convective
accelerations of k , k̇ and k̈ , a system of partial differential
equations results which will allow depth-averaged solution
methods to track changes in avalanche density. This would
have great utility in practical problems, especially mitigation
problems involving flow heights and pressures. Whether
a simple coefficient, γ, describing the conversion of the
random energy flux to mechanical (potential) energy, is
sufficient, can only be determined when the full system of
partial differential equations is solved, which will hopefully
be in the near future.
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