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Note on Algol and conservatively extending
functional programming

PETER W. O'HEARNt
Syracuse University

Abstract

A simple Idealized Algol is considered, based on Reynolds's 'essence of Algol'. It is shown that
observational equivalence in this language conservatively extends observational equivalence in
its assignment-free functional sublanguage.

Capsule Review

Many researchers have claimed for a long time that Reynolds's Idealized Algol is a functional
language. O'Hearn's note finally verifies this folklore and turns it into a precise claim. He shows
that we can use all conventional equational laws to reason about the functional fragments of
Algol programs. Advocates of Algol and functional programming languages will welcome this
result as a step towards merging functional and imperative programming. Advocates of
functional languages with strong imperative components (Scheme, SML) will use O'Hearn's
theorem to point out the weakness of Idealized Algol's assignment statements.

1 Introduction

In 'The essence of Algol', Reynolds (1981) presents a view of Algol as a call-by-name
language based on the typed ^.-calculus, with 'imperative' primitive types. A central
feature of the design is the interaction between assignment and procedures. Side
effects are wholly isolated in a primitive type comm of commands, and do not occur
when computing a value of functional type. That is to say, side effects in procedures
are latent, in the sense that an effect occurs only by evaluating a procedure call as a
term of type comm. As a result, function types retain a genuine' functional character'.
For instance, the full P and r| laws are valid equivalences in Algol-like languages. This
functional aspect of Algol has been emphasized strongly by Reynolds (1981, 1988,
1992), and echoed in the works of Tennent (1989, 1991) and Felleisen and Weeks
(1993).

The purpose of this short note is to give a technical result further exemplifying this
functional character. Specifically, observational (or contextual) equivalence in a
simple Idealized Algol conservatively extends equivalence in a simply-typed
assignment-free functional sublanguage. This means that two program fragments
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that can be interchanged in all assignment-free programs without affecting observable
behaviour can also be safely interchanged in any context in the full imperative
language. Thus, not only are P, n, and so on preserved, but so are all equivalences
from the assignment-free fragment of the language.

The proof of conservativity utilizes denotational models. The interesting twist in
the proof is the use of a non-standard model for the Algol-like language. We want to
work with a model of the full imperative language in which semantic equality
conservatively extends equality in a standard domain-theoretic model of functional
languages. It turns out that standard models of Algol-like languages are not suitable
because they contain what Reynolds calls 'snapback' operations, which cause
backtracking of state changes that require copying of the entire state (cf. O'Hearn and
Tennent, 1995; O'Hearn and Reddy, 1995, for a discussion). These operations violate
the intuitive property of irreversibility of state changes, and section 3 shows an
example of where snapback invalidates an equivalence true in the assignment-free
sublanguage. Thus, conservativity fails for the standard models. The main step in the
proof is the formulation of a non-standard model for which a semantic conservativity
result does hold.

The result we seek concerns not only semantic equality, but observational
equivalence; that is, equivalence in all program contexts. It can be (and is often) the
case that semantic equality and observational equivalence for a model and language
do not match. In order to extend our result to observational equivalence we need to
work with a fully abstract model of the assignment-free sublanguage, a model in
which semantic and observational equivalence do coincide. For this we use Plotkin's
(1977) fully abstract model of PPCF, a language with recursion and basic arithmetic
constructs, and extended with a (determinate) parallel conditional. The proof does
adapt easily to other functional sublanguages, including sequential PCF, simply by
working with term models. But since this adaptation should be clear from the form
of the proof it seems reasonable, for the sake of simplicity, to show the result utilizing
the standard continuous-function model of parallel PCF. A fully abstract model is
not required for the full Algol-like language.

I consider the result given here to be part of folklore. Amongst those with a detailed
knowledge of'The essence of Algol', the result is I suspect either already known, or
would become known soon after the question was considered. But it is a piece of
folklore that deserves to be explicitly noted, especially in light of the growing interest
in integrating functional and imperative programming (e.g., Swarup et al., 1991;
Wadler 1990a, 1990b; Peyton-Jones and Wadler, 1993; Guzman and Hudak, 1990;
Launchbury and Peyton-Jones, 1995). Conservative extension results of the kind
considered here have been a specific concern in Odersky et al. (1993); Odersky (1994);
Riecke (1993) and Riecke and Viswanathan (1995).

2 Idealized Algol

Idealized Algol extends simply-typed functional programming with primitive types
for imperative features. We take the language PCF, a typed A.-calculus with recursion
and basic arithmetic constructs, as our representative pure functional language. The
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language IA (for Idealized Algol) extends PCF with two additional primitive types,
the type comm of commands and the type var of storage variables. Altogether, the
types of IA are

t:: = nat | bool | var | comm 11 ->• t.

For simplicity, we only consider storage variables that hold natural-number values:
variables for the booleans could easily be added. Though we will not do so here, in
the presence of product types we could take comm as the only additional type, beyond
those of PCF, by defining var as syntactic sugar for (nat -> comm) x nat (Reynolds,
1981).

Many of the essential properties of IA can be immediately brought to light by
considering a semantics for the types. In the following, each type t determines an co-
complete partial order Sf \t\ with a least element.

<f [comm] = S => Sx

•Sqnat] = S=>NX

^[bool] = S=>TX

^[var] = S=>LX

Here, => is the continuous function space, T = {tt,ff} is a two-point set (of truth
values), L is a countably infinite set (of locations), ./Vis the set of natural numbers, and
S is a suitable set of states.

The striking point to notice is that the interpretation of the function type is exactly
as in the domain-theoretic semantics of a purely-functional language. In comparison,
in most imperative languages such as Pascal, ML, or Scheme, the collection of states
would be used to interpret functions themselves. Furthermore - and this is related to
the interpretation of the function type - side-effects are wholly concentrated in the
type comm, since no other primitive types have the state in an output position. The
nat and bool types are state-dependent, but in a read-only way. These aspects of the
language are an example of what Strachey (1972) termed structural properties, on
display from the semantics of types alone, prior to considering primitive operations
or terms at all, let alone operational semantics.

IA is an applied ^.-calculus with certain constants. An infinite set of variables x1: t,
for each type t, is assumed, together with formation rules for ^.-abstraction and
application:

M:s^-t N:s M:s
MN:t kx?.M:t-*s

The constants come in two groups. One group consists essentially of the operations
of PPCF, i.e. PCF together with a parallel conditional.

succ, pred : nat -s- nat

if;, : bool -+b^b^b

pif5 : bool -> 8 -> 8 -> 8
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0 : nat

0? : nat -> bool

tt, ff : bool

In the rule for if6, the sequential conditional, b ranges over all primitive types
including var and comm. In the rule for pif8, the parallel conditional, 5 ranges over
only nat and bool. In the rule for Yt, the recursion combinator, t ranges over all types
of IA.

The constants for the imperative fragment of IA are as follows:

:= : var ->• nat -> comm

deref : var -> nat

skip : comm

; : comm -> comm -»• comm

new : nat -> (var ->• comm) -> comm

new vP creates a local storage variable / , initializes its contents to v, executes P(£),
and de-allocates ( on completion. With this explanation the binding of an identifier
denoting a local variable is accomplished using X, as in new v (Xx.C).

PPCF is a sublanguage of IA. The PPCF types are

p::= nat | bool | p-> p.

PPCF terms are built from variables x", abstraction, application, and the constants
just given (with the restriction that in if6 b is nat or bool). We will denote the standard
continuous-function model of PPCF by ^ [ . ] . The interpretation of types is as
usual:

0> Inat] = Nx

&> [bool] = Tx

A 2P \. J-environment u is a type-respecting map that assigns a value u(xp) e SP [ pj to
each variable xp, and the meaning of a PPCF term is a (continuous) map from
environments into values so that & \M\ ue^lpj when M: p. All of the constants have
their usual interpretations, with pif5 being the parallel conditional. We often suppress
mention of environments when speaking of 0* fc], for c one of the given constants. We
refer to Plotkin (1977) and Gunter (1992) for detailed definitions.

Returning to IA, complete the semantics of types we have to define the set S of
states. There are a number of ways to do this, one of the simplest of which is to set

S = JL=> (TV + {unused})

The unused portion is used to define the local variable declarator new. For this to
work, we must assume that there is a partial function new :S^L that selects a new
unused location if there is one, and is undefined if all locations are in use; see Tennent
(1991) for a more detailed discussion.
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An £f | . J-environment u is a function associating an element M(X*) 6 £f \t\ to each
variable x*. The following semantic equations define a continuous function
yiM\:E=>y\i\ for M:t, where E is the (componentwise ordered) domain of
environments.

y\x\u =

Sf\M(N)\u =

^[pred] as =

£f Isuccj as =

•Sqskip].?

Sf[;]abs

5^[derefJ as

£f\;. = \abs

Sf [if,,] abcs

9* |pifgl a 6 c 5

^[new 6 ]e^ i

«(x')

^ [pred] (a(s))

^ fsucc] (a(s))

= 5

•

" 1

1

No
. - L

5(/l—»

b(s)
c(s)
1

C(5)

1

y [ Y

u) sr\\

if a(s) = s' -
if a(s) = 1

ifa(*) = /=|
if a(s) = 1

u)if a(i) = t-
if a(i) = 1

if a{s) = tt
if a(s)=ff
if a(s) = 1

if a(s) = tt

(1/ = Ujg^/ll)

}}s = 0

I]* = ff

¥±

;r^)ir+±

if a(s) = ff or c(s) = b(s)
if a(s) = 1

(s'\f\-> unused)

1

if new (s) = *?, e(j) = v 4= 1 ,
/7(X.5./)(iKl-»-r) = 5'
otherwise

With the various constants, we have suppressed mention of environments.

3 Conservativity

3.1 Semantic conservativity

The model of IA given in the previous section is standard and, even if it is imperfect,
it is certainly computationally adequate wrt a suitable operational semantics (Meyer
and Sieber, 1988). Thus, we may consider the semantics as a reference point, for
denning the language. However, the model £f [ • ] is not conservative over 2? \ • ], as the
following example shows.

Consider the type bool ->• bool.

& [bool -> bool] = (S => T±) =>(S=> T±)

The two occurrences of the set S of states allow us to (semantically) evaluate different
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parts of an expression at different states. An example is the function g e £f [bool -> booll
defined by:

where t eL is a fixed location. Intuitively, g executes e after changing the state, by
assigning 0 to <f, and so there are two states, s and (s\S\-*0), that play a role in the
evaluation of the semantic expression g(e)s. To see this issue on the level of
equivalences, consider the terms

M = if x (/(*)) II N = if x (/(tt)) Q

where / : bool -> bool and x: bool are identifiers, and Q = Y ^ ^ x . x) is the divergent
boolean. This is a valid equivalence in PPCF, 0>\M\ = 3P{N\, because in the model
/ i s applied directly to the value of x, which is a truth value. However, in the Sf\.\
model / is applied to an argument of semantic type S => TL, and so there is an
opportunity to apply / in states where x is false. Specifically, define e e £f [bool]] by

f # if s{n = o,
\ tt otherwise.

Now, let s be a state where s(<f) 4= 0. Then g{e) s = # while g(ks' .tt)s = tt. Therefore,
if we consider an environment u where u{f) = g and u(x) = e, we get ^ [MJ us =ff
while ^fNjus = tt. So M and N are not equal in the model £^[.J, and semantic
equality in the standard model £f{.\ of IA is not conservative over equality in the
model 0>\.\ of PPCF.

The function g is an example of the ' snapback' effect, so named because the state
change is not recorded globally in the semantics. For instance, in an environment
where/denotes function g, an assignment statement x:=J{l) will leave location £
unchanged (unless x denotes t) because the change to i during evaluation of /(I) is
temporary.

We now present a semantic model that overcomes this specific difficulty pertaining
to conservativity. The model does not address the general problem of irreversibility
of state change: see O'Hearn and Tennent (1995), Reddy (1995) and O'Hearn and
Reddy (1995) for discussion of this. The aim is to provide a simple (though ad hoc)
work-around, that is just enough to achieve conservativity.

The main idea of the new semantics ^ [. ] is to push the state as far outward as
possible, by interpreting the PPCF fragment in a way that, given any state s,
'compiles' to a meaning in the PPCF model 8P\.\ by reading values of variables. In
intuitive terms, we will maintain the following property for the PPCF fragment:

# [Ml us = 0> \M\ u' where u'(x) is obtained by ' looking up' u(x) in state 5
Here is the semantics of types

for PPCF types p

=><<?[/] provided one of t', t not a PPCF type.

For PPCF types there is now only one occurrence of S, at the outermost level. For
example, # [bool -> bool] = S=> (Tx => TL).
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The semantic equations for the PPCF constants must be altered in certain cases.

^lM{N)\us = <g[M\us($lN\us) M, N of PPCF type

^{Xx'.Mjusa = ^lMj(u\^^(kseS.a))s Xx. M of PPCF type

= ^"[succ]

For the remaining constants and cases the equations are exactly as for Sf \.\.
The non-standard semantics of the PPCF fragment of IA can be easily seen to

satisfy the laws of the typed ^.-calculus. In fact, it is just an interpretation of the typed
^.-calculus in the Kleisli category of a monad on the category of co-complete posets
and continuous functions. The functor part of this monad is S =>(—), and the
resultant Kleisli category is cartesian closed.

Lemma 1 (Semantic conservativity) For all PPCF terms M, N, 3P \M\ = Sf \N\ iff

Proof For any PPCF term M and £f \. J-environment w, a routine induction shows
that <€ \M\ u s = 0> {MI u', where u' is a 3? [. ]-environment such that u'(x) = u(x) s. As
a consequence, for any closed PPCF term M, we clearly have C€\M\ = \seS.!? {M},
and so the result holds for closed terms. For open terms M and N the result follows
by considering closures Xx.M and Xx.N, which are equal iff M and ./V are (by virtue
of ^.-calculus laws). •

The reader may enjoy explicitly verifying that the terms M and AT from the example
at the beginning of this section are indeed equivalent in # [ . ] .

3.2 Observational conservativity

Observational equivalence will be generated by observing convergence at ground
type. In the case of IA, this means a closed term of type comm or var, as well as terms
of type nat or bool.

Definition 2 (Observational equivalence)

1. For PPCF terms M, N, M=PPCFN iff for all ground PPCF contexts C[.],

2. For IA terms M, N, M =lA N iff for all ground IA contexts C[.],

= L o

There are typical implicit provisos in this definition, such as that M and ./V be of the
same type and that C[.] be a context that captures all their free identifiers.

As we indicated before, we take the standard model if [. J as defining IA. The model
# [ . ! , though non-standard, is adequate wrt this model.

Lemma 3 (Adequacy) For all closed I A terms M of ground type, Sf [Af ] = L iff
<$\M\ = i .
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Proof The proof uses a standard 'logical-relation argument' (Tennent, 1991;
Gunter, 1992) to connect the meanings in the two models. Given (complete and
pointed) relations Rb £ #[&] x S^fb] on IA primitive types, we lift to higher types by
the clauses:

(p,p') e /?"-"' o V(a,

where one of t, t' is not a PPCF type. Then taking R" as the equality relation, this gen-
erates a family of relations. One checks that each constant of IA is invariant under the
resulting relation, using the fact that each R' is pointed and closed under lubs of co-
chains in the case of fixed-point. One then shows that the meanings of all terms map re-
lated environments to related meanings in the usual way, and adequacy follows. •

This, together with Lemma 1, yields the result:

Proposition 4 (Observational conservativity) For all PPCF terms M, N,

M = PPCF N o M =IAN

Proof IfaPPCFcontextC[.]distinguishesMandA^in^I.I,say^IC[M]I # 1 and
^•[Cr^V]] = -L, then by the semantic conservativity lemma we have #[C[A/]] 4= -L
and |̂[C[./V]] = ±. The <= direction then follows from the adequacy lemma.

Conversely, if M = PPCF N then & \M\ = 0> \N\ by the full abstraction theorem for
^ [ . ] . By the semantic conservativity lemma we get (€\M\ = C€\N\, and then
M =jA N follows from the adequacy lemma and the compositionality of # [ . ] . D

The interesting part of this argument is the use of the non-standard model of IA.
It shows that the presence of snapback operations is the only reason for the failure
of conservativity in standard models of Algol. The result also illustrates, by way of
equivalences, some of the undesirable properties of snapback operations, and thus
weaknesses in the models of, for example Oles (1982), O'Hearn and Tennent (1995)
and Sieber (1994). Among the more advanced models of Algol-like languages,
Tennent's (1990) model of specification logic is the only one in which a semantic
conservativity results holds.

4 Conclusion

Reynolds's Algol, unlike Algol 60, disallows side effects in integer and boolean
expressions. This leads to a clear distinction between the types of phrases (integers,
booleans) that are evaluated for the value they produce, and commands, which are
evaluated solely for their side effects. Analogous conservation results typically fail for
languages where there is a less strict separation. For instance, in ML or Scheme
procedure invocation is inextricably bound up with state change, and equivalences
such asy(l)+/(2) =/(2)+/( l) that (viewed at an appropriate level of abstraction)
holds in the effect-free subset - what is often referred to as the 'pure' subset - do not
hold in contexts where/can have a side effect. In versions of Algol that allow side
effects in expressions, such as Weeks and Felleissen (1993), conservativity is also lost,
though the laws of the typed ^.-calculus remain valid.

Some recent proposals for integrating imperative and functional programming also
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use types to isolate effects from the procedure mechanism (Peyton-Jones and
Wadler, 1993; Launchbury and Peyton Jones, 1995). A type T(a) is used for state
transformers that change the state and also return a value of type a: the type comm
in IA resembles J(unit) for a type unit with a trivial value. In these languages integer
and boolean expressions are completely state-independent, whereas in IA expressions
are read-only or passive, in that they are state-dependent but side-effect free. The
imperative ^.-calculus (Swarup et al., 1991) is even closer to I A, but also uses state-
independent expressions. In order to maintain equational laws in a setting that does
not allow for passive or read-only types excessive sequencing of dereferencing
operations is required. This is one of the motivations for considering general notions
of passivity (Reynolds, 1978; Wadler, 1990b; Reddy, 1994; O'Hearn et al., 1995).

Although every specific equation true in the functional sublanguage remains true
in IA, it is important to note that not all 'global properties' of equivalence are
preserved. One example is the context lemma (Milner, 1977): two closed terms M, N
of functional type in PPCF are equivalent iff MV = NV for all closed vectors V of
arguments. This property fails in IA already at the type comm-s-comm. For instance,
the procedures Xc.c and Xc.c;c are not observationally equivalent, but closed
applicative contexts are not sufficient to distinguish them: up to equivalence, skip and
Q are the only closed terms of type comm in IA. To create a distinguishing context
we must use new as in

new 0 (Xx. ([. ] (x: = x + 1)); if x = 1 then skip else Q)

This failure of the context lemma might be attributed to the presence of impure
features in IA, though it is difficult to make this attribution precise since ' impure' is
ill-defined.
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