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ON SOME SUB-RIEMANNIAN OBJECTS IN HYPERSURFACES
OF SUB-RIEMANNIAN MANIFOLDS

KANG-HAI TAN AND XIAO-PING YANG

We study some sub-Riemannian objects (such as horizontal connectivity, horizontal
connection, horizontal tangent plane, horizontal mean curvature) in hypersurfaces of
sub-Riemannian manifolds. We prove that if a connected hypersurface in a contact
manifold of dimension more than three is noncharacteristic or with isolated charac-
teristic points, then there exists at least a piecewise smooth horizontal curve in this
hypersurface connecting any two given points in it. In any sub-Riemannian manifold,
we obtain the sub-Riemannian version of the fundamental theorem of Riemannian
geometry: there exists a unique nonholonomic connection which is completely deter-
mined by the sub-Riemannian structure and is "symmetric" and compatible with the
sub-Riemannian metric. We use this nonholonomic connection to study horizontal
mean curvature of hypersurfaces.

1. INTRODUCTION

Recently there is an explosion of interest in the theory of sub-Riemannian manifolds
(or Carnot-Caratheodory spaces in general), and in the ramifications of this subject in
analysis and geometry, see for example, [1, 5, 6, 9 ,10, 11, 12 ,13 ,16 , 19, 22]. We recall
a sub-Riemannian manifold (M, A, gc) is a smooth manifold M with a distribution A (a
subbundle of the tangent bundle TM) which is endowed with a fibrewise inner product
gc (usually called the sub-Riemannian metric). gc is usually realised as the restriction on
A of some Riemannian metric g on TM. Carnot groups are particularly interesting sub-
Riemannian manifolds. Roughly speaking, the sub-Riemannian geometry of (M, A, gc) is
the geometry determined by the sub-Riemannian structure (A, gc) which yields Carnot-
Caratheodory distance if A satisfies Chow's condition and M is connected, and should
be independent of the choice of the Riemannian metric g which is the extension of gc to
TM, although it often interacts with the Riemannian geometry of (M, g).

It is natural to study the geometry of hypersurfaces (or submanifolds of codimension
more than one) in sub-Riemannian manifolds not only from the geometric viewpoint (see
[5, 13, 14, 22] which study sub-Riemannian minimal surfaces in Carnot groups), but
also from the viewpoint of analysis (see [9, 10, 11, 12, 19, 23] for the development

Received 13th October, 2003

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 SA2.00+0.00.

177

https://doi.org/10.1017/S0004972700034407 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034407


178 K.H. Tan, X.P. Yang [2]

of geometric measure theory in the setting of sub-Riemannian geometry). To develop a
theory of sub-Riemannian minimal surfaces, a sub-Riemannian counterpart of the notion
of the usual mean curvature on submanifolds should be laid down. In [22, 5] (see also [14])
an analysis definition of the notion of horizontal mean curvature for noncharacteristic
hypersurfaces in Carnot groups has been given. In [26] we have formulated a geometric
definition of the horizontal mean curvature by using the notion of horizontal connection.
It turns out that our definition coincides with the analysis definition in the case of Carnot
groups. The geometric definition is valid for general sub-Riemannian manifolds.

In this paper we continue our study of the geometry and calculus of hypersurfaces
in sub-Riemannian manifolds. The notion of the horizontal tangent plane of smooth
noncharacteristic (see Definition 3.1) hypersurfaces plays an important role in the devel-
opment of [26]. The horizontal tangent plane T^-S at a point x in a smooth noncharac-
teristic hypersurface S is defined as the k - 1 (assuming A is k dimensional) dimensional
linear space T^S such that

9c

where Ax is the fibre of A through x, nH(x) the horizontal normal of S at x and ®
denotes the orthogonal decomposition with respect to gc. Since nn(x) is by definition
the projection onto AT of the Riemannian normal n(x) computed with respect to g (any
orthogonal extension of gc), we have

We call
THS-.= \JT?S

xes
the horizontal tangent bundle. In general, if S possesses characteristic points, one also can
define TnS — TSTiA. Note that TnS is independent of the orthogonal extensions of gc. A
very interesting question is under what conditions TnS satisfies the Chow's condition with
respect to TS, that is, the subbundle TnS (if it is a subbundle, say) together with all its
Lie commutators spans TS (we assume A satisfies the Chow's condition). This question
is relevant to another two: whether there exist sufficiently many horizontal curves in 5
and whether one can define a Carnot-Caratheodory metric with respect to T^S with
an induced metric g^ (from gc)? We point out that in his seminal paper [16] Gromov
discussed, (along with other things about geometry of hypersurfaces in sub-Riemannian
manifolds), the relationship between the restricted Carnot-Caratheodory metric on 5
and the Carnot-Caratheodory metric induced by the structure (TnS,g™). He claimed
that the two metrics are Lipschitz equivalent in some special cases, for example, contact
manifolds of dimension more than tree, see page 104 and page 173 in [16]. One of the
main results of this paper is to give the first result in this regard. We have
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[3] Sub-Riemannian objects in hypersurfaces 179

THEOREM 1 . 1 . Let M be a smooth orientable contact manifold of dimension
2n + 1 with a contact form rj and a Riemannian metric g and let A :— ker(77) be the
canonical distribution. Let S be a smooth connected hypersurface in M. If n > \ and
there does not exist an immersed submanifold contained in the set E5 of all characteristic
points in S, then for any points p,q € 5, there exists a piecewise smooth curve ~f(t),
t € [0,6] connecting p, q such that 7 € T^S. In particular, if S is noncharacteristic,
T™S as a subbundle ofTS satisfies the Chow's condition, that is, T^S together with all
its Lie commutators span TS.

Theorem 1.1 follows from Sussmann's famous Orbit Theorem and the contact struc-
ture of M. A trivial example shows that the condition of dimension more than three is
necessary.

The next point we concentrate on is whether there exists an intrinsic nonholonomic
connection D in (M, A, gc). Here by "intrinsic" we mean that it is completely determined
by the sub-Riemannian structure (A,gc). A natural candidate is the one D obtained by
projecting to A the Levi-Civita connection V with respect to some orthogonal extension
g of gc. We prove that D is independent of the choice of orthogonal extension of gc.
Moreover we have

THEOREM 1 .2 . Let {Xu..., Xk} be an orthonormal basis of A. We define D

by

k k k k

(1.1) DVV = Y,u{vi)xi + j2J2Y,UJVir'ijXi forany
i = l :=1 j=l 1=1

k k

u = ^2 uixv v = YlyiXi

7 = 1 x = l

where

and XH is understood as the projection of X to A with respect to the direct summation
decomposition TM = A 0 A where A is the distribution complementary to A. Then D
is independent of the choice of orthonormal basis of A and it is the unique nonholonomic
connection satisfying

(1) DVV is R-linear in both arguments,

(2) DVV is C°°{M)-linear in the argument ofU,

(3) the Leibniz rule holds:

Du(fV) = {Uf)V + fDuV for any f € C°°(M), U, V € T(A),

(4) D is compatible with respect to gc, .that is,
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(1.2) Uge{V, W) = gc{DvV, W) + gc(U, DVW) for any U, V, W 6 T(A),

(5) the following "symmetry" property holds:

(1.3) DVV - DVU = [U, V}H for any U, V € T(A).

In particular we have D = D.

Theorem 1.2 is the counterpart of the existence and uniqueness of the Levi-Civita
connection in Riemannian geometry.

We shall use D to study the horizontal mean curvature of hypersurfaces in (M, A, gc).

Let DT be the tangent horizontal connection on the horizontal tangent bundle THS of a
smooth noncharacteristic hypersurface 5. We define the horizontal mean curvature of S
as the trace of the horizontal fundamental second form which is by definition a bilinear
map II from F(THS) x T(TnS) to N:

U(X,Y)=DXY-DT
XY

for any X,Y € T{TnS) where r{TnS) denotes all smooth sections of TnS and TV is the
horizontal normal. The symmetry of II follows from the symmetry property (1.3) of D

and the definition of the horizontal tangent plane. Since both D and THS are intrinsic,
so is the horizontal mean curvature.

The paper is organised as follows. In Section 2 we collect some facts about sub-
Riemannian manifolds which will be used later, mainly to fix some notations. In Section
3 Theorem 1.1 is proved after introducing the notion of the horizontal tangent bundle.
Roughly speaking, if we project Riemannian objects onto the horizontal bundle (such
as the Riemannian connection, normal vector and tangent bundle), then we get cor-
responding sub-Riemannian analogues: horizontal connection, horizontal normal vector
and horizontal bundle. Theorem 1.2 is proved in Section 4.

2. BASIC MATERIAL ON SUB-RIEMANNIAN MANIFOLDS

Let M be a smooth (C°°) manifold of dimension m endowed with a smooth distribu-
tion (called the horizontal bundle) A of dimension k with k <m. [Note that this imposes
topological constraints on M, see [18].] If we a priori equip A with an inner product
<7C (called the sub-Riemannian metric), we call (M,A,gc) a sub-Riemannian manifold
with the sub-Riemannian structure (A, gc). Let {Xi, . . . , Xk} be an orthonormal basis of
A. [If a global basis does not exist, we can consider a local basis (which always exists)
without restriction for our purposes.] A piecewise smooth curve i(t),t 6 [a,b] in M is
horizontal if j(t) € A7(t) almost everywhere t € [a,b]. The length i(j) of the horizontal
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rb
curve 7(t), t € [a, b] is the integral / gc(j(t), j(t)) dt. Denote by L{ the set of all vector

Ja
fields spanned by all commutators of X / s of order ^ i and let Lj(p) be the subspace
of evaluations at p of all vector fields in L{. We say A satisfies Chow's condition [in
the subelliptic theory, Chow's condition is also called Hormander's condition] if for any
p € M, there exists an integer r(p) such that Lr(p)(p) = TPM (the tangent space of
M at p). If M is connected and A satisfies Chow's condition, the Chow connectivity
theorem asserts that there exists at least one piecewise smooth horizontal curve connect-
ing two given points (see [4, 1] or [16]), and thus (A,gc) yields a metric (called the
Carnot-Caratheodory metric) dc by letting dc(p,q) be the infimum among the lengths of
all horizontal curves joining p to q.

A is equiregular if the dimension of Lj(p) does not depend on p for any i, that is,
the tangent bundle TM is filtered by smooth subbundles

A = Li C L2 C • • • C LT = TM

where r is called the degree of A. Note that we can always extend gc to a Riemannian

metric g in M such that TM can be ^-orthogonally decomposed as TM = A 0 A where
A is the distribution complementary to A. We call such g an orthogonal extension of gc.
Obviously the orthogonal extension of gc is not unique in general. We shall use F(A) to
denote the set of all smooth sections of A.

EXAMPLE 2.1. (Carnot groups) The most interesting models of sub-Riemannian mani-
folds are Carnot groups (called also stratified groups). A Carnot group G is a connected,
simply connected Lie group whose Lie algebra Q admits the grading Q = Vi 0 • • • ® Vi,
with [Vi, Vi] = V;+1, for any 1 < i ^ / - 1 and [Vi, V,] = 0 (the integer / is called the

i

step of G). Let {e i , . . . , en} be a basis of Q with n = £ dim(Vj). Let Xi(g) = (Lg),ei for

i = l,...,k := dim(Vi) where {Lg). is the differential of the left translation Lg(g') = gg'
and let Yi(g) — (Lg),ei+k for i = 1 , . . . ,n — k. We call the system of left-invariant vec-
tor fields A := Vi = span{X!, . . . , Xk} the horizontal bundle of G. If we equip A an
inner product gc such that {Xi , . . . ,Xk} is an orthonormal basis of A, (G,A,gc) is an
equiregular sub-Riemannian manifold. In (G, A,<?c), dc is invariant with respect to left
translation, that is dc(pop,poq) = dc(p,q) for any po,p,q € G, and is 1-homogeneous with
respect to the natural dilations, that is dc(63p, 6,q) — sdc(p,q) for any s > 0,p, q € G,

where 8sp = exp ( £ s^, J for p = exp f £ & J, & € V{.

EXAMPLE 2.2. (Contact manifolds) Contact manifolds are also interesting sub-
Riemannian manifolds not necessarily with group structure. A contact manifold is a
smooth (connected) manifold M with a contact structure which is by definition a codi-
mension one distribution A C TM with non-degenerate curvature form w : A A A
-> TM/A which is defined as follows: represent A locally as the kernel of a 1-form, say n
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on M, identify TM/A with the trivial line bundle and then define w as dr) | A. 77 is called
a contact form of M (not unique). If M is orientable, rj and u can be globally defined.
The non-degeneracy of u> makes the dimension of A to be even and so the dimension of
M is odd, say 2n + 1. Note that the non-vanishing of UJ on A makes the commutators
of degree ^ 2 span TM and thus (M, A, gc) is an equiregular sub-Riemannian manifold
where gc is the restriction on A of some Riemannian metric g on M.

EXAMPLE 2.3. (Heisenberg group) The Heisenberg group Hn as a representative both
in the class of Carnot groups and in the class of contact manifolds is of paramount
importance, and is worthy of being paid more attention. The underlying manifold of this
Lie group is simply K2n+1, with the noncommutative group law

pp' = (x, y, t).(x', y', t') =(x + x',y + y', t + t' + 2«z', y) - <x, j/')))

where we have let x, x', y, y' € R", t, t' € R. A simple computation shows that

Tip) = (Lp

for any p = {x, y, t) in H". We note that

[Xj, Xn+k] = -4T5jk, j , k = 1 , . . . , n,
and all other commutators are trivial,

therefore the vector fields X = {Xi,...,X2n} constitute a basis of the Lie algebra
bn = R2 n + 1 = VI © V2, where Vi = R2n x {0}t, V2 = {0}Ijy x R. Note that the horizontal

( n \
} 2 I (xidyi

— yi dxi) and the curvature form u) = drj = ^2 ^x» A dyt is the standard symplectic form
t=i

in R2n. Thus a smooth curve -y(s) — (x(s),y(s),t(s)) : [a,b] -> Hn is horizontal if and
only if

n

(2.1) 2i(s) = V* yi(s)±i{s) - Xi(s)yi(s) for any s e [a, 6].
1=1

For the theory of sub-Riemannian geodesies we refer to the book [21] and references
therein. See [16] for a comprehensive treatment of the geometry (more than sub-
Riemannian geodesies) in sub-Riemannian manifolds, and for many potential research
directions.
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3. T H E HORIZONTAL TANGENT BUNDLE AND HORIZONTAL CONNECTIVITY IN

HYPERSURFACES

Let (M, A, gc) be a sub-Riemannian manifold. In this section we always assume M
is connected and A satisfies Chow's condition. By 5 we always mean a smooth (C00)
hypersurface (that is, a embedded submanifold of codimension 1) in M. Let g be any
orthogonal extension of gc.

DEFINITION 3.1: (Characteristic points) A point p € 5 is a characteristic point
if Ap c TPS. Let Es denote the set of all characteristic points in 5. If E s = 0, we say 5
is noncharacteristic.

Typically S possesses characteristic points, see for example, [6]. But we have

PROPOSITION 3 . 2 . E s is a closed subset ofS, and nm-1(T,s) = 0. Here nm~l

denotes the m — \ dimensional Hausdorff measure with respect to the Riemannian metric
g (recall M is m-dimensional).

The closedness follows from the smoothness of 5 and the smallness of Es is due to
Derridj, see [7, 8]. In the case of Carnot groups of step two, when the smoothness of S
is weaker than C°°, say C2, the smallness of Es is obtained by Magnani, see [19, 20].

By Proposition 3.2, if p 6 S\ES, then there exists a neighbourhood U of p, such
that UnS c S\ES.

DEFINITION 3.3: (Horizontal normal) Let n9 denote the Riemannian normal of
5 with respect to g. We define the horizontal normal nn of 5 as the projection of the
Riemannian normal onto the horizontal bundle, that is,

where {Xi,..., Xk} is an orthonormal basis of A.

It is easily seen that p € 5 is a characteristic point if and only if nn(p) = 0.

DEFINITION 3.4: (Horizontal tangent plane) For p € 5 , we define

as the horizontal tangent plane of 5 at p.

From the definition we see that if p e Es then T^S = Ap, and otherwise T^-S is a
k — 1 dimensional subspace of Ap. Thus

TnS := U T?S
pes

is a distribution of dimension A: — 1 if and only if S is noncharacteristic. The following

proposition shows that TnS depends only on A and 5.
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PROPOSITION 3 . 5 . The horizontal tangent bundle TnS is intrinsic, that is

TnS = A n TS

in the sense that T*S - Ap n TPS for any pe S.

P R O O F : Let g be any orthogonal extension of gc. For p € S, first let v e T^S. Thus
v G Ap and from Definition 3.3 we have

g(v,n3{p)) = gc(v,nn(p)) + g(v,n'(p))

= 0,

where n'(p) = n9(p) — nw(p) is orthogonal to v since g is an orthogonal extension. The
last formula implies that v € TPS. So TfS C Ap n TPS. Ap n TPS C TfS follows from
the same argument. 0

REMARK 3.6. Therefore TnS is the projection of TS onto A. In the case of Carnot
groups of step two, if p £ 5 is not a characteristic point, T^S has obvious geometric
meaning: T^S is the projection on the horizontal bundle of the Lie algebra of the tangent
group which is the blowup set of 5 with respect to the natural dilations [that is the limit
set of Sp,s •= Sx/s(p~lS) under suitable topology as s —> 0], see [11]. This is the reason
why we call T^S the horizontal tangent plane.

If p € S\T,S, let V(p) = (nH(p))/\nH(p)\ be the unit horizontal normal. Then by
Proposition 3, V is intrinsic, independent of the choice of orthogonal extension, since

Ap = T ^ S e V ( p ) .

LEMMA 3 . 7 . Let Tf be the set of all smooth vector Gelds tangent to THS, that
is,

T£ := {/ € T(TS) | f(p) e TfS for anypeS}.

Then Tf is a projective C°°{S)-module. Here C°°(S) denotes all smooth (C°°) functions
onS.

PROOF: It is clear that J-£ is a C°°-submodule of T(TS). To see it is also projective,
let

T ^ A := {/ e T(TS) | Up) $ T?S for any p e S}.

Then T.FjL is a C°°(S)-submodule of F(T5) and by projecting (with respect to g) elements
in T(T5) to A we have

T{TS) =T T£®?£.

Since T(TS) is a free C°°(S)-module, the statement follows from the last formula. D

REMARK 3.8. Lemma 3.7 seemingly implies that ?§• is generated using an ordinary
distribution using a Proposition in [32, p. 185] or [33, p. 11] where Vershik and Ger-
shkovich asserted (but did not prove) that a differential system [a differential system is,
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by definition, a linear space of vector fields on a manifold that is a module over the ring
of smooth functions] on a smooth manifold is a distribution if and only if it is a projective
C°°-module. But the assertion is not true in general. For example, if A is of codimension
one and Es i1 0, then TT£ is by Lemma 3.7 a projective C°°(S)-module, but it is ob-
viously not a distribution, since the set TF<f(p) of all evaluations at p of vector fields in
TJr£ contains only one element (that is zero) if p is a characteristic point, while Tf£(p)
is a subspace of one dimension if p is not a characteristic point.

A natural question is whether there exist sufficiently many horizontal curves in hy-
persurfaces such that the intrinsic Carnot-Caratheodory metric can be defined. We shall
not pursue the general case. But we shall prove that for contact manifolds of dimension
more than three, there exists at least one smooth horizontal curve connecting two given
points in a connected hypersurface 5 if £ s does not contain any immersed submanifold,
and so the intrinsic Carnot-Caratheodory metric can be defined. This is the case if S
is noncharacteristic or with isolated characteristic points. Note that even in the contact
case, the horizontal connectivity in hypersurfaces is difficult. Some authors asserted that
there are few horizontal curves in hypersurfaces, even though these hypersurfaces are
noncharacteristic, see for example, [9, p. 485] where the authors wrote: ".. .Notice how-
ever that a H-regular hypersurface contains very few i/-rectifiable curves; in particular
we cannot define a geodesic distance on a //-rectifiable hypersurface..." [smooth non-
characteristic hypersurfaces are, by definition, H-regular hypersurfaces; the inverse is not
true in general. #-rectifiable curves are just absolutely continuous horizontal curves].

To prove Theorem 1.1, we first introduce the notion of the orbit of a family of vector
fields.

DEFINITION 3.9: (Orbits of a family of vector fields) Let M be a connected
smooth manifold and let T be any family of smooth vector fields globally defined on
M. We define the orbit of a point p € M of this family as the set of points of M
reachable piececwise by trajectories of vector fields in the family, that is,

Op := {exp(tnfk) o • • • o exp(ti/i) o p \ tt € R, U € .F, n € N}

where exp(t/)(p) denotes the flow of the vector field / through p, that is, the curve 7(i)
in M such that

f
1 7(0) = P

Of course, if some of our vector fields are not complete then we consider only such

ti,...,tn for which the above expression has sense. It is clear that the relation: uq

belongs to the orbit of p" is an equivalence relation on M and thus M is the disjoint

union of orbits (equivalence classes).

The following orbit theorem is due to Sussmann (also Nagano), see [25].
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THEOREM 3 . 1 0 . (Orbit Theorem, Nagano-Sussmann) Let T be as above and
let p e M. Then:

(1) Op is a connected immersion submanifold of M.

(2) TqOp = span{(P,/)(g) | P 6 V, f € F}, q G Op where we denote by V the
group of diffeomorphisms of M generated by Sows in T:

V = {exp(tnfk) o • • • o expfa/O | U G R, /* € T, n G N} C Diff(M)

and by P» we mean the differential map of P.

REMARK 3.11. From Theorem 3.10, two simple but very useful observations are in

order.

(1) First of all, if / e T, then f(q) € TqOp for all q € Op. Indeed, the
trajectory exp(tf)(q) belongs to the orbit Op, thus its velocity vector f(q)
is in the tangent space TqOp.

(2) Further, if fuf2 € T, then [/i,/2](g) € TqOp for all q £ Op. This
follows since the vector [/i,/2](<z) is tangent to the trajectory exp(—1/2)
o exp(—tfi) o exp(t/2) o exp(tfl)(q) 6 Op. We go on and consider Lie
brackets of arbitrarily high order

[/!.[••• [/»-!,/„] "•]](?)

as tangent vectors to Op if fr G T and q € Op.

These considerations can be summarised in terms of Lie algebra of vector fields generated

by T:

Lie^ := span{ [fu [... [/„_!,/„]...]] | fi € T,n £ N} C (T{TM)),

and its evaluation at a point q G M:

Lie 7" = {V(«) | V G Lie^} c T,M.

We obtain the following statement.

COROLLARY 3 . 1 2 .

LieT C TqOp
q

for all q€Op.

We note that the Chow connectivity theorem follows immediately from Corol-

lary 3.12.

Now we return to consider the horizontal connectivity in hypersurfaces in sub-

Riemannian manifolds. We shall need the notion of horizontal immersed submanifold

with respect to a distribution.
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DEFINITION 3.13: Let M be a smooth manifold and A be a distribution on M. An
immersed submanifold i : N -> M of M is horizontal with respect to A if u(TpN) C Ap

for any p € N.

For a codimension one distribution we have

THEOREM 3 . 1 4 . Let M be a smooth connected manifold of dimension m equipped
with a smooth distribution A of dimension m — 1. If M does not admit horizontal im-
mersion submanifolds of dimension m - 1, then given two points p, q in M, there exists
at least one piecewise smooth horizontal (with respect to A) curve connecting them (in
fact A is equiregular).

PROOF: Let T be the set of all smooth vector fields tangent to A, that is,

T = {/ 6 T(TM) | f{p) € Ap for any p £ M } .

For any p € M we claim that the orbit Op of p of the family T is of full dimension
and thus Op is an open set of M.

In fact, if not, then dim(0p) ^ m - 1 where dim(Op) denotes the dimension of Ov.

On the other hand by Corollary 3.12, we have A, C TqOp for any q e Op and so the
dimension of Op is not less than dim(A) = m— 1. Thus, dim(Op) = m— 1 and TqOp = A,
for any q 6 Ov. So Op is a horizontal immersed submanifold of dimension m — 1. This
contradicts with the assumption.

Since M is connected and M is the union of all orbits, we have M = Op for any
p€M. D

LEMMA 3 . 1 5 . Let M be a smooth orientable contact manifold of dimension

2n + 1 with a contact form r\. Then M does not admit horizontal (with respect to

A = ker(7/)J immersion submanifolds of dimension more than n.

PROOF: This is a well known fact. For the readers' convenience and completeness

we give a proof.

Let i : N -> M be a horizontal immersed submanifold of M and let p £ N. By

definition, dim(i,(TpN)) = dim(TpiV) and for any vuv2 € i.(TpN),

(3.1) Ui{P)(vi,v2) = 0

where UJ = dr\. Since unp) is a symplectic form on the horizontal space Ap, from the
non-degeneracy of u^p) we have that

dim((i,(TpJV))X) + dim(t.(TpJV)) = 2n

where (i,(TpN)) is the symplectic orthogonal subspace of i,(TpN). (3.1) is equivalent

to t.(TpiV) C (i,(TpAT))X. Thus

2dimi.(TpA0 < d\m^(i.{TpN))^ +dim(z,(TpiV)) = In.
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Now we are in the position to prove Theorem 1.1.

P R O O F OF T H E O R E M 1.1 Since 2 n - 1 > n, the statement follows directly from
Theorem 3.14 and Lemma 3.15 if 5 is noncharacteristic. If 5 possesses characteristic
points, let Tf be as in Lemma 3.7 and let Op be an orbit of p € S of the family T^. By
Theorem 3.10 Op is an immersed submanifold. From the assumption that Us does not
contain immersed submanifolds we conclude that there exists at least one point q € Op

which is not a characteristic point. By Corollary 3.12 we have that T^(q) C Tq(Op) and
the dimension of Op is not less than 2n -I — dim (.T7^ (<?)). Thus if dim(Op) = 2n - 1,
then Op is a horizontal immersion submanifold of S (and M). This contradicts with
Lemma 3.15 since n > 1. So Op is of full dimension and it is an open set of 5. The
assertion follows from the connectedness of 5. D

E X A M P L E 3.16. (The gauge ball in Hn with n > 1) Let S" = {p e R2n+1 | ||p|| = 1}

where ||p|| := (( |x | 2 + |y|2) +|*|2) is the gauge norm in HP. §" is called the gauge ball
centred in the origin. It is trivial to check that the metric induced by the gauge norm
is left-invariant and 1-homogeneous with respect to natural dilations in H". By direct
computation the characteristic set Es>> of Sn consists of only two points:

Es» = {(0,0,1), (0,0,-1)}.

By Theorem 1.1, we see that the induced Carnot-Caratheodory metric Sn can be defined.

EXAMPLE 3.17. (Hyperplanes in H" with n > 1) Let n > 1. The vertical hyperplane
Li = {(xi,... ,Xi_i,0,xi+i,... ,xn,y,t) G R2n+1} of Hn is a Lie subgroup of W with the
induced group law (that is the restriction to Lt of the group law of H") and Lie algebra
&:= VX@V2 where

and V2 = span{T} where Xn+i := —— and X{,T as in Example 2.3). Li is noncharac-
oyi

teristic and is a Carnot group. It is easy to prove that the Carnot-Caratheodory metric
din induced by (Vi.pJ) where g'c is the restriction of gc to Vy and the restricted Carnot-
Caratheodory metric dte satisfies that

dre ^ din ^ CdTe

where C is an absolute constant, see [16], and there are points p, q 6 L* such that

dre{p,q) <din{p,q).

The following example shows the condition of dimension more than three is unavoid-

able.
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EXAMPLE 3.18. In the simplest Heisenberg group H1, we consider horizontal curves

in the horizontal hyperplane Lt = {(x,y,0) G R 3 } . Note that the point (0,0,0) is the

unique characteristic point in Lt. Let 7(£) = (x(s),y(s),0) be a horizontal curve in Lt.

Then from (2.1) we have

x{s)y{s) = y(s)x(s)

and hence

y(s) = Cx(s)

for some positive constant C. Thus there are no horizontal curves in any hypersurface

S e l l which does not contain the point (0,0,0). The same argument shows that there

are no horizontal curves in Lx = {{O,y,t) e l 3 } and in Ly = {(z,0, t) 6 l 3 } .

REMARK 3.19. As in Euclidean geometry, R3 can serve as a model to the study of

higher dimension, in the study of sub-Riemannian geometry H1 can also be seen as a

model. But in developing geometric measure theory in the setting of sub-Riemannian

geometry, in particular for the notion of rectifiability (and possibly for co-area formulae)

in Carnot groups, H1 may be an exception. We recall that in [9, 10, 11, 12] Franchi,

Serapioni and Serra Cassano have proposed a notion of rectifiability by introducing the

notion of intrinsic regular hypersurfaces, and another notion which is a counterpart of

Federer's definition of rectifiability where the "model spaces" are replaced by Carnot

groups is announced by Pauls in [23]. It is obvious that the Paul's notion does not fit for

H1. One reason is that the codimension one Lie subgroups Lx, Ly of H1 have no stratified

structure. Another reason is the horizontal non-connectivity of hypersurfaces in H1 as

shown in the last example. A very intriguing question arises: we do not know whether

the two notions of rectifiability for Mn(n > 1) are equivalent in any reasonable sense.

4. HORIZONTAL CONNECTION, THE HORIZONTAL MEAN CURVATURE AND THE

HORIZONTAL DIVERGENCE THEOREM

DEFINITION 4.1: (Horizontal connection) Let g be any orthogonal extension of

gc and let V be the Levi-Civita connection with respect to g. We define the horizontal

connection D on A as

D : T(A) x T(A) -> T(A)
k

Y,Xi)Xi for any X,Y € T(A)

where {Xi,...,Xk} is an orthonormal basis of A.

REMARK 4.2. The definition of D is independent of the choice of orthonormal basis of
k

A. In fact, let X{ = Yl aijXj, i = 1,. - . , k be another orthonormal basis. Then (a^) is
I
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an orthonormal matrix (everywhere) and hence

J ^ ^ Y Xj)X,
i=l j=\ 1=1 i=l j=\ 1=1

k

Thus D is well defined.

We call D a "connection" because of the following fact.

LEMMA 4 . 3 . D satisfies the following properties

(1) DXY is R-linear in both arguments,

(2) DXY is C°°{M)-linear in the argument ofX,

(3) the Leibniz rule holds:

Dx(fY) = (Xf)Y + fDxY for any f € C°°(M), X, Y G T(A)

(4) D is compatible with respect to gc, that is,

(4.1) Xgc(Y,Z)=gc(bxY,Z)+gc(Y,DxZ)foranyX,Y,Zer(A),

(5) the following "symmetry" property holds:

(4.2) DXY - DYX = [X, Y]H for any X, Y € T(A)

where [X, Y]n is, by definition, the projection of[X, Y] to A, that is,

P R O O F : The proof is trivial. All follow directly from the definition of D, and the
compatibility and symmetry of the Levi-Civita connection V together with the fact that
g is an orthogonal extension of gc. D

k

R E M A R K 4.4. For any vector field X, the horizontal part XH of X: Xn = Y, y(^> Xi)Xi,
t=i

is independent of any orthogonal extension g of gc. In fact, since g is an orthogonal ex-

tension of gc, the projection, with respect to the decomposition of direct summation, of

a vector field to the horizontal bundle is the same as the projection of this vector field to

the horizontal bundle, with respect to the orthogonal decomposition.

From (2) and (3) of Lemma 4.3 it is straight to verify that DxY(p) depends only on

X(p) and the evaluations of Y in a neighbourhood of p.

Any operator from T(A) (g»r(A) -» T(A) satisfying (1), (2), (3) and (4) of Lemma

4.3 is called a nonholonomic connection.
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PROPOSITION 4 . 5 . Tie operator D is independent of the choice of orthogonal
extensions of gc.

P R O O F : From Lemma 4.3 we know that DVV = £ U{y>)Xj + E E ITV'DxiXj
J

for any U = ^U'Xi, V = £ V J X , € T(A). Thus D is determined by the connection

coefficients T^ = gc(DXiXj,Xi) = g(VXiXj,Xi). By the Cozhul's formula, for any
i,j,l = l,...,kvte have

Xi) + Xjg(Xl,Xi) -

- g(Xit [XhXj]) - g[Xi, [Xif X,}) + g(Xh [XhX

\ u [Xh X,)) + g(Xi, [Xit Xt}) - g(Xlt [XjtXi])}

= -\{gc(XidXhXJ]
H)+ge(Xj,[XiiXt]

H)-ge{X,,[Xj,Xi)
H)},

since {X\,..., Xk) is an orthonormal basis of A with respect to gc. The assertion follows
from Remark 4.4. D

Now we turn to the proof of Theorem 1.2. The definition of D in Theorem 1.2 is
inspired by the proof of Proposition 4.5 and the fundamental theorem in Riemannian
geometry.

P R O O F OF THEOREM 1.2 In this proof, to simplify the notations we use the Einstein
summation convention: if in any term the same index name appears twice, as both an
upper and a lower index, that term is assumed to be summed over all possible values
of that index (from 1 to A;). We first prove that D is independent of the choice of
orthonormal basis of A. Let {X^,. ..,Xk} be another orthonormal basis of A, where
X{ = a{Xj, i = 1 , . . . ,k and A = (a{) is an orthogonal matrix (everywhere). For any
U - U'Xj = WXj, V = V^i - V*Xi € T(A) where U* = VTUT, V{ = b\Vs and
B = (6;) is the inverse matrix of A with frj = aj for i,j = 1 , . . . , k since A is orthogonal,

we try to compute

where f|,. = -{&(*,&•,*!]*) + 9c{Xh [X,,*]*) - ge(X,,[Xi,Xj\
H)}/2. Since

we have

[Xjt Xt)
n = a)a1[XT, Xh)

n + a)XT{a1

and hence

gc{Xu [Xjt X,]11) = aytfgdX,, [XT, Xh\")
0 = 1 5 = 1
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using the same arguments to other terms, and from 6jaj = 8f, a\a{ = 5\ for i, j = 1, . . . , fc,

we deduce

11 = - \Y,V>U'{gc{Xs,[XT,Xh)
H) +gc(Xr,[Xh,X,}H) - gc{Xh,[Xs,XT]H)}xh

- \{ E E UTV>a<lXM )Xh - £ £ U'V°b>Xh(a>)Xh - U
rV'VTX,{a

*• 5=1 (=1 j= l h = l

+ UTV%XT{O!1)XH -itY,U'V'VMoVXn + EE ITVa^X .^
r = l ft=l r = l 1=1

Renaming and rearranging some indices, then cancelling or adding some terms (using
Xi(a3

Tbj) = 0 and a [ = b[ for any l,r,h = l,...,k), we infer t h a t

II = UrV'Th
STXh - UrVja\Xr{b))Xi.

Since
I = U{Vj)Xj = ITXribiV^a'jXt

we obtain
UiV^Xi + U'VT'^Xi = U(Vj)Xj + UTV'Th

STXh.

T h u s D is well defined.

F r o m the definition of D we have for any i, j , I = 1 , . . . , / ,

(4.3) T[j=ge{DxiXi,Xl),

(4.4) ^ + 4 = 0,
(4.5) *%-**# =

Properties (l)-(3) are obvious. To prove (4), let U = UjXj,V

W = WlXt. Then from (2) and (3) we have

K,Xi,Xl) + ge(Xj,DXtXl)) +

k

xjXi, Xt) + ge(Xjf DXiX,)) + Vgc(W, U).

Since by (4.3) and (4)

ge{DXiXu Xt) + gc{Xj, DXtX,) - 1^ + ^

= 0
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for any i, j , I = 1 , . . . , k, we conclude that

gc(DvU, W) + gc(U, DVW) = Vgc(W, U).

To see (5), for any I = 1 , . . . , *, U = UjXj, V = V*Xi € F(A), by (4.5) we have

gc(DuV - DVU, Xi) = U(V) - V(Ul) + W^ '

= U(Vl) - V(U') +

= ge{[U,V]H,Xl).

The uniqueness follows from an argument similar to the Riemannian case: first use
(2) and (3) to obtain (1.1) where F^ = gc(DXjXi,Xt), then using (1.2) and (1.3) to get
a formula of Cozhul type,

ge(Dx,Xu Xt) = -\{gc{Xi, \XhXj]H) + ge{Xj, [XuXt}
H) - ge(Xlt [XhXJ«)}. Q

REMARK 4.6. Thus D is an intrinsic notion of the sub-Riemannian structure (A,<?c).
Here we must point out that the connection D obtained by projecting the Levi-Civita
connection onto the horizontal bundle was first introduced by Schouten in [24]. (There
the Riemannian metric g with respect to which the Levi-Civita connection was computed
was not necessarily an orthogonal extension of gc. Thus in this case D is not intrinsic: it
depends on g.) It was further developed by Vagner in [27, 28, 29, 30] (see [15] for a sur-
vey), and also [31, 32] where D is called "truncated connection". But it seems that they
did not prove the existence of D in Theorem 1.2 and its intrinsic nature (determination
by (A , 5 c ) )o fD , see [32, p. 202].

In Russian mathematicians' papers (also Cartan's, see [3, 2, 17]) nonholonomic
connection was mainly used to study "geodesies" (but not sub-Riemannian geodesies, that
is, nonholonomic geodesies) and curvature of distributions in the setting of nonholonomic
dynamic systems. Let j(s) be a smooth horizontal curve in M. We call 7 a "geodesic"
if D^7 = 0. The mechanical significance of such "geodesies" lies in they characterise
the trajectories of motion of a mechanical system with quadratic Lagrangian and linear
constraints (say A), see [31, 32] for details.

EXAMPLE 4.7. (The horizontal connection in a Carnot group) For a Carnot group
G, since its Lie algebra Q is graded, if we choose a system of left invariant vector fields
{X\,..., Xk) as an orthogonal basis of the horizontal bundle A = Vi, then the connection
coefficients Fy of the horizontal connection D are vanishing everywhere for any i,j,l

= l,...,k. For this basis, D has the simple form

k k

DVV = J2 UiV^Xi for any U, V = £ V% € T(A),
i=i t=i

see [26] for details.
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For completeness we introduce the notion of horizontal divergence.

DEFINITION 4.8: (Horizontal divergence) Let X € T(A). The horizontal diver-

gence divw X of X is defined by

Note that as shown in Remark 4.2, div^X is independent of the choice of orthonormal
basis of A because of (2) in Lemma 4.3.

The following proposition, which in the case of Carnot groups is well known, follows
immediately from the definitions.

PROPOSITION 4 . 9 . div«X = divX for any X e T(A) where divX is the

usual divergence of X computed with respect to any orthogonal extension g of gc.

It is interesting that D can be used to define the horizontal mean curvature of (non-
characteristic) hypersurfaces in (M,A,gc). In the rest of this paper, we discuss how this
can be done. Roughly speaking, in sub-Riemannian (or nonholonomic) geometry hori-
zontal connection, horizontal tangent connection, horizontal normal, horizontal second
fundamental form and horizontal mean curvature are counterparts of Levi-Civita con-
nection, tangent connection, Riemannian normal, second fundamental form and mean
curvature in Riemannian geometry, respectively.

We assume, if without further notice, S is a smooth nonchamcteristic hypersurface
in a sub-Riemannian manifold (M, A, gc). Then TnS is a subbundle of TS of dimension
k — 1. From the definition we have

LEMMA 4.10. IfX,Ye T(TnS), then [X,Y]n € r(THS).

It is clear that any vector v in T™S(p e S) can be extended to a vector field in TMS

by first extending v t o a vector field V in TS then projecting V to TnS, and any vector
field V in TnS can smoothly extended to a horizontal vector field in A by first extending
V to a vector field V in TM then projecting V to A. Sometimes we shall denote by the
same symbol both the extended vector field and the original vector field, in particular
when we have confirmed that the objects under consideration are independent of such
extensions.

If X, Y are vector fields in TnS, we can extend them to horizontal vector fields X, Y

in M, apply the ambient derivative operator D, and then decompose at points of 5 to
get

(4.6) DYY(x) = (DTY)T(x) + (D^Y)x(x) x€S

where ( .DY^7)1"^) . ( ^ ^ - " - ( X ) are the projections of I>xY(x) onto T?S and the direction

of V(x) respectively, where V(x) is the unit horizonal normal, see Remark 3.6.
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DEFINITION 4.11: (The horizontal second fundamental form) Let X, Y be vector
fields in TnS. We define

where X, Y are the arbitrarily extended horizontal vector fields of X, Y respectively, as
the horizontal second fundamental form of S.

THEOREM 4 . 1 2 . Tie horizontal second fundamental form II(X, Y) is

(1) independent of the extension of X and Y;
(2) bilinear over C°°{S); and
(3) symmetric in X and Y.

The proof of Theorem 4.12 is very similar to the Riemannian case, see [26]. Note
that (4.12) follows from Lemma 4.10 and the symmetry property (4.2) of D, as in the
Riemannian geometry the symmetry of the second fundamental form follows directly from
the symmetry (torsion free) of the Levi-Civita connection. Theorem 4.12 in particular
implies that ll{X, Y)(p) depends only on X(p) and Y(p).

DEFINITION 4.13: (The horizontal tangent connection) We define the horizontal
tangent connection

DT : r(TnS) <g> T(THS) -> r(T*S)

by
DT

XY=(DX-Y)T,

where X, Y are the arbitrarily extended horizontal vector fields of X, Y respectively.

THEOREM 4 . 1 4 . The horizontal tangent connection DT is well defined, that is,
D^Y is independent of the extension of X and Y. Moreover DT satisfies (l)-(5) of
Lemma 4.3 where A is replaced by TnS and gc is replaced by g? which is the restriction
ofgc to TnS.

The proof of Theorem 4.14 is direct and trivial. From the preceding discussions, we
know that in 5 there exists an intrinsic horizontal connection determined by the sub-
Riemannian structure (THS,g*), since

9

TS = TnS 0 (TS/TnS)

where ~g is the restriction of g to TS, see the proof of Lemma 3.7. From the definitions
it is easy to see that g is the orthogonal extension of g*, even if T^S may not satisfy
the Chow condition. Thus the "external" connection DT is equal to the intrinsic one by
Theorem 4.14 and Theorem 1.2.

DEFINITION 4.15: (Horizontal tangent divergence) Let X e T{THS). The hori-

zontal tangent divergence divJ X of X is defined by
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where {TI, . . . , rfc_i} is a orthonormal basis of TnS with respect to g£. For a horizontal
vector field Y defined in 5 , that is, Y € r (A | s ) where A | s is the restriction of A to 5,
we can also define its horizontal tangent divergence

k-l

Similarly to Proposition 4.9, we have

P R O P O S I T I O N 4 . 1 6 . Let Y € T{TnS). Then

d iv j Y = divs Y

where divs Y is the Riemannian tangent divergence ofYonS computed with respect to
any orthogonal extension g of gc.

DEFINITION 4.17: The scalar horizontal second fundamental form h is the sym-
metric bilinear function on THS defined by

h(X,Y)=gc(ll(X,Y),V).

That is ll(X, Y) = h(X, Y)V. Thus h uniquely determines an endomorphism of TnS,
say A, that is,

gc(AX, Y) = h(X, Y) for all X,Y e F{THS).

A is self-adjoint and we call A the horizontal shape operator of 5 .

For any p 6 S, A gives a symmetric linear map Ap : T^S —• T^S. Then by the
symmetry of Av, Ap has k — 1 real eigenvalues.

DEFINITION 4.18: (The horizontal mean curvature) The A; — 1 eigenvalues of Ap,

« ! , . . . , Kfc_i, are called the horizontal principal curvatures at p and the corresponding
eigenspaces are called horizontal principal directions. We define the horizontal mean

*-i

curvature Hx{p) at p the trace of Ap, that is, Hx(p) = J2 K« an<i c a ^ t n e product of
t=i

« i , . . . , Kk-i the horizontal Gaussian curvature at p.

It has been proved in [26] that in the case of Carnot groups our definition of the
horizontal mean curvature coincides with that in [6] and [22].

REMARK 4.19. Since D, TnS and V are intrinsic, so is the notion of horizontal mean
curvature. As in [6] and [22], the horizontal mean curvature can be defined only at
noncharacteristic points [in [6] (see also [14]), if p is a characteristic point, the horizontal

mean curvature at p is defined by H(p) — l im#(g) if this limit exists. Since it is
Q-*P

impossible to determine the size of the set of characteristic points at which the limits
exist, this definition seems meaningless]. However by Proposition 3.2, the horizontal

mean curvature can be defined almost everywhere.
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EXAMPLE 4.20. (Horizontal mean curvature of noncharacteristic hypersurfaces in Carnot
groups) As in Example 4.7, choose a system of left-invariant vector fields {X\,..., Xk}

as an orthogonal basis of the horizontal bundle, then for any noncharacteristic hypersur-
face S C G, the horizontal mean curvature can be expressed as the form

where V = Yl VXi is the unit horizontal normal of S, see [26].
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