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Abstract. We prove the LoÈ wner-Heinz inequality, via the Cordes inequality,
for elements a; b > 0 of a unital hermitian Banach *-algebra A. Letting p be a real
number in the interval (0,1], the former asserts that ap � bp if a � b, ap < bp if a < b,
provided that the involution of A is continuous, and the latter that s�apbp� � s�ab�p,
where s�x� � r�x�x�1=2 and r�x� is the spectral radius of an element x.
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1. The LoÈ wner-Heinz inequality (Heinz [6], LoÈ wner [8]) asserts that bounded
operators A; B on a Hilbert space such that O � A � B necessarily satisfy Ap � Bp

for any p 2 �0; 1�. This matter has received much attention from mathematicians
because not only is it so beautiful in itself but also it plays a crucial role in various
stages of operator and operator algebra theory.

It is known that some classes of Banach *-algebras have a canonical order and
the power zp operates at least to their positive elements with positive spectra.
Therefore the question arises: whether the LoÈ wner-Heinz inequality remains true for
positive elements of such Banach *-algebras.

However, some care must be taken in view of the fact that the power
zp � p 2 �0; 1�� may operate only on restricted positive elements of Banach algebras.
Actually, Katznelson's square root theorem [7] asserts that, if A is a unital abelian
semisimple Banach algebra, the complex conjugation zÿ operates on A and the
square root z1=2 operates on any element a 2 A with ��a� � �0;�1�, where ��a� is
the spectrum of a, then A is isomorphic to Â, the Gelfand representation of A.
Hatori [5] showed, further, that if A is a Banach function algebra on a compact
Hausdor� space X and the power zp � p 2 �0; 1�� operates on any element a 2 A with
��a� � �0;�1�, then A coincides with the Banach algebra C�X� of all complex-
valued continuous functions on X.

We shall give an answer to the question in Theorem 2 below, together with
giving in Theorem 1 a generalized version of the Cordes inequality [2, Lemma 5.1]
(cf. Furuta [3]). The method employed is essentially due to Pedersen [9].

A Banach �-algebra A is said to be hermitian if the spectrum of any self-adjoint
element of A consists of real numbers, whereas an a 2 A is self-adjoint if and only if
a� � a. Hermitian Banach *-algebras have their own canonical order. Any C*-algebra
is hermitian. Any group algebra of an abelian group, of a compact group, and any
measure algebra of a discrete group is known to be hermitian.

We assume in what follows that a Banach �-algebra A is hermitian. We assume
also that A is unital in order to simplify the discussion, the unit is denoted by e;
while the involution on A may be discontinuous in norm.
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2. We start by recalling the following de®nitions: a � 0 means that a is self-
adjoint and the spectrum of a consists of non-negative real numbers, while a > 0
means a � 0 and 0 62 ��a�; a � b means that aÿ b � 0, while a > b means aÿ b > 0.
a� for a 2 A with ��a� � �0;�1� means exp�� log a�, where log is the principal
branch of the complex logarithm.

It is known that, if a; b 2 A, then a; b � 0 implies a� b � 0 ([1, Lemma 41.4]),
and a � 0; � � 0 implies that �a � 0: In addition, we have the following facts.

Remark 1. If a; b 2 A, then a > 0; b � 0 implies that a� b > 0.

Proof. By the assumption there exists an � > 0 such that aÿ �e � 0 and so
a� bÿ �e � �aÿ �e� � b � 0. Hence, a� b � �e, which implies a� b > 0. QED

Remark 2. If a; b 2 A, then either 0 < a � b or 0 � a < b implies b > 0.

Proof. This is immediate from the preceding remark. QED

It is known, by the Shirali-Ford theorem [11], that A is necessarily symmetric;
namely, for any a 2 A, the spectrum of a�a consists of non-negative real numbers.
(See [1, Theorem 41.5] and [4], [10].)

Let a 2 A. De®ne

r�a� � inf jjanjj1=n and s�a� � r�a�a�1=2;

the former is the spectral radius of a. Then we have

r�a� � s�a�

by [1, Lemma 41.2]; s is a B�-semi-norm (in fact a maximal B�-semi-norm) on A by
[1, Theorem 41.7, Corollary 41.8]; and so, it is continuous in norm [1, Theorem
39.3].

For convenience' sake, we put for real r, and for � > 0 such that ���a� � �0; 1�,

a�r; ��n � �ÿr e�
Xn
k�1

r

k

� �
�eÿ �a�k

 !
; �n � 1; 2; � � ��:

If a is self-adjoint, then a�r; ��n is self-adjoint, a�r; ��m and a�r; ��n commute, fa�r; ��n g con-
verges to ar in norm and so, by the spectral mapping theorem, a� p; ��n > 0, for any
su�ciently large n, while ar may not be self-adjoint.

Theorem 1. Let a; b 2 A. If a > 0; b > 0 and p 2 �0; 1�, then
s�apbp� � s�ab�p:

Proof. The inequality above is true when p � 1. Next, let � > 0 be chosen su�-
ciently small. We put for any integer n > 0,

an � a�1=2; ��n and bn � b�1=2; ��n :
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Then,

anÿ!a1=2; bnÿ!b1=2 as nÿ!1

in norm. Hence

s�anbn�ÿ!s�a1=2b1=2�; s�a2nb2n�ÿ!s�ab� as nÿ!1:

Therefore, since

s�anbn� � r��anbn���anbn��1=2 � r�bna2nbn�1=2 � r�a2nb2n�1=2 � s�a2nb2n�1=2;

it follows that

s�a1=2b1=2� � s�ab�1=2:
Next we assume that for p; q 2 �0; 1�,

s�apbp� � s�ab�p and s�aqbq� � s�ab�q:

We put, for any integer n > 0 su�ciently large,

an � a� p=2; ��n ; a0n � a�q=2; ��n ; bn � b� p=2; ��n ; and b0n � b�q=2; ��n :

Then, am and a0n commute, bm and b0n commute; also

ana
0
nÿ!a� p�q�=2; and bnb

0
nÿ!b� p�q�=2 as nÿ!1

in norm. But we have

s�ana0nbnb0n� � r��ana0nbnb0n���ana0nbnb0n��1=2 � r�b0nbna0na2na0nbnb0n�1=2 � r�b2na2na0n2b0n2�1=2

� s�b2na2na0n2b0n2�1=2 � s�b2na2n�1=2s�a0n2b0n2�1=2 � s�a2nb2n�1=2s�a0n2b0n2�1=2:

so that

s�a� p�q�=2b� p�q�=2� � s�apbp�1=2s�aqbq�1=2:

Therefore,

s�a� p�q�=2b� p�q�=2� � s�ab�� p�q�=2;
by the assumption. Thus, according to the norm continuity of s, we know that the
inequality in Theorem 1 holds for any p 2 �0; 1�. QED

3. We assume hereafter that the involution on A is continuous in norm.

Lemma. Let a; b 2 A and p 2 �0; 1�. If 0 < a � b, then r�apbÿp� � 1; if
0 < a < b, then r�apbÿp� < 1.

Proof. Assume ®rst that 0 < a � b. Then, by Remark 2 and the hermiticity of A,
b is invertible and 0 � bÿ1=2abÿ1=2 � e. This implies that
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s�a1=2bÿ1=2� � r��a1=2bÿ1=2���a1=2bÿ1=2��1=2 � r�bÿ1=2abÿ1=2� � 1:

But by the spectral mapping theorem, ��a1=2� and ��bÿ1=2� lie in �0; �1�. Hence,

r�apbÿp� � r�bÿp=2apbÿp=2� � s�ap=2bÿp=2� � s�a1=2bÿ1=2�p � 1:

Assume next that 0 < a < b. Then, in a similar way we obtain

r�apbÿp� �< 1: QED

Theorem 2. Let a; b 2 A, and p 2 �0; 1�. If 0 < a � b, then ap � bp; if 0 < a < b,
then ap < bp.

Proof. Since the involution is continuous in norm, bÿp=2apbÿp=2 is self-adjoint
and so, by the preceding lemma, 0 < a � b implies eÿ bÿp=2apbÿp=2 � 0. Hence
we have ap � bp. Again, by the preceding lemma, 0 < a < b implies
eÿ bÿp=2apbÿp=2 > 0. Hence we have ap < bp: QED
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