LEAST-SQUARES FITTING A SMOOTH CURVE TO RADIOCARBON CALIBRATION DATA

F. B. KNOX

900 Ohariu Valley Road, R.D., Johnsonville, New Zealand

and

B. G. McFADGEN

Conservation Sciences Centre, Department of Conservation, P.O. Box 10420, Wellington New Zealand

ABSTRACT. We Fourier transformed and filtered calibration curve data to compensate for the averaging effect of radiocarbon-dating sets of adjacent tree rings. A Wiener Filter was also applied to minimize the effects of the counting errors of the dates on the resulting calibration curve and to produce a least-squares curve through the data. The method is illustrated using a short ¹⁴C-dated tree-ring sequence from New Zealand to produce a calibration curve at yearly intervals for New Zealand matai (*Prumnopitys taxifolia*). The resulting curve has a nominal standard error of 10 ± 3 yr, which is *ca*. half the average standard error of the original raw data.

INTRODUCTION

We previously showed (McFadgen, Knox and Cole 1994) that conversion of radiocarbon dates to calendar dates using currently accepted methods results in an artificial spreading and clumping of the calendar dates. The spreading and clumping, referred to as calibration stochastic distortion (CSD), is brought about by the interaction of the standard errors of the dates with the change in slope of the calibration curve. The distortion increases both the overall spread of dates and the possibility of date reversals. We suggested that the CSD effect could be overcome by deconvolving counting statistics from the ¹⁴C dates to obtain the true distribution of ¹⁴C dates, and then mapping the deconvolved set through the calibration curve onto the calendar axis in the usual way. The efficacy of the whole procedure depends on minimizing those changes of slope of the calibration curve caused by counting statistics.

There are calibration curves for terrestrial samples and for marine samples (Stuiver and Reimer 1993). Marine calibration data are derived from terrestrial data (Stuiver and Braziunas 1993) and are not considered further here. Terrestrial calibration curves are based on ¹⁴C dates of tree-ring dated wood (*e.g.*, Stuiver and Pearson 1993; Pearson and Stuiver 1993; Stuiver and Becker 1993). Each dated sample comprises a group of adjacent rings, and the dates have statistical errors associated with them that introduce spurious wiggles into the calibration curves and contribute to changes in the slopes of the curves.

Terrestrial calibration data span some 8000 yr and are derived from measurements of several treering chronologies. The longest chronologies are from the Northern Hemisphere. Southern Hemisphere chronologies include a ¹⁴C-dated tree-ring sequence from New Zealand spanning the period from AD 1335 to 1745 (Sparks *et al.* 1995).

In addition to their use in calibration, smoothed, accurate and precise versions of these curves are a prerequisite for comparison of the Northern and Southern Hemisphere data to test the assumption that ¹⁴C variations in the Southern Hemisphere match those of the Northern Hemisphere. They are also necessary to shed light on the relevant geophysical processes that produce the major changes in slope of the calibration curve.

194 F. B. Knox and B. G. McFadgen

We here describe a method of deriving a smoothed, more accurate and precise calibration curve by removing the spurious wiggles introduced by counting errors inherent in ¹⁴C measurements of tree rings, and by compensating for the averaging effect brought about by dating sets comprised of a number of adjacent tree rings. Our analysis uses the short ¹⁴C-dated tree-ring sequence from New Zealand in order to establish the method. The longer published Northern Hemisphere sequences will be considered in a subsequent paper.

Finally, the method described here has wider application than just to ¹⁴C calibration curves. It is generally applicable to producing least-squares smoothed curves through any regularly spaced set of discrete data points with known error estimates.

METHODS

The raw 14 C calibration data set of 14 C vs. tree-ring age is Fourier transformed from the time to the frequency domain, where we design and apply filters to the transformed data, based on 1) the standard deviation of the measured tree rings, and 2) the fact that each sample measured contained wood spanning ten rings. We transform back to the time domain to obtain a smoothed calibration curve with substantially reduced errors attributable to counting statistics, and with some compensation for the averaging effect of using wood spanning ten adjacent tree rings in each measurement.

We develop the method using ¹⁴C dates of tree rings for New Zealand matai (*Prumnopitys taxifolia*) measured at the Rafter Radiocarbon Laboratory, New Zealand Institute of Geological and Nuclear Sciences (Sparks *et al.* 1995: Table 2). Before Fourier transforming the data set, we remove the ideal (straight line) ¹⁴C age *vs.* tree-ring age. The difference between raw data points and corresponding points on the ideal line is the detrended data listed in Table 1, columns 4 and 8. The end points of the data set differ from the ideal by only 1–2 yr. Since ¹⁴C dates are normally reported to the nearest year, we use 1 yr (y) as our unit of time, and correspondingly 1 cycle per year (y⁻¹) as the unit of frequency.

Table 1 contains 42 points at 10-yr intervals, extending over 420 annual tree rings. Computer programs in the field of Fourier analysis often require the number of data points to be a power of 2, so we extend our data period to 512 yr by padding it with an approximately equal number of zeros at the beginning and end.

We use the discrete Fourier transform (e.g., Press et al. 1994: §12.1)

$$T_n \equiv \sum_{k=0}^{N-1} \tau_k e^{2\pi i k \frac{n}{N}}$$
(1)

and its inverse

$$\tau_{k} = \frac{1}{N} \sum_{n=0}^{N-1} T_{n} e^{-2\pi i k \frac{n}{N}} , \qquad (2)$$

where $i = \sqrt{-1}$, N = 512, n and k are integers in the range 0 to N-1 inclusive, and τ_k takes the data values given in Table 1 or else is zero. n/N is the frequency in the chosen units (y⁻¹).

To check how zero padding and choice of N affect accuracy, the set of τ_k was Fourier transformed, and immediately inverse Fourier transformed to recover the set of τ_k (including the zeros between and outside the values of τ_k given in Table 1). The recovered values agree with the original values to better than 0.003 yr, confirming the padding and the choice of N = 512 as adequate for calculating to the nearest year.

the index number of the data point in the extended data set after zero padding.									
Calendar	Conventional		Detrended	Calendar	Conventional		Detrended		
age (AD)	¹⁴ C age		data	age (AD)	¹⁴ C age		data		
T _k	(yr BP)	k	$\tau_k(yr)$	T _k	(yr BP)	k	$\tau_k(yr)$		
1335	617 ± 22	50	-2	1545	324 ± 14	260	81		
1345	635 ± 19	60	-30	1555	322 ± 18	270	73		
1355	639 ± 20	70	-44	1565	307 ± 22	280	78		
1365	683 ± 20	80	-98	1575	377 ± 25	290	-2		
1375	637 ± 22	90	-62	1585	385 ± 26	300	-20		
1385	618 ± 17	100	-53	1595	396 ± 21	310	-41		
1395	593 ± 19	110	-38	1605	361 ± 12	320	-16		
1405	599 ± 19	120	-54	1615	367 ± 17	330	-32		
1415	530 ± 20	130	5	1625	360 ± 21	340	-35		
1425	471 ± 21	140	54	1635	286 ± 18	350	29		
1435	484 ± 21	150	31	1645	288 ± 20	360	17		
1445	422 ± 21	160	83	1655	290 ± 16	370	5		
1455	453 ± 17	170	42	1665	220 ± 20	380	65		
1465	450 ± 19	180	35	1675	163 ± 22	390	112		
1475	420 ± 22	190	55	1685	163 ± 20	400	102		
1485	417 ± 17	200	48	1695	182 ± 23	410	73		
1495	380 ± 23	210	75	1705	167 ± 21	420	78		
1505	380 ± 21	220	65	1715	157 ± 17	430	78		
1515	372 ± 15	230	63	1725	167 ± 20	440	58		
1525	334 ± 21	240	91	1735	176 ± 21	450	39		
1535	323 ± 15	250	92	1745	206 ± 17	460	-1		

TABLE 1. ¹⁴C age and calendar age of tree-ring dated wood of New Zealand matai (*Prumnopitys taxifolia*) from Sparks *et al.* (1995: Table 2). Detrended data = $1950 - {}^{14}C$ age - calendar age. k = the index number of the data point in the extended data set after zero padding.

In the actual calibration procedure, taking successive sets of D(=10) tree rings at a time to supply the carbon for dating is mathematically equivalent to taking a running mean over D yr of the true calibration curve, and then sampling the running mean once every D yr. Because the width of rings varies from year to year, the mean over D yr is not well defined, so we simply assume the ring widths within any D yr set to be constant. This assumption must introduce some error into the correction for averaging, but as the correction itself, given below, is found to make a difference of somewhat less than 1 yr, the overall error introduced should not be significant.

For constant ring width, then, the running mean in the time domain amounts to convolving a response function, of amplitude $1/D y^{-1}$, constant from -D/2 to D/2 y and zero elsewhere, with the true calibration curve (Press *et al.* 1994: §13.1). In the frequency domain this is equivalent to multiplying together the Fourier transforms of the response function and the calibration curve (Press *et al.* 1994: §12.0). The Fourier transform of the response function can be shown to be

$$R_{n} = \frac{\sin\left(\pi D \frac{n}{N}\right)}{\pi D \frac{n}{N}}$$
(3)

(Press *et al.* 1994: \$12.0, 12.1); thus, to correct for the running mean in the time domain by deconvolving it from the true calibration curve, the frequency domain representation of the data set must be divided by R_n .

196 F. B. Knox and B. G. McFadgen

A possible problem arises with the above deconvolving procedure due to R_n becoming zero for n/N = 1/D; *i.e.*, we would be dividing the Fourier component at frequency $1/D(=0.1)y^{-1}$ (and higher harmonics) by zero. We avoid this problem, however, because we filter out by multiplying by zero all Fourier components at frequencies $\geq 0.5/Dy^{-1}$, in order to remove the discrete character of the raw data set (*i.e.*, finite values at intervals of D yr and zero values every year in between). In general, to remove the discreteness a specifically designed filter would be required, but it will be seen below that with the data we are using here, the discreteness is removed incidentally by a further filter that is required in order to reduce variation due to counting statistics. This further filter multiplies by zero all Fourier components at frequencies greater than a cut-off value which, in this case, is considerably less than $0.5/Dy^{-1}$.

Variation due to counting statistics amounts to adding a component of noise to the quantity being measured. A filter that minimizes such added noise, in the sense that when applied to the noisy data it produces a least-squares curve passing through the data, is the Wiener filter (Press *et al.* 1994: $\S13.3$). If T_n and Y_n are, respectively, the Fourier transforms of the noisy data and of the noise alone, the Wiener filter is

$$\Phi_{\rm n} = 1 - \frac{|Y_{\rm n}|^2}{|T_{\rm n}|^2} , \qquad (4)$$

where $|Y_n|^2$ and $|T_n|^2$ can be shown to be power spectra (Press *et al.* 1994: §13.4). The expression for calculating T_n has already been given; for the noise alone it is

$$Y_{n} = \sum_{k=0}^{N-1} v_{k} e^{2\pi i k \frac{n}{N}} , \qquad (5)$$

where each v_k noise is obtained as a number of years selected randomly according to a normal distribution having a standard deviation equal to that given for the corresponding k in Table 1.

A difficulty arises because only one randomly chosen value of v_k is used at each value of k. Different runs of randomly chosen values were in general found to give a very irregular power spectrum $|Y_n|^2$ (Press *et al.* 1994: §13.4), varying appreciably from one run to the next. However, an average of 500 runs of $|Y_n|^2$ was found to produce an acceptably constant and smooth set of values, denoted here by $\langle |Y_n|^2 \rangle$.

The same difficulty must appear in the power spectrum $|T_n|^2$ because each τ_k is measured only once and only one set of data is available, but overcoming the difficulty requires a more elaborate procedure than that given above for $|Y_n|^2$. To make a first estimate of a least-squares smoothed curve through the data points τ_k , take the inverse Fourier transform of T_n multiplied by the filter

$$\Phi'_{n} = 1 - \frac{\langle |\mathbf{Y}_{n}|^{2} \rangle}{|\mathbf{T}_{n}|^{2}} , \qquad (6)$$

i.e., take the least-squares curve as

$$\theta'_{k} = \frac{D}{N} \sum_{n=0}^{N-1} \Phi'_{n} T_{n} e^{-2\pi i k \frac{n}{N}} , \qquad (7)$$

where the need for the normalizing factor D will be discussed later. Now, as in deriving Y_n above, for each value of k in Table 1 add to θ'_k a number (of years) selected randomly according to a normal distribution having a standard deviation equal to that given for the corresponding k, and represented as τ'_k . The Fourier transform of a set of τ'_k is

$$T'_{n} = \sum_{k=0}^{N-1} \tau'_{k} e^{2\pi i k \frac{n}{N}} , \qquad (8)$$

and we may average as many runs of $|T'_n|^2$ as necessary to obtain an acceptably constant and smooth spectrum. As with $|Y_n|^2$, an average of 500 runs was found to be sufficient, and we represent the average as $\langle |T'_n|^2 \rangle$.

The above procedure finally allows us to give our best estimate of the Wiener filter as

$$\langle \Phi'_{n} \rangle = 1 - \frac{\langle |Y_{n}|^{2} \rangle}{\langle |T'_{n}|^{2} \rangle},$$
 (9)

and the least-squares smoothed curve through the data points τ_k , also corrected for the running mean over D tree rings, as

$$\theta_{k} = \frac{D}{N} \sum_{n=0}^{N-1} \frac{\langle \Phi'_{n} \rangle}{R_{n}} T_{n} e^{-2\pi i k \frac{n}{N}} .$$
 (10)

The normalizing factor D is required because the power in the spectrum $|T_n|^2$ derives only from the finite data values τ_k separated by D yr with zero values assumed for all years in between, whereas the finite values of θ_k are for *every* year in the range of interest. $\langle \Phi'_n \rangle$ is listed in Table 2.

TABLE 2. Wiener Filter $(\langle \Phi'_n \rangle)$ vs. Frequency $((n/N)y^{-1})$ Frequency: $\langle \Phi'_n \rangle$ $(n/N)y^{-1}$ n 0 0 1 0.001953125 0.973 1 2 0.003906250 0.987 3 0.005859375 0.952 4 0.007812500 0.969 0.009765625 0.819 5 0.011718750 0.378 6 7 0.013671875 0.059 8 0 0 and zero for all higher frequencies

The ideal ¹⁴C vs. tree-ring curve, initially subtracted to produce the data in the fourth and eighth columns of Table 1, is now added to θ_k to yield the smoothed, error-reduced and running mean corrected ¹⁴C vs. tree-ring calibration. This calibration is listed in the Appendix and plotted as a graph in Figure 1.

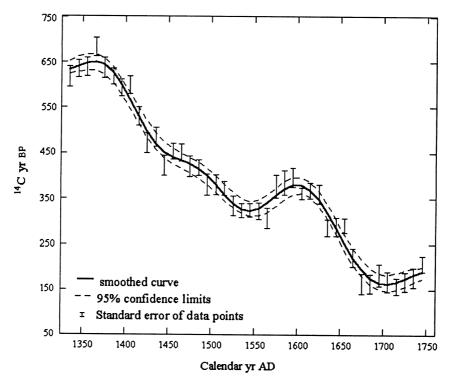


Fig. 1. Least-squares smoothed calibration curve for New Zealand matai (*Prumnopitys taxifolia*) corrected for a running mean over 10 tree rings compared with ± 1 standard error range at each of the measured 42 data points. Mean nominal standard error of the curve is 10 ± 3 yr.

STATISTICAL TESTS AND STANDARD DEVIATION OF CURVE

We now test to see if the deviation between 10-yr averages of the above calibration curve and the data is Gaussian. A χ^2 test (Snedecor and Cochran 1967: 84) of the differences between the 42 raw data points in Table 1 (= ¹⁴C ages) and a mean over 10 yr centered on the corresponding points of the smoothed calibration curve (column 2, Appendix), using the corresponding standard deviations listed in Table 1, yields $\chi^2 = 5.0$ (df = 5), which is not significant at the 0.95 level ($\chi^{2}_{0.95}$, $_{df=5} = 11.1$). This indicates that the set of data points constitutes a Gaussian distribution about the averaged calibration curve with the appropriate standard deviations, as it should.

We determine the likely error in the calibration curve itself by constructing from it a set of simulated raw data and then recovering a curve from these data by the procedure described in this paper. Repeating this 500 times allows us to obtain 95% confidence limits and 68% confidence limits. In a Gaussian distribution these confidence limits would correspond respectively to ± 2 and ± 1 standard deviations, but here this correspondence is only nominal, as there is no guarantee that errors in the estimation of the calibration curve have a Gaussian distribution. The distribution of the data points about the averaged calibration curve, however, is still Gaussian.

In implementing the procedures described in the preceding paragraph we took a normal distribution centered at each point of the 10-yr running mean of the calibration curve corresponding to a value of τ_k in Table 1, and with the corresponding standard deviation of the measured date. A raw data set is simulated by randomly selecting one value from each of these normal distributions, and this sim-

ulated data set is processed as described to give a simulated calibration curve. Inspection of the 500 simulated points for each τ_k allowed an estimate of the 95% confidence limits for the calibration curve that are plotted as the dashed lines in Figure 1.

The 68% confidence limits were derived in the same way and averaged to yield an effective overall nominal standard deviation of 10 ± 3 yr. This standard deviation is approximately half the average standard deviation of each raw data point, indicating that the curve has been smoothed in a running fashion over *ca.* 4 consecutive data points.

COMMENT ON THE USE OF FOURIER ANALYSIS

The method presented here, of estimating the true ¹⁴C calibration curve from discrete measured data regularly spaced in calendar time, assumes that the ¹⁴C age is a continuous, single-valued function of calendar age. It further assumes that after subtracting out the ideal straight line representing equality of ¹⁴C and calendar ages, the amplitude of the curve representing deviation from the ideal is everywhere finite. From inspection of the calibration data and consideration of the physics involved, we consider that both assumptions are valid.

Under the above two assumptions, any finite length of curve may be as closely approximated as desired by a weighted sum of sinusoids, *i.e.*, the Fourier sum. Once expressed in this form, the well-developed techniques of Fourier analysis readily allow the weights, and therefore the curve, to be derived from the data while eliminating much of the variation due to counting (or any other known) statistics. Furthermore, distortions of the curve by known processes, such as averaging the ¹⁴C age over a number of tree rings, may be corrected by the technique of deconvolving.

Other techniques are available for deriving a continuous curve from the calibration data, but have disadvantages. For example, simple cubic splines create a continuous line through the data points, but in so doing cannot eliminate any of the statistical variation: many of the smaller wiggles in the curve are merely artifacts due to counting statistics. Straight lines joining the data points suffer the same disadvantage, while also introducing artificial discontinuities of slope at the data points.

Running means can eliminate some statistical noise, but in general do not do so in an optimal fashion related to the signal-to-noise ratio in the data. Also, running means require additional criteria for deciding the type of mean, and how many data points the mean is to be taken over.

The method described here can be considered a particular case of least-squares fitting a regression, the Fourier sum, to the data. Least-squares fitting other regressions to the data are potentially capable of equalling or surpassing the performance of the present method, but since we do not know all the physical processes responsible for the deviations of the calibration curve away from the straight line ideal, we cannot choose the correct mathematical form for the regression. We should therefore use a general-purpose function, such as a Fourier sum, which is capable of approximating as closely as desired any mathematical function satisfying the assumptions made earlier concerning the calibration curve. Finally, Fourier analysis has the advantage of being a mathematically well-developed, and widely used and understood technique.

ACKNOWLEDGMENTS

For the benefit of their discussion and helpful comments we gratefully thank Dr. Rodger Sparks, Rafter Radiocarbon Laboratory, Institute of Geological and Nuclear Sciences, Gracefield; Professor Anthony Vignaux, Institute of Statistics and Operations Research, Victoria University of Wellington; and Mr. Ian West, Conservation Sciences Centre, Department of Conservation, Wellington.

REFERENCES

- McFadgen, B. G., Knox, F. B. and Cole, T. R. L. 1994 Radiocarbon calibration curve variations and their implications for the interpretation of New Zealand prehistory. *Radiocarbon*, 36(2): 221–236.
- Pearson, G. W. and Stuiver, M. 1993 High-Precision bidecadal calibration of the radiocarbon time scale, AD 1950-500 BC and 2500-6000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 1-23.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1994 Numerical Recipes in FORTRAN. 2nd ed. corr. Cambridge, Cambridge University Press: 963 p.
- Snedecor, G. W. and Cochran, W. G. 1967 Statistical Methods. 6th ed. Ames, Iowa State University Press: 593 p.
- Sparks, R. J., Melhuish, W. H., McKee, J. W. A., Ogden, J., Palmer, J. G. and Molloy, B. P. J. 1995 ¹⁴C calibration in the Southern Hemisphere and the date of the last Taupo eruption: Evidence from tree-ring sequences. *In*

Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International ¹⁴C Conference. *Radiocarbon* 37(2): 155–163.

- Stuiver, M. and Becker, B. 1993 High-precision decadal calibration of the radiocarbon time scale, AD 1950– 6000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 35–65.
- Stuiver, M. and Braziunas, T.F. 1993 Modeling atmospheric ¹⁴C influences and ¹⁴C ages of marine samples to 10,000 BC. *In* Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. *Radiocarbon* 35(1): 137–189.
- Stuiver, M. and Pearson, G. W. 1993 High-precision bidecadal calibration of the radiocarbon time scale, 500-2500 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 25-33.
- Stuiver, M. and Reimer, P. J. 1993 Extended ¹⁴C data base and revised CALIB 3.0 ¹⁴C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215-229.

APPENDIX

Least-squares smoothed calibration curve at yearly intervals for New Zealand matai (*Prumnopitys taxifolia*) corrected for a running mean over 10 tree rings. Mean nominal standard error of the curve is 10 ± 3 yr.

Tree-ring date (AD)	¹⁴ C age (yr BP)	¹⁴ C age (AD)
	· · · ·	
1330	629	1321
1331	630	1320
1332	630	1320
1333	631	1319
1334	631	1319
1335	632	1318
1336	633	1317
1337	633	1317
1338	634	1316
1339	635	1315
1340	635	1315
1341	636	1314
1342	637	1313
1343	638	1312
1344	639	1311

			_			
Tree-ring	¹⁴ C age	¹⁴ C age	-	Tree-ring	¹⁴ C age	¹⁴ C age
date (AD)	(yr BP)	(AD)		date (AD)	(yr BP)	(AD)
1360	649	1301	- ·	1409	552	1398
1361	649	1301		1410	548	1402
1362	650	1300		1411	544	1406
1363	650	1300		1412	541	1409
1364	650	1300		1413	537	1413
1365	650	1300		1414	533	1417
1366	649	1301		1415	530	1420
1367	649	1301		1416	526	1424
1368	649	1301		1417	523	1427
1369	648	1302		1418	519	1431
1370	648	1302		1419	516	1434
1371	647	1303		1420	512	1438
1372	647	1303		1421	509	1441
1373	646	1304		1422	505	1445
1374	645	1305		1423	502	1448
1375	644	1306		1424	499	1451
1376	643	1307		1425	496	1454
1377	641	1309		1426	493	1457
1378	640	1310		1427	490	1460
1379	638	1312		1428	487	1463
1380	637	1313		1429	484	1466
1381	635	1315		1430	481	1469
1382	633	1317		1431	479	1471
1383	631	1319		1432	476	1474
1384	629	1321		1433	474	1476
1385	627	1323		1434	471	1479
1386	625	1325		1435	469	1481
1387	623	1327		1436	467	1483
1388	620	1330		1437	464	1486
1389	618	1332		1438	462	1488
1390	615	1335		1439	460	1490
1391	612	1338		1440	458	1492
1392	609	1341		1441	457	1493
1393	606	1344		1442	455	1495
1394	603	1347		1443	453	1497
1395	600	1350		1444	452	1498
1396	597	1353		1445	450	1500
1397	594	1356		1446	449	1501
1398	591	1359		1447	447	1503
1399	587	1363		1448	446	1504
1400	584	1366		1449	445	1505
1401	580	1370		1450	444	1506
1402	577	1373		1451	443	1507
1403	573	1377		1452	442	1508
1404	570	1380		1453	441	1509
1405	566	1384		1454	440	1510
1406	563	1387		1455	439	1511
1407	559	1391		1456	438	1512
1408	555	1395		1457	437	1513

Tree-ring	¹⁴ C age	¹⁴ C age	Tree-ring	¹⁴ C age	¹⁴ C ag
date (AD)	(yr BP)	(AD)	date (AD)	(yr BP)	(AD)
1458	436	1514	1507	375	1575
1459	436	1514	1508	373	1577
1460	435	1515	1509	371	1579
1461	434	1516	1510	369	1581
1462	434	1516	1511	367	1583
1463	433	1517	1512	365	1585
1464	432	1518	1513	362	1588
1465	432	1518	1514	360	1590
1466	431	1519	1515	358	1592
1467	431	1519	1516	356	1594
1468	430	1520	1510	354	1594
1469	429	1521	1518	352	1598
1470	429	1521	1519	350	1600
1471	428	1522	1520	348	
1472	427	1522	1520	348 346	1602
1473	427	1523	1521		1604
1474	426	1524	1522	344	1606
1475	425	1525		342	1608
1476	424	1526	1524	340	1610
1477	423	1520	1525	339	1611
1478	422	1527	1526	337	1613
1479	422	1528	1527	335	1615
1480	421	1528	1528	334	1616
1481	421		1529	332	1618
1482	420	1530 1532	1530	331	1619
1483	418	1532	1531	330	1620
1485	417 416		1532	329	1621
1485	415	1534	1533	328	1622
1485		1535	1534	326	1624
1480	414	1536	1535	326	1624
1487	412	1538	1536	325	1625
	411	1539	1537	324	1626
1489	409	1541	1538	323	1627
1490	408	1542	1539	323	1627
1491	406	1544	1540	322	1628
1492	405	1545	1541	322	1628
1493	403	1547	1542	322	1628
1494	401	1549	1543	321	1629
1495	400	1550	1544	321	1629
1496	398	1552	1545	321	1629
1497	396	1554	1546	322	1628
1498	394	1556	1547	322	1628
1499	392	1558	1548	322	1628
1500	390	1560	1549	322	1628
1501	388	1562	1550	323	1627
1502	386	1564	1551	324	1626
1503	384	1566	1552	324	1626
1504	382	1568	1553	325	1625
1505	380	1570	1554	325	1623
1506	378	1572	1555	320 327	1624
			1555	321	1023

Tree-ring	¹⁴ C age	¹⁴ C age	Tree-ring	¹⁴ C age	¹⁴ C
date (AD)	(yr BP)	(AD)	date (AD)	(yr BP)	(/
1556	328	1622	1605	380	1:
1557	329	1621	1606	379	1.
1558	330	1620	1607	378	1:
1559	331	1619	1608	378	1:
1560	332	1618	1609	377	1.
1561	334	1616	1610	376	1:
1562	335	1615	1611	374	1:
1563	337	1613	1612	373	1:
1564	338	1612	1613	372	1:
1565	340	1610	1614	370	1:
1566	341	1609	1615	369	1:
1567	343	1607	1616	367	1:
1568	344	1606	1617	365	1:
1569	346	1604	1618	364	1
1570	348	1602	1619	362	1
1570	349	1601	1620	360	1
1572	351	1599	1621	357	1
1573	353	1597	1622	355	1
1574	354	1596	1623	353	1
1575	356	1594	1624	350	1
1576	358	1592	1625	348	1
1577	359	1591	1626	345	1
1578	361	1589	1627	343	1
1579	362	1588	1628	340	1
1580	364	1586	1629	337	1
1581	365	1585	1630	334	1
1582	367	1583	1631	331	1
1583	368	1582	1632	328	1
1584	370	1580	1633	325	1
1585	371	1579	1634	322	1
1586	372	1578	1635	319	1
1587	373	1577	1636	316	1
1588	374	1576	1637	313	1
1589	375	1575	1638	310	1
1590	376	1574	1639	306	1
1591	377	1573	1640	303	1
1592	378	1572	1641	300	1
1593	379	1571	1642	296	1
1594	379	1571	1643	293	1
1595	380	1570	1644	289	1
1596	380	1570	1645	286	1
1597	381	1569	1646	282	1
1598	381	1569	1647	279	1
1599	381	1569	1648	275	1
1600	381	1569	1649	272	1
1600	381	1569	1650	269	1
1602	381	1569	1651	265	1
1602	381	1569	1652	262	1
			1653	258	

Tree-ring	¹⁴ C age	¹⁴ C age		Tree-ring	¹⁴ C age	¹⁴ C age
date (AD)	(yr BP)	(AD)		date (AD)	(yr BP)	(AD)
1654	255	1695		1703	162	1788
1655	252	1698		1704	162	1788
1656	248	1702		1705	162	1788
1657	245	1705		1706	162	1788
1658	242	1708		1707	162	1788
1659	238	1712		1708	162	1788
1660	235	1715		1709	163	1787
1661	232	1718		1710	163	1787
1662	229	1721		1711	163	1787
1663	226	1724		1712	164	1786
1664	223	1727		1713	164	1786
1665	220	1730		1714	165	1785
1666	217	1733		1715	166	1784
1667	214	1736		1716	166	1784
1668	211	1739		1717	167	1783
1669	208	1742		1718	168	1782
1670	206	1744		1719	168	1782
1671	203	1747		1720	169	1781
1672	200	1750		1721	170	1780
1673	198	1752		1722	171	1779
1674	196	1754		1723	172	1778
1675	193	1757		1724	172	1778
1676	191	1759		1725	173	1777
1677	189	1761		1726	174	1776
1678	187	1763		1727	175	1775
1679	185	1765		1728	176	1774
1680	183	1767		1729	177	1773
1681	181	1769		1730	178	1772
1682	179	1771		1731	178	1772
1683	178	1772		1732	179	1771
1684	176	1774		1733	180	1770
1685	174	1776		1734	181	1769
1686	173	1777		1735	182	1768
1687	172	1778		1736	183	1767
1688	170	1780		1737	183	1767
1689	169	1781		1738	184	1766
1690	168	1782		1739	185	1765
1691	167	1783		1740	185	1765
1692	166	1784		1741	186	1764
1693	165	1785		1742	187	1763
1694	165	1785		1743	187	1763
1695	164	1786		1744	188	1762
1696	163	1787		1745	188	1762
1697	163	1787		1746	189	1761
1698	163	1787		1747	189	1761
1699	162	1788		1748	190	1760
1700	162	1788		1749	190	1760
1701	162	1788		1750	190	1760
1702	162	1788	-			