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A Geometrical Proof of a Theorem of Hurwitz.

By Dr LESTER R. FOED.

{Read 11th May 1917. Received 14th June 1917.)

1. In the study of rational approximations to irrational
numbers the following problem presents itself: Let <o be a real
irrational number, and let us consider the rational fractions
satisfying the inequality

how small can the positive quantity k be chosen with the certainty
that there will always be an infinite number of fractions satisfying
the inequality whatever the value (irrational) of to 1

Dirichlet proved by elementary means that if k=l, there are
infinitely many fractions satisfying the inequality. Later,
Hermite gave a method, based on binary quadratic forms, of
constructing an infinite suite of fractions approaching an irrational
number, all of which satisfy the inequality when k = 1/ J 3 ; and
it is easy to show that infinitely many of the fractions of the suite
of Hermite also satisfy the inequality when k = \.

Finally, Hurwitz* gave the complete solution of the problem
by establishing the following theorem:—

Ifk=\j J5, there are infinitely many rational fractions satis-
fying the inequality (1) whatever the value (irrational) of o>.

If k < 1/ v 5 , there exist infintely many irrational numbers
(and everywhere dense along the real axis), for each of which the
inequality (1) is satisfied by only a finite number of rational
fractions.

* Malhematisehe Annalen 39 (1891), 279-84.
The problem was also solved by Borel, Journal de Mathematiques,

5th Ser., Vol. 9 (1903), 329—.
Since the present paper was read to the Society, there has come to hand

the ourrent issue of the Journal de Mathematiques, which contains a simple
proof of the theorem by Humbert.
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The proof given by Hurwitz depends upon continued fractions.
I t is the object of the present paper to prove the theorem by

considering the geometry of the classic modular division of the
half-plane, and thus to exhibit anew the remarkable connexion
between this geometry and the theory of numbers.

2. Geometric statement of the problem.—In the complex z-plane
(z = x + iy) let z = o> be an irrational point on the a>axis. Through
this point let a perpendicular, L, to the x-axis be drawn. At each
rational point plq of the x-axis let a circle S (pjq; h) be
constructed which is tangent to the x-axis at the point pjq, lies in
the upper half-plane, and whose radius is \/2hq2. If S(jp/q; h) is
intersected by the line L, the distance between plq and o> is less
than the radius, or

and this inequality is not satisfied unless the line and circle
intersect. Our problem then is to determine how large h can be
chosen with the certainty that L will intersect infinitely many
/S-circles.

3. Connexion with the Modular Group.—The relation of the
preceding construction to the Modular Group of transformations

ad-bc=1

where a, b, c, d are real integers, arises in the following manner.
Consider the line y = h parallel to the real axis. Writing
z = x - iy, the equation of this line can be put in the form

2 - i =2ih (4)
Let us transform this line by means of (3). Putting for z its

value from (3), a = ( - dz' + b)/(cz - a), the equation (4) becomes
after simplification

1
-,

This is a circle whose centre is b - , „ and whose radius is
c 2Ac2

. I t is then tangent to the x-axis at x = a/c; in other words,

this is the circle S(a/c ; h).
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Now if we take a±=p, c — q, we can, provided/) and q have no
common factor, find integers b and d, such that pd - qb = 1, and (3)
is then a transformation carrying y = h into S(p/q; h). Thus the
^-circles of the preceding section are all derived from the line
y = h by the set of transformations (3). Including the line y = h
as the /S-circle of oo, the set of ^-circles is carried into itself by
any one of the transformations (3).

To determine whether L intersects an infinite- number of
iS-circles, we can transform the plane by meaas of a suitable
modular transformation, and then investigate whether the semi-
circle into which L is carried intersects an infinite number of
5-circles.

4. Modular Division of the Half-plane.—Let the region lying
above the circle 3? + y2 = 1 and between the lines x = + £ (the
region D of the figure) be inverted in each of its sides; let the
new regions be inverted in their sides; and so on ad infinitum.
The whole upper half-plane is covered by the resulting network of
triangles, and there is no overlapping. A few triangles are shown
in broken lines in the figure. This division of the half-plane into
triangles is called the modular division, for the reason that any
triangle can be transformed into any other by the application of a
suitable modular transformation. Each triangle has one of its
vertices, which we shall call its peak, either on the a;-axis or at
infinity. Those on the a;-axis are at rational points.

It is well known that the line L (Section 2) passes through
infinitely many of these triangles, and that there is more than a
finite number of corresponding peaks.*

Let p/q (in its lowest terms) be the ^coordinate of the peak of
a triangle through which L passes. If we make the modular
transformation

( )
qz-p

where p' and q' are integers, such that qp' -q'p=\, z—p/q
becomes z' = oo, and the triangle in question becomes one with
peak at oo . S(p/q; h) becomes y = h. L becomes a circle L'

* Humbert has shown that the coordinates of these peaks are the fractions
of Hermite mentioned in Section 1. Journal de Mathematiques, 7th Ser.,
Vol. 2 (1916), 79-103.
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orthogonal to the a>axis. [This follows from well-known properties
of the linear transformation: that circles, including straight lines,
are carried into circles, and angles are preserved. The coefficients
of the transformation being real, the x-axis is transformed into
itself, and L therefore becomes a circle cutting it at a right angle
as before.]

The two triangles which L' intersects on entering and on
passing out of those whose peaks are at oo have peaks whose
coordinatss are integers. By shifting to the right or left by means
of a transformation of the form z' = z±n, we can without loss of
generality suppose that one of these two triangles has its peak at
the origin. L' then intersects the base of D.

5. Proof of the first part of the theorem.—Let us consider the
following question : How large can h be chosen with the certainty

- I A -

that every circle orthogonal to the x-axis and intersecting the base
of D will intersect either y = h or an »S'-circle at one of the integral
points? Every such circle will have at least two integral points
on its interior; for otherwise it would be entirely within one of
the unit circles forming the bases of the triangles whose peaks are
at oo , and therefore could not intersect the base of D.

I t is easily seen that the most favourable position of the circle,
in order to avoid the intersections with the given ^-circles, is when
its centre is at x = J (or x= — J), and it contains just two integral
points on its interior. We shall now find the value of h for which
a circle C with centre x = \ can be drawn just touching y = h,
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5(0/1; A), and 5(1/1 ; h). The radius of each of these 5-circles
is 1/2A. Since C touches y = h, its radius is h (see Fig.). The
radius of C drawn to Q, the point of tangency of C and 5(1/1 ; h)
passes through the centre of the latter circle; and by elementary
geometry we get for the radius of C the value

Equating these values of the radius

and solving for h, we find

/ T (8)

When h = £ J~W there are only two circles (the circle C just
found, and a like circle with centre at a: = - ^) satisfying the
conditions on L', that is, intersecting the x-axis orthogonally and
intersecting the base of D, and which does not intersect either
y — h or one of the 5-circles at the integral points.

Now it is impossible that L' coincide with C for the following
reason. The points A, B, in which C intersects the x-axis, have
the coordinates

A,l-lJT; £,% + $JT. (9)
Both are irrational. Now one of the intersections of L' with the
x-axis must be rational, for L is carried to X' by a transformation
of the form (3). One of the intersections of L' with the x-axis is
the transform of z = oo through which L passes; and z = oo becomes
z =ajc, a rational. For a like reason L' cannot coincide with the
circle whose centre is x = - J.

We conclude then that when L is carried into L', the latter
intersects one at least of the circles .5(0/1; £ V 5 ), 2/ = j V 5 ,
5 (a/1 ; J J 5 ), where x = a is the peak of the triangle which L'
enters in leaving the triangles with peaks at oo . That is, of the
5-circles of these three successive peaks of the triangles through
which L' passes, one at least must be intersected.

If we now carry L' back to L, remembering that it was the
peak of any triangle intersected by L that was carried to oo , we
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can state that of the S-circles of any three successive peaks of the
triangles through which L passes, one at least is intersected when
h = £ sj 5 . Since these peaks are infinite in number, L intersects
infinitely many ^-circles.

Hence, according to Section 2, there are infinitely many
fractions satisfying the inequality (2) when h = £ J 5, and to is
any irrational number whatsoever. This gives to k in (1) the
value 1/ V 5 , and the first part of the theorem is established.

6. Proof of the second part of the theorem.—Let us return to the
circle C. The coordinates (9) of its intersections with the x-axis
are the roots of the equation

« 2 - z - l = 0 (10)

Writing this in the form
2z+l

we see that A and B are the fixed points of the transformation

which, since ad— be — 2-l - 1-1 = 1, is of the Modular Group.
Since a + cf = 2 + 1 > 2, this transformation is of the type called
hyperbolic. Any circle through the fixed points is transformed
into itself by a hyperbolic transformation. C is such a circle for
the transformation (11).

Now, by this transformation 2 = 0 becomes z' = 1. Hence
S(0/l; $<J~5) becomes S(l/l;$JT), and P', the point of
tangency of the former circle with C, becomes Q, the point of
tangency of the latter circle with C. The arc PQ is transformed
into an arc of C beginning at Q, and extending in the direction
of B. By continued repetitions of (11), the whole of the arc QB
is covered by an infinite number of transforms of PQ; and by
employing the transform inverse to (11), the whole of AP is
likewise covered.

PQ is tangent to certain *S-circles, and these are carried by
repetitions of (11) into infinitely many others tangent to C. It
is easy to find what these circles are. When z = oo , z' = 2 ; when
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« = 1, z' = 3/2 ; when z = 2, «' = 5/3 ; etc. Hence S (2/1; £ >/7f),
5(3/2; $J~5'), 5(5/3; iJ~5), etc., are tangent to C.

C is tangent to infinitely many 5-circles when h = J v 5 , and
intersects no others. Suppose now that h > £ J 5 ; the line y = A
lies above the line y = 5 J 5 of the figure, and all the 5-circJes
are decreased in size. Let a circle C" be drawn through A, B
tangent to y = h. This circle is one of the fixed circles of (11).
Since z = co becomes 2'= 2, C" will also touch 5 (2 /1 ; h); and the
arc between the points of tangency with y = h and with 5 (2/1; K)
will, by repetitions of (11), cover the whole of C" between A and
B. C" will thus touch infinitely many 5-circles, and otherwise
intersect none.

There will be no 5-circles in the region between C" and G.
Let us now take B for the point a>. The line L, perpendicular to

the a:-axis at B, lies in the neighbourhood of B between C" and C,
and intersects there no 5-circles. The 5-circles intersected lie above
the intersection of L and C", and these can be but finite in number.
Hence, when h > £ J 5 , there are for the irrational point B only
a finite number of fractions satisfying the inequality (2). Obviously
the same is true at the point A.

If G and its tangent circles be transformed by means of any
modular transformation, we get a circle Cx orthogonal to the
a;-axis and tangent to 5-circles along its entire length. To the
extremities of Gx the reasoning of the preceding paragraphs applies
at once, showing that any number into which B is transformed by
(3) [or A, but A itself is a transform of B by means of z' = - I/a] is
a number for which only a finite number of fractions satisfy the
inequality (2) when h > £ N/ 5 . These numbers, i.e.

where a, b, c, d are integers and ad-bc=l, are all irrational;
and, as is the case of the transforms of any real point, they are to
be found in every interval of the real axis. Thus the second part
of the theorem is established.
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