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0. Introduction

Recall that a norm ||-1| on a vector lattice E is absolute if || \x\ || = ||x|| for all xeE; and
monotone if ||x||^||j>|| whenever O^x^y. If the norm is both absolute and monotone, it
is called a Riesz norm. It is easy to show that a norm is Riesz if and only if ||x||^||y||
whenever |x|^|y|. A Banach lattice is a vector lattice equipped with a complete Riesz
norm.

This note is motivated by the observation that any absolute norm on 0?" (equipped
with the usual order) is already monotone, hence a Riesz norm [1, Theorem 2]. This
follows from the fact that if |x| ^ |_y| then x lies in the convex hull of {z: \z\ = \y\}. The
authors find it surprising that this problem has not been considered in a more general
setting.

If any vector space (other than U) is equipped with the lexicographic ordering
induced by some basis, then |x|e{—x, x} for every x. Thus every norm is absolute,
although no norm is monotone. The lexicographic ordering is bad in the sense that it is
not compatible with the topology of W. Order bounded sets may be topologically
unbounded, the positive cone is not closed and the lattice operations are not
continuous.

It turns out that boundedness of order intervals is the right property to ensure that
every absolute norm is monotone. Having a closed cone or a complete norm does not
help, as the theorems and examples will show.

The converse problem—must a monotone norm be absolute?—is much simpler. There
are many norms on IR2 (with the usual order) which are monotone but not absolute.
More generally, let £ be a Banach lattice, and / a positive functional on E which is not
a lattice homomorphism. If we define |||x||| = ||x|| + |/(x)| then |||-||| is a monotone norm
which is not absolute.

1. Absolute norms on vector lattices

We begin by proving the result mentioned in the introduction.

Theorem 1. Let E be a vector lattice, equipped with an absolute norm || • ||, such that
every order interval is norm bounded. Then \\-\\ is a Riesz norm.

Proof. Suppose y^.0 and H^H^l. We must show that the interval [0,}>] lies in the
ball B = {x:||x||gl}.

215

https://doi.org/10.1017/S0013091500022318 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022318


216 J. M. BORWEIN AND D. T. YOST

Let I = {?.eU + : [—y, y]S/lB}. Since [_—y,y] is bounded, / is not empty. We show that
if /.el, then %X + \)el.

Given x e [ — y,y] and kel, put z = 2\x\ — y. Clearly — y^z^y, so zekB. Hence
| | | H | | | ||

Since / is a closed subset of U, it now follows that lei. Thus [0,y]£[ — y,y]£B. D

We remark that the proof of Theorem 1 works just as well for a seminorm instead of
a norm. Thus a topological vector space, lattice-ordered by some normal cone, is a
topological vector lattice iff the topology is determined by a family of absolute
seminorms.

Corollary 2. Let E be a Banach lattice under some norm. Then every smaller absolute
norm is a Riesz norm.

We have not been able to find a property which is dual to absoluteness of the norm.
Nonetheless, the following is true.

Corollary 3. Let E be a Banach lattice, \\-\\ an equivalent norm for E. Suppose
|| | / | || = | |/ | | for every f e E*. Then E and E* are Banach lattices under || • ||.

Proof. Clearly every order interval in E* is bounded, so || • || is a Riesz norm for £*.
•

Examples 2, 3 and 4 will show that the dual of lattice order need not be a lattice
order, since the dual cone need not be generating.

Our first example shows that we do need to assume boundedness of intervals in
Theorem 1.

Example 1. Let E be the space of absolutely continuous functions on [—1,1],
whose derivatives are essentially bounded. With the pointwise ordering, £ is a vector
lattice. Equipped with the norm | | / | = |/(0)| + ess.sup|/'|, £ is a Banach space. An
elementary argument shows that 11/|' = | / ' | almost everywhere (in fact at all points of
differentiability of |/ |) and so the norm is absolute. However, it is easy to see that the
interval [0,1] is not a bounded subset of £, although it is linearly bounded. Thus E has
no equivalent Riesz norm.

Although the positive cone is closed, the lattice operations in E are not continuous.
To see this, define /,/„ e £ by f(t) = t and fn(t) = t - 1/n. Then / „ - • / but

ll/:-/+ll=i+i/«. •
In view of Example 1, it is appropriate to investigate continuity of the lattice

operations.

Theorem 4. Let E be a vector lattice. A norm on E is a Riesz norm if and only if the
absolute value function is nonexpansive (i.e. || |x| — \y\ ||^||x — 3>||/or all x,yeE).
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Proof. Suppose the absolute value map is nonexpansive, If |x| ̂  \y\ then

s i n c e

So ||x||^||_y||, and we have a Riesz norm.
The converse follows from the inequality

D

Theorem 5. / / E is a vector lattice, equipped with some norm, then the following
statements are equivalent.

(i) All of the lattice operations are uniformly continuous.
(ii) The absolute value function is uniformly continuous.

(iii) The absolute value function is Lipschitz continuous.
(iv) There is an absolute constant K such that | | x | | ^ K | | y | | whenever \x\^\y\.
(v) There is an equivalent Riesz norm for E.

Proof. (i)=>(ii). This is trivial.
(ii)=>(iii). The absolute value function is positive homogeneous.
(iii)=>(iv). This follows from the proof of Theorem 4.
(iv)=>(v). Define |||-||| by |||x||| = sup{||)/| |:0^.yg|x|}.

Statement (iv) ensures that intervals are bounded, that
|| for all x. Furthermore |x|g| |x| | implies that

Ill is well defined and that
xl|5SK|||x|||^K||lx||| and thus

in equivalent'to ||-||. Subadditivity of |||-||| follows from the Riesz decomposition
property. Finally it is clear that

(v)=>(i). The inequality |x+— y
is absolute.

g |x — y\ shows that x->x + is uniformly continuous
with respect to any Riesz norm, hence uniformly continuous with respect to the given
norm. The same is true for the other lattice operations. •

An approximate version of Theorem 1 is not so satisfactory. The proof of Theorem 1
gives the following result: suppose that every order interval is bounded, and that for
some constant k<2, we have ||x||gfc|||x||| for all xeE. Then ||j;||<fc(2-fc)~I||x||
whenever |)>|^x. If in addition we assume that |||x| | |^X| |x | | for all x, we then have
|ly||^/cK(2 — fe)"1^!! whenever |y|^|x| . But if U2 has the usual order, and the norm
\\(x> y)\\2=(x + y)2 + 4(x —y)2» w e s e e that there may be an equivalent Riesz norm even in
the case fc^2.

In view of Theorem 5, it is natural to ask if an absolute norm, with respect to which
the lattice operations are continuous, is automatically a Riesz norm? The next example
shows that this is not so. First, we need a technical result.

Proposition 6. Let E be a vector lattice, equipped with a norm which makes it a
reflexive Banach space.
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(i) / / the positive cone K is closed and the lattice operations are norm continuous at
the origin, then they are norm-to-weak continuous.

(ii) / / in addition to (i) the norm is absolute and has the Kadec-Klee property, then the
lattice operations are norm-to-norm continuous.

(iii) The lattice operations are weakly sequentially continuous if and only if they are
both norm and weakly sequentially continuous at the origin, and K is closed.

(iv) Suppose E is smooth, so that there is a unique support map x->fx: £->£*. (The
support map is determined by \\fx\\ = \\x\\ and fx(x) = \\x\\2.) Suppose that the support
map, restricted to K, is weakly sequentially continuous at the origin. If K is closed,
and || |x| || ^||x|| for all x, then the lattice operations are norm continuous.

Proof, (i) Suppose that xn-*x. Then |xn — x|->0. If feE* is a positive functional,
then

Thus /(|xn|)—>/(|x|). Since K is closed, the positive linear functionals separate the points
of E. (If — y£K, the Hahn Banach theorem gives us a linear map /:£->R satisfying f(y)
= d(y,-K)j=0 and f(z)^d(z,-K) for all z. Clearly f(K)^0 and | | / | |gl.) It follows
from reflexivity that the linear span of the positive functionals is norm dense in E*.
Since the sequence (|xn|) is bounded, we may conclude that |xn|->|x| weakly.

(ii) The Kadec-Klee property means that xn->x whenever xn—»x weakly and
||xB||-»||x||. Thus (ii) is immediate from (i).

(iii) Sufficiency of the conditions follows from the proof of (i). If the lattice operations
are weakly sequentially continuous, then {|x|:||x||^ 1} is a weakly sequentially compact,
hence bounded, subset of E. It follows that the lattice operations are norm continuous
at the origin. Necessity is now clear.

(iv) The condition || |x| ||^||x|| implies that, for any 1^0,

It follows tha t / x + (x" )g / x + ( -x" ) and so \\x+\\2 = fx+(x + )^fx+(x) for all xe£. We first
prove that if y'Sz.O and /in-»0 then J ;AII B ^0 . From part (i) we know that yAhn-*0
weakly. If xn = hn— y then xn

+ =hn — y A/in->0 weakly. /Xn+->0 weakly and xn->y and so
||XIT||2 = /XB

+(-XII)->0- Thus yAhn = hn—x*-*Q, as required. The identity

x+ -(x + h)+=x+ /\h~+x~ Ah+-h~

now shows that (x + /in)
 + ->x+ whenever hn->0. This implies that all of the lattice

operations are norm continuous. •

Corollary 7. Suppose E = lp(S), for l<p<oo, or that E is a Hilbert space, equipped
with the usual norm. Suppose that some closed cone K induces a lattice ordering on E. If
|| |x| || ^| |x| | for all x, then the lattice operations are continuous.

Proof. It is routine to show that the support map is weakly sequentially continuous
at the origin. •
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Note that in lp(pj=2) the support map is weakly continuous only at the origin. The
partial sum cone in lp, defined by ^ = {(xt)™=1:J]t = 1xi k^0 for all n) satisfies the
hypotheses of Corollary 7, and so has continuous lattice operations.

The lexicographic order on W shows closedness of the cone to be an essential
assumption in Corollary 7.

Example 2. Choose pe(l,oo). Let E be the space of absolutely continuous functions
/:[0,1]->IR such that /(0) = 0 and /'eLp([0,1]). Equipped with the pointwise order, E
is a vector lattice. With the norm ||/|| = (j'|/'P')1/''. it is a reflexive Banach space. As in
Example 1, the norm is absolute, but the interval [0,1] is unbounded. Thus no
equivalent norm on E can be a Riesz norm. Despite this, the lattice operations, by
Proposition 6 (ii), are continuous. (By Theorem 5, they cannot be uniformly
continuous.)

Clearly E may be identified with Lp([0,1]) and the positive cone with K = {/:J'o/^0
for all te[0,1]}. Then E* = Lq{[0,1]) where q = p/(p-l) and the dual cone, K°, is the set
of positive decreasing functions in Lq([0,1]). This cone does not generate £*, but it does
induce a lattice ordering on its linear span, which is dense in E*. If we define f(t)
= t (te[0,1]) then with respect to this ordering, \f\(t) = 2 — t. Indeed, g^f=>g{ 1)^/(1)
and for t ^ l , gjg —f=>g(t)+f(t)}Zg(l) + f(l). It is now evident that the dual norm is not
absolute. •

A similar argument shows that the lattice operations are continuous in any Sobolev
space W1>p(Q) for l<p<oo and Q an open set in W. This can also be proved directly
for l^p<oo. Slightly more care is needed to show that the norm is absolute if n2:2.
For m^2, the pointwise order on Wmp{Q) is not a lattice order.

2. Hilbert lattices

Let £ be a vector lattice with positive cone K. Equip E with an inner product <,>
and its corresponding norm. We investigate the relationship between these two
structures, and their different notions of orthogonality.

Theorem 8. Let E be a Hilbert space, lattice-ordered by a closed cone K.
Consider the following properties that E may or may not have:

(1) For any x,yeE we have x A y = 0 if and only if x ̂  0, y ̂  0 and <x, y> = 0.
(1*) The norm is a Riesz norm.
(2) For any x,yeE with x Ay = 0, we have <x, j>> = 0.
(2*) The norm is absolute.
(3) K is contained in the dual cone K° = {x: (x,y}^.0,yeK}.
(3*) The norm is absolutely monotone, i.e. ||x||^||y|| whenever \
(4) The dual cone K° is contained in K.
(4*) For any xeE, we can find y^\x\ with ||_y||^||x||.
(5) For any x,yeE with x Ay = 0, we have <x,y>^0.
(5*) For any xeE we have II Ixl II^llxll.
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Then property (n) is equivalent to property (n*), for n=l,2,3,4,5. Furthermore
(1)=>(2)=>(5)=>(4) and so property (1) holds if any only i/(3) and (n) both hold, for n = 2, 4
or 5. In particular, \\-\\ is a Riesz norm if and only if K° = K.

Proof. (5)=>(5*) For any x we have x + AX" =0 and so <x + ,x~>^0. It follows that
x++x~ll2<llx+—x~ll2

n^ -A. i —J 11A. *v II *

(5*)=>(5) if x A y = 0 and z = x-y then |z| = x + y. Hence ||x + y| |2^| |x-y| |2 and so
>0

| | | | | | | |
||2^||x||2. Hence ||x||2 = ||y||2 = <x,y> and

(4)=>(4*) This is the only part of the proof which requires E to be complete or K to
be closed. Fix xeE with ||x|| = l. Then S = {u:there exists w with v + w,v — weK° and
<x,w> = l} is a convex set. If veS with w as above then v + weK°, v — weK and
1 = <x, w>2^||x||2||w||2^||w||2 + <y + w, v — w} = \\v\\2. Thus S is disjoint from the open unit
ball of E. The separation theorem then gives us yeE with <y,u}<l whenever ||w||<l
and <y,u>^l for all veS. Consider any zeK° with <x,z>>0. If u = <x,z>~1z it is easy
to see that veS. Thus <y,v}^l i.e. (y,zs)'^.(x,zs). Clearly (y,z)>~^.—(x,zy also. If
<x,z><0, put v= — <x,z}~lz. The same argument shows that <y,z>S; — <x,z>^<x,z>.
It follows that <y + x,z>^0 for all zeK° and so y + xeX00. Since K is closed, the
bipolar theorem tells us y ^ +x. It is clear that ||y||^ 1.

(4*)=>(4). Let xeK°. Then we can find y ^ ± x with ||y||^||x||. Then y — xeK,

\\y-42=\\y\\2+\42-2<x>y>=i
(3)=>(3*). Suppose —y^xf^y. Then y — xeK and y + xeK^K°. By assumption

<y + x,y —x>^0, which is the assertion as ||y||2^||x||2.
(3*)=>(3). Let xeK. Then, for any yeK, we have — (x + y)^x — y^x + y and so ||x

— y||:g||x + y||, i.e. <x,y>^0. Thus xeK0.
(2)=>(2*). For any xeE, we have x = x+—x~ where X + A X ~ = 0 . Thus <x+,x"> = 0

(2*)=>(2). Suppose xAy = 0. If z = x—y then z + = x and z~ =y. Hence ||* + y|| = |l lzl II
= ||z|| = ||x—y||, and so <x, y> = 0.

(1)=>(2) & (3). It is obvious that (1)=>(2). Suppose (3) fails. Then <x,y><0 for some
x,yeK. Choose ie(0,1) so that <x,z> = 0, where z = kx + [\-X)y. Then z^O and
XAZ^AX so XAZ^=0. This contradicts (1).

(2) & (3)=>(1). Suppose x^O, y^O and <x,y>gO. We must show that x A y = 0. Put
z = XAy. Then (x —z) A(y —z) = 0 and (2) tells us that <x —z,y-z> = 0. Since O^zgx,y,
we deduce from (3) that ||z||2 ^<z,z> + <x + y — 2z, z> = <x,y> — <x — z,y — z>=0. So z = 0,
as required.

(1)^(1*). This is now clear, since (1*)«>(2*) & (3*). (1)=>(2)=>(5)=>(4). Obviously
(1)=>(2)=>(5)=>(5*)=>(4*). (1)<=>(3) and (4)«-(3) and (5). It is now clear that (1)=>(3) and
(5)=>(3) and (4). To finish the proof, we show that (3*) and (4*)=>(2*). Given x, (3*) tells
us that ||x||^|||x| ||. If y is given by (4*) then ||y||^||x||^|| |x| ||^||y||, the last inequality
holding by (3*). Thus the norm is absolute. D

One can also show that the property ||x||^|| |x| || for all x is equivalent to xAy
= 0=><x,y>^0. However, this property does not seem to be of much use.

Schaefer [2, p. 270] calls any space satisfying (1) a Hilbert lattice, and shows that any
Hilbert lattice is isomorphic to some L2(S), equipped with the pointwise order.

The only implications (between the above five properties) which always hold are those
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which follow immediately from Theorem 8. Example 2 (with p = 2) shows that (2) does
not imply (3). Simple two-dimensional examples (or alternatively Example 3) show that
(3) does not imply (4) and Example 5 shows that (4) does not imply (5). Another two-
dimensional example (or Example 4) shows that (5) does not imply (2). The next two
examples are designed to show that, without absoluteness, continuity of the lattice
operations is unrelated to boundedness of intervals.

Example 3. Let l2 be equipped with the standard inner product and the ordering
given by the positive cone K = {(xk)k

>=l:x2k-i^kx2k^0 for all k}. This is a lattice
ordering on E = K — K; the join, for example, is given by

(x v y)2k = x2k v y2k and

(x v y)2k _ i = k{x v y)2k + (x2k _ x - kx2k) v (y2k _ x - ky2k).

This norm is monotone, since K is contained in the standard cone for l2. However if

- - (

then xn->0 (in norm) but

i i 1

n "' \ nj62"-1'

so || |xn | | |^2. The lattice operations are not even continuous at the origin, so there can
be no equivalent Riesz norm. :. •

Example 4. Let £ = /2, but ordered by the positive cone K = {(xk)k
x
=l:x2k-l'^0,

x2k'^.kx2k-l for all k}. This is also a lattice ordering, with the lattice operations given
by

(x v y)2k = (x

If we put x2k-l = x2k = k~213 then xeE but the interval [0,x] is unbounded. In fact if
yn = n~2/3c2n_1 — nil3e2n then 0^yn^x for all n, but ||yn||^n1/3 is unbounded. If we put

1 tU | | 1
xn = 2^e 2 n _! -c 2 n then lxn| = 2^e2n_1

and so |xn|->0 yet | |xn | |^l . Thus no equivalent norm on E can be absolute.
Despite this, the lattice operations are continuous. To see this, first note that (|y-t-/cx|

— |/cx|)2^|)>|2 for any x,yeR. Thus | | is norm decreasing. Since K is a closed cone,
Corollary 7 gives us the required continuity. It is also possible, but tedious, to verify
directly that | | is continuous. •
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We remark that Examples 3 and 4 are dual to one another, under the natural pairing

Example 5. Let E = U3 be equipped with the usual euclidean norm, and ordered by
the positive cone K = {(x,y,z): xjgO, x + y^O, x-y + z7±0}. Then the extreme rays of K°
are R(l,0,0), R(l,l,0) and R(1, -1,1) whence K°cK. If x = (0, l ,0)e£ then, with
respect to this ordering, we have |x| = (0,1,2). This shows that we cannot take y = \x\ in
property (4*) of Theorem 8. pj
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