BuLL. AUSTRAL. MATH. SocC. ' 16w50
VoL. 68 (2003) [285-293)

GROUP GRADINGS OF M;(K)

R. KHAZAL, CRINA BoBoc AND S. DASCALESCU

We describe all group gradings of the matrix algebra M;(k), where k is an arbitrary
field. We prove that any such grading reduces to a grading of type C,, a grading of
type C2 x Cs, or to a good grading. We give new simple proofs for the description of
C»-gradings and C x C,-gradings on Ms(k).

0. INTRODUCTION AND PRELIMINARY RESULTS

Let k be a field, G a group and A a k-algebra. We say that A is G-graded if

A= @ A,, a direct sum of k-vector subspaces, such that A A C Ay, for any g,h € G.
9€G

The following general problem was posed by E. Zelmanov (see [8]): find all G-gradings
of the matrix algebra M, (k), where G is a group, k a field, and n a positive integer. The
answer depends on the structure of G and k, so it is hard to expect the problem can be
solved in the general. However, several results have been obtained in special cases. In
(7], gradings on A = M, (k) for which every matrix unit e;; (the matrix having 1 on the
(4, 7)-position, and zero elsewhere) is a homogeneous element (that is, it belongs to one
of the subspaces A,) have been studied. These gradings have been further investigated in
(6], where they were called good gradings. Good gradings are fundamental in the study
of all gradings, since as we shall see below, in certain cases any grading is isomorphic
to a good grading. The description of all gradings of M,(k) by the cyclic group C,
with two elements was done in [6], by using computational methods and the duality
between group actions and group gradings. This was explained in (4] in terms of actions
and coactions of Hopf algebras, the basic underlying idea being that a G-grading on an
algebra A is precisely a structure of a kG-comodule algebra on A. This idea was very
useful for studying gradings of matrix algebras by cyclic groups, see [4]. In particular all
the isomorphism types of C,-gradings on M, (k) were obtained in [4] in the case where
char(k) # 2. For char(k) = 2, the classification has been completed in [2]. We note that
in the case where & is algebraically closed, any C,,;-grading on M, (k) is isomorphic to a
good grading (see [5, 10]). This fact led to a different approach to the classification of
all gradings of M, (k) over cyclic groups for an arbitrary field k, by using descent theory;
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see [5]. For non-cyclic groups, the description of gradings seems to be more difficult. One
result in this direction is in [3], where gradings of My(k) over the Klein group C, x C; were
classified for an arbitrary field k. The method also used the Hopf algebra approach and
duality. A strong result was obtained in [1], where the gradings of M,(k) by an Abelian
group were described for an algebraically closed field k, a special role being played again
by the good gradings.

In this paper we give a complete answer to Zelmanov’s problem in the case n = 2,
by classifying all group gradings of M,(k), for any field k. We reobtain the results about
C,-gradings and C; x Cs-gradings with a new, elementary technique, that does not make
use of Hopf algebras or duality between gradings and actions. Our main result is the
following.

THEOREM Let G be a group with identity element 1, k be a field, and A = M, (k).

(I) If char(k) # 2, then any G-grading of A is isomorphic to one of the following
types.

(1) The trivial grading, that is, A, = A, A, =0 for any g # 1.

0 k)77 k 0
h € G —{1,g}, where g € G is an element of order 2.

. u v u v
(3) A grading of the form A; = {(bv u) | u,v € k}: Ay = {(—bv _u) |

u,v€ky, A, =0 for h € G- {1,g}, where g € G is an element of order

(2) A good grading of the form A, = (k 0) A, = (0 k), A, = 0 for

2,and b€ k — k%
, kK 0 0 k 00

(4) A grading of the form A, = (O k) yAg = (0 0), Apr = (k 0),
A,=0forhe G- {1,g,97'}, where g € G is an element of order greater
than 2.

(5) A grading of the form A, = kly, Ag = kX, Ap = kY, Agh = kXY, A, =0
foru € G—{1,g,h, gh}, where g, h € G such that {1, g, h, gh} is a subgroup
of G isomorphic to Cy x Cy, and X,Y are invertible matrices such that
X%LY%€kl, and XY = -YX.

(II} If char(k) = 2, then any grading is isomorphic to one of the gradings of type
(1), (2), (4) in (1), or to a grading of the form.

, z T+y bz +y z
= , €k ,A = 3
() A {(b(z+y) y ) |9:y } g {( y b:z+y) I:z:y

€kp, Ay, =0 for h € G — {1,9}, where g € G is an element of order 2,

andbek—{a2+a|a€k}.
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Throughout the paper we denote A = M,(k). If A = @ A, is a grading by the

group G, we denote by supp(4) = {g € G | A, # 0}. Notfct;hat 1 € supp(A), since
I, € A, for any grading. If H is a subgroup of G, we say that the grading is of type H,
if supp(A) € H. The theorem above says that any isomorphism type of group grading
of M,(k) is either trivial, a good grading as in (c), or either of type C; or of type
C3 x Cy (when there exist subgroups of G isomorphic to C; or C; x C,). In Sections 1,2
and 3, respectively, we describe all gradings with supp(A) having 2, 3 and 4 elements,
respectively. For basic facts about graded algebras we refer to [9].

We give now some easy results that will be used in the sequel.

LEMMA 0.1. Let X,Y be non-zero elements of My(k) such that X? € kI, and
XY =YX =0. Then X2 =0, and X, Y are linearly dependent.

Proor: If X? € k*I,, then X is invertible, so then Y = 0, a contradiction. Thus
X? = 0. Since the conditions still hold if we replace X,Y by UXU-',UYU™!, with U
invertible, we may assume that X has the Jordan form. Since X # 0, we must have

X = g (1) . An easy computation shows now that XY = Y X = 0 implies that Y must
0 a
be of the form (0 0), soY € kX. 0

LEMMA 0.2. Let A= @ A, be a grading of the matrix algebra. If X € A, for
9€G
some g € G, then X? € A,. In particular if g # 1 we have X?> =0

PROOF: By the Cayley-Hamilton theorem we have that X? € A;+ A,. On the other
hand X? € Ay, and then the result is clear. g

COROLLARY 0.3. IfA= @ A, is a grading such that A, = kI, then for any
g,h € G,g # h and any non- zeroX e Ag, Y € A, we have either XY #0orYX #0.

PRrROOF: We know by Lemma 0.2 that X? € kI,. If XY = Y X = 0, then by Lemma
0.1 we see that X, Y are linearly dependent, a contradiction. 0

LEMMA 0.4. LetA= @ Ay be a grading such that Ay N AjA, = 0 for any g, h

€ supp(4) — {1} (in pamcular tlus happens whenever gh # 1 for any g,h € supp(A)
— {1}). Then the grading is trivial.

PROOF: Define p : A = A, by p(X) = X, the homogeneous component of degree
1 of X. Then

PpXY)=(XYh= 3 XY= Y- XYi=XiY=p(X)e(Y)

9,h€G,gh=1 g,h€supp(A4),gh=1

so ¢ is an algebra morphism. Since ¢ # 0 and Ker(y) is an ideal of M,(k), we get that
Ker(p) =0, and then A = A,.
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1. GRADINGS OF SUPPORT 2

We first describe the gradings of the matrix algebra by a cyclic group with 2 elements.
THEOREM 1.1. Letk be a field and C; = {1,c} be the cyclic group of order 2.
Then the C,-gradings of A = M,(k) are described as follows.
(I) Ifchar(k) # 2, then any grading is isomorphic to one of the following.
(i) The trivial grading A; = M,(k), A, =0;

(ii) The good grading A, = (k 0), A= (0 k)

(iii) The grading A, = {(;; Z) ' u,v € k}, Ac = {(_1;0 —j)u) | u,v € k}

where b € k — k2.

(I1) If char(k) = 2, then any grading is isomorphic either to the trivial grading or
to the good grading as in (i), (ii) in (I), or to a grading of the form

iy x z+y bz +y z
= A =
(iii") A {(b(:c+y) v ) ‘ T,y € k}, e {( v bx+y) I T,y

€k forsomebek — {a®+a|ac€k}

PROOF: Let k be of any characteristic and assume that the grading is not trivial.
Then we have the following cases.

CasE 1. dim A; = 3 and dim A, = 1. Let A, = kX, with X2 € kI,. If X2 = 0 we obtain
a contradiction by Lemma 0.4. Thus X2 # 0, and then X is invertible. Let B € A, — k1.
Then BX € A, so BX € kX, and then B € kI, a contradiction. So this case is not
possible.

CASE 2. dimA; = 1 and dim A, = 3. If A A, = 0; then the grading is trivial by Lemma
0.4. Thus there exist X,Y € A, with XY # 0. Then XY € k*I,, so X and Y are
invertible. Hence for Z € A, — kX we have X2, XZ € k*I,, and since X is invertible this
implies that Z € kX, a contradiction. So this case is also not possible.

CASE 3. dim A; = 2 and dim A, = 2. Let A; = kI, + kB. By considering the grading
(isomorphic to the initial one) A = A} @ A, where A| = UA, U™, A, = UAU™!, for a
certain invertible matrix U, we may assume that B has the Jordan form.

k
If B is diagonal, then it is easy to see that A, = (0 2) Thenif X = (Z !t/> € A,

' k
then (: 8) = e Xen € A, so = 0, and similarly ¢ = 0. Thus A, C ol and

0
k
0 k

kol Thus we obtain a grading of type (ii).

since A = A; + A, we must have A, = (
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If the minimal polynomial of B is t? — b for some b ¢ k2, then B = (0 1). We

b 0
obtain that A, = {

. Ty
either X =
(by

(“ ”) | u,v € k}. We see that if X € A and X? € A,, then

z

or X = (j yz), for some z, 9, z € k. Thus if we take X € A, we

must have X = (j _yz) Then BX = (bzz b'y_ezAc)’ so z = —by. This shows that

A.CH= 1;)1) vu I u,v € k p. If char(k) = 2 we have H = A,, a contradiction.
If char(k) # 2, we have A = A; @ A, C A, ® H, implying that A, = H, so the grading is
of type (iii).
If the minimal polynomial of B is (t— A)? for some A € k, replace B by B—\I, € A,,
01

and find B = 0 ol Then with the same computations as above (for b ¢ k2) we obtain

0 0 k
It remains to consider the case where the minimal polynomial of B is irreducible of
the form 2 — at — 8 with a # 0. If char(k) # 2, then replace B by B— (a/2)I; € A;, and
01
b o
If char(k) = 2, then replace B by (1/a)B € A, (with minimal polynomial of the form

A C { (u v ) l u,v € k}. But then we have A1+ A4, C (k k) # A, a contradiction.
—u

then reducing to the Jordan form we are again in the case B = , b ¢ k2, as above.

t? + t 4+ b), and then reduce to the Jordan form. Thus we can assume that B = (2 i)

for some b ¢ {a?+ a | @ € k}. In this case we see that

A1={(b’; x:u) Ix,qu}:{(b(Iiy) z;y) lx,yek}

Let X € A.. Since X? € A, we must have as above X = (Z g) for some z,y,v € k.

Using the fact that (BX)? € A, we obtain that z = by + v. Hence

. v Y _ bz +y T
ACQH_{(by+v v)lv’yEk}_{( Y bz+y)|z’y€k}

Now again A = A; ® A, C A, ® H implies that A. = H' and we obtain the grading of
type (iii’).
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REMARKS 1.2.
(i) The gradings in (I)(iii) are classified by the factor group k*/(k*)2. Indeed,
it was proved in [4, 5] that two gradings like these, corresponding to b,, b,
€ k — k?, are isomorphic if and only if b, /by € k2.
(ii) The gradings in (II)(iii') are classified by the factor group k/S(k), where
S(k) = {e® + a | a € k} is an additive subgroup of k. It was proved in
[2, 5] that two gradings of this type, corresponding to b;, by € k — S(k) are
isomorphic if and only if b, — by € S(k).
The following result shows that any grading of support with 2 elements is essentially
a grading by C,.
PROPOSITION 1.3. LetG be agroup. Then any G-grading of A = M,(k) with
|supp(A)l = 2 is of type C,.
PROOF: Let supp(A4) = {1, g}. If the order of g is 2, then the grading is of type C,.
If the order of g is different from 2, then the grading is trivial by Lemma 0.4, and this
ends the proof. ' 0

2. GRADINGS OF SUPPORT 3

In this section we consider gradings of A by a group G, such that supp(A4) = {1, g, h}
has 3 elements. We discuss separately the cases where dim 4; = 2 and dim A, = 1.

PROPOSITION 2.1. IfdimA, =2, then h = g~! and the grading is isomorphic
to the good grading given by

(k0 {0 & _fo o\ , o
Al—(o k),Ag—(O 0>,Ag-1—(k 0),Ap—0forp¢{1,g,g }

PROOF: Since dim A; = 2, there exists B € A; such that A; is spanned by 5 and
B. We have dim A; = dim A, = 1, and let 4, = kX, A, = kY for some X,Y € A. Since
A1Ay C Ay and A A, € Ap, we obtain that there exist o, 8 € k such that BX = aX
and BY = BY. Therefore the linear map ¢ : A = A, ¢(Z) = BZ has the eigenvalues
a, B with corresponding eigenvectors X,Y. It is easy to see that P, = P2, where P,
and Pg denote the characteristic polynomials of ¢ and B. Hence Pg is a product of two
linear factors. As in Section 2, we can assume that B has the Jordan form by changing
B,X,Y by UBU-Y, UXU',UYU .

Assume first that B = (18 0) is diagonalisable. Obviously b; # by, since B ¢ k1.

ba

k 0
learly A, =
Then clearly A, (O k

), as the span of I, and B. Therefore we can replace B by

1
any matrix in A; which is not a scalar multiple of I, and let us take B = (0 g) This
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matrix B has eigenvalues 0, with corresponding eigenvectors of the form (0 0) r,s€Ek,
T S

and 1, with corresponding eigenvectors of the form (: g) ,u,v € k. Therefore we have

0
will lead to an isomorphic grading). Now the facts that AjA; C A, and A4, C A,
imply that u = 0 and s = 0. We obtain that

k0 0k 00
A = = =

Since deg(ei2) = g, deg(ep;) = h, and 0 # ejze2; € A;, we must have h = g7

1
A=k (u 0 and A; = <(1) g for some u, s € k (or the other way around, but that

If B is not diagonalisable, then « = f = b for some b € k, and B = (Z Il>) In

d
this case 4; = { (3 c) | c,de k}, and again, since we can replace B by any matrix

in A, which is not a scalar multiple of I;, we may consider that B = (g (1)), with

only 0 as an eigenvalue. The corresponding eigenvectors are of the form 73 g), with

m,n € k. Since kB + kX + kY has dimension 3 and consists of eigenvectors, we obtain
a contradiction. 0

REMARK 2.2. If g € G is an element of order greater than 2, and A = B = M,(k) are
the G-graded algebras defined by

(k0 (N fo o\, o
Al_(o k_),Ag_(O 0)1Ag"_(k 0))Ap_0forp¢{1’gag }

k0 00 0 k )
B‘=(0 k)’B":(k o)’B""_’(o o>’Bﬂ=°f°fP¢{1,g,g 1}

then A and B are isomorphic as graded algebras. Indeed, the map ¢ : A - B, ¢{X)
=UXU"!, where U = ((1) (1)), is a graded isomorphism.
PROPOSITION 2.3. There do not exist gradings of A with |supp(A)| = 3 and

PROOF: Assume that such a grading exists, so say that dim A; = 2 and dim A, = 1.
Let X € A;, Y € A be non-zero elements. Then by Corollary 0.3 we have that either
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XY #0or YX # 0. Since gh,hg ¢ {g,h}, in any case we must have gh = 1, and since
A, = kI, this implies that X and Y are invertible. Then A,Y C A, = kI,, and since Y
is invertible, this implies that A, C kY !, a contradiction with dim A, =2 0

3. GRADINGS OF SUPPORT 4

We start by describing all gradings of A = M;(k) by the Klein group.

THEOREM 3.1. Let G=C;xC,={1,9,h,gh} be the Klein group. Then:

(1) If char(k) # 2, any G-grading of A is isomorphic to one of the following.

(i) A grading of type C.,.

(ii) A grading of the form A, = kl;,A;, = kX,Ay = kY, Ay = kXY,
where X,Y are invertible matrices such that X%, Y? ¢ kI, and XY
=-YX.

(II) If char(k) = 2, any G-grading of A is isomorphic to a grading-of type Cs.

PROOF: Assume that the grading is not of type C,. Then by using the results of
the previous section, we see that the support must have 4 elements, so each homogeneous
component has dimension 1, in particular 4; = kl;. Let A, = kX and A, = kY. Then
by Corollary 0.3 we have that either XY # 0 or YX # 0. Say that XY # 0. Then
Agn = kXY

If X2 = 0, then X(XY) = 0, and again by Corollary 0.3 we must have (XY)X
# 0, so XYX = aY for some non-zero scalar a. But then 0 = X(XY)X = aXY, a
contradiction. Hence X? # 0, and similarly Y2 # 0, so X,Y are invertible.

Now XY X! € Ap, s0 XY X! = oY for some scalar a. Since X2 € kI, this implies
that oY = Y. If char(k) # 2, we have a € {1,-1}. If @ = 1, then XY = Y X and
A is commutative, since it is generated as an algebra by X and Y. We conclude that
XY = —-Y X and the grading is of type (ii). If char(k) = 2, then a = 1, and as above
we obtain that A is commutative, a contradiction. We conclude that the only possible
gradings in characteristic 2 are of type C,. 1]

REMARK 3.2. The isomorphism types of the C; x C5-gradings are described in [3].

The general situation of a grading with support having 4 elements is solved by the
following.

PROPOSITION 3.3. Any group grading of A with |supp(A4)| = 4 is of type
Cg X Cz.

PROOF: Let A = @ A, with S = supp(A4) = {1, g, h, s}. We first note that uv # 1
g9€G
for any u,v € S, u # v. Indeed, if uv = 1 for some u, v like this, pick some non-zero

X € A,, Y € A,. Then X2 € kl, by Lemma 0.2, and then by Corollary 0.3 either
XY € k*'I, or YX € k*I,. In any case, X is invertible. But u? # 1 (since uv = 1), so
X? =0, a contradiction.
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Since the grading is not trivial, we see from Lemma 0.4 that there exists u € §—{1}
with A,A, N A, # 0, in particular u? = 1. Say for instance that v = g, and let A, = kX,
with X? € k*Ip; in particular X is invertible. Then A;A, = X Ap, # 0, so gh € S, and
the only possibility is that gh = s. Similarly A, A, # 0, and then gh = hg = s. Hence we
have hs = sh. If hs ¢ S, we would have ApA; = A;A;, = 0, and then if we take non-zero
Ye A, Z€ A, wehave YZ = ZY =0, a contradiction by Corollary 0.3.

Therefore h(hg) = (hg)h € S, and since this can not be h, hg or 1, we must have
h(hg) = g, implying that h? = 1. This shows that S is a subgroup isomorphic to C; x C,,
and the proof is finished. 0
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