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The problem of plasma expansion into a vacuum is revisited with the addition of
a finite boundary condition; an electrically insulated surface. As plasma expands
towards a charge-accumulating surface, the leading electron cloud charges the surface
negatively, which in turn repels electrons and attracts ions. This plasma–surface
interaction is shown to result in a feedback process which accelerates the plasma
expansion. In addition, we examine the decrease in (negative) surface potential
and associated near-surface electron density. To investigate this plasma coupling
with an electrically floating surface, we develop an analytic model including four
neighbouring plasma regions: (i) undisturbed plasma, (ii) quasi-neutral self-similar
expansion, (iii) ion front boundary layer and (iv) electron cloud. A key innovation
in our approach is a self-contained analytic approximation of the ion front boundary
layer, providing a spatially continuous electric field model for the early phase of
bounded plasma expansion.
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1. Introduction
As a quasi-neutral plasma expands into a vacuum, the electrons tend to diffuse much

faster the ions, creating a charge separation that accelerates the ions beyond their
characteristic sound speed. Dating back to the 1960s, a wealth of literature exists on
ambipolar plasma expansion into an infinite vacuum (see early reviews Samir, Wright
& Stone 1983; Sack & Schamel 1987). The present study addresses a new case where
the vacuum is bounded by an electrically insulated surface. The surface could be
electrically conducting or insulating, so long as it is an isolated plane. As the surface
is charged by the cloud of oncoming electrons, it develops an electric field which
repels the electrons and accelerates the ion expansion. The ions, in turn, carry the
electron cloud further towards the surface. We derive an analytic theory to explore
this feedback process.

We begin with a brief review of the existing literature, emphasizing the prevailing
focus on infinite plasma expansion into an infinite vacuum domain. The pioneering
work by Gurevich, Pariiskaya & Pitaevskii (1966) introduced the self-similar approach,
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which assumes quasi-neutrality (neglecting Poisson’s equation) to obtain an analytic
model of collisionless isothermal unbounded plasma expansion. Early numerical
investigations by Widner, Alexeff & Jones (1971) and Crow, Auer & Allen (1975)
established the self-similar model as a reasonable approximation of the bulk plasma
behaviour, after a charge-equilibration time and up to a moving boundary where
quasi-neutrality breaks down. Beyond the physical boundary, called the ion expansion
front, the self-similar solution is not valid. A salient feature of the non-quasi-neutral
numerical models is the inclusion of a separate electron cloud region, spanning beyond
the expansion front out to many times the Debye length of the quasi-neutral plasma.
Semi-analytic models with a more accurate portrayal of the ion front boundary layer
(Mora 2003; Medvedev 2011) have shown that the self-similar domain of validity can
be extended earlier in time and further in space. Many variations of this problem,
beyond the scope of the present discussion, include non-isothermal expansion (Mora
& Pellat 1979; Grismayer et al. 2008), non-Maxwellian initial distributions (Gurevich
& Meshcherkin 1981a; True 1981; Akbari-Moghanjoughi 2015; Bennaceur-Doumaz
et al. 2015), magnetic fields (García-Rubio, Ruocco & Sanz 2016) and multiple ion
species (Elkamash & Kourakis 2016). Some attention has been given to the case of
a finite plasma (Medvedev 2005; Murakami & Basko 2006), but still with infinite
boundary conditions in the vacuum.

The present study examines the interaction of an expanding plasma with a
finite insulated surface. As we demonstrate, our system is quite distinct from the
fixed-potential (anode–cathode like) set-up addressed by Gurevich & Pitaevsky (1975).
Our study is motivated by the simulations carried out by Zimmerman et al. (2011),
who observed surface feedback on solar-wind plasma expansion into a lunar polar
crater. For a steady-state plasma wake structure generated by the uniform horizontal
flow of plasma over a large cavity, Zimmerman et al. (2011) find an order of
magnitude increase in the steady-state electrostatic potential, compared to the case
of free expansion. The identified plasma–surface interaction mechanism – which is
the subject of the present study – involves an electron cloud and associated electric
field extending from the plasma wake front all the way down to the crater surface.
Analytic efforts to describe the solar-wind plasma wake in a lunar crater, by Farrell
et al. (2010) and Rhodes & Farrell (2019), serve as the basis for the present model.

The applicability of the one-dimensional (1-D) approximation depends upon the
specific problem of interest. For the local plasma wakes along the lunar surface
(Farrell et al. 2010; Rhodes & Farrell 2019), neglect of other spatial dimensions is
based on two assumptions; (i) a large width to depth ratio leading to a relatively
insignificant horizontal field from crater wall charging, and (ii) relatively small surface
formations on the crater floor relative to the system size. In essence, we require that
the combined ambipolar and surface-generated electric field dominate over transverse
field effects. This condition is justified by surface wake simulations (Zimmerman
et al. 2011) as well as in data describing the analogous macroscopic wake extending
about the entire Moon (Farrell et al. 1998; Xu et al. 2019). Motivated by these lunar
phenomena, the present study aims to address the general problem of bounded plasma
expansion, as a starting point for similar systems.

The recent analytical model by Rhodes & Farrell (2019) matches the self-similar
solution in the expansion region with a Poisson solution of a bounded electron cloud,
to examine charging of an insulated surface in a steady-state plasma wake. We now
extend the work of Rhodes & Farrell (2019) to account for the dynamic feedback
effect of surface charge accumulation on the plasma expansion process. The new
boundary condition matching is accomplished by an additional solution of Poisson’s
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equation in a thin layer called the ion front boundary layer, which connects the
quasi-neutral layer and the electron cloud. Our four-layer model structure mimics
that of Medvedev (2011), with the advantage of being analytically derived and
self-contained rather than interpolated from simulation data.

In the no-surface limit, we find the same qualitative behaviour as found in
Medvedev (2011), with the ion front boundary layer expanding linearly in time.
Unlike the study by Medvedev (2011) and a similar semi-analytic study by Mora
(2003), however, the present study focuses on the early expansion phase rather
than the long-time asymptotic behaviour. Furthermore, we note that our thin-layer
approximation is not intended to improve on the aforementioned ion front models
(Mora 2003; Medvedev 2011), but rather to demonstrate the key role of the ion front
in plasma–surface coupling.

For the case of bounded expansion, our results show that an insulated surface may
be quickly charged by the oncoming electrons. We demonstrate how the presence of
the charge-accumulating surface can cause a widening of the ion front boundary layer,
acceleration of the ion front, increase of the surface potential magnitude and decrease
of the near-surface electron density.

2. Four-layer expansion model
2.1. Model overview

Consider an initially quasi-neutral quiescent hydrogen plasma, with comparable ion
and electron temperatures, filling the half-plane defined by −∞ < ζ < 0 at t = 0.
The classic 1-D plasma expansion problem supposes an infinite vacuum filling the
complementary space 0<ζ <∞. The entire space is unmagnetized. We now consider
the effect of an insulated surface at fixed position ζs, assumed much farther than an
initial plasma Debye length (ζs� λD). We emphasize that our initial condition limits
both ions and electrons to the half-plane, in contrast with many existing models which
initialize the electrons in an infinite Boltzmann equilibrium. This initial condition is
necessary to account for the surface charging and resulting plasma–surface interaction.

The classic unbounded expansion process is qualitatively described as follows:
owing to a relatively high thermal speed, electrons rapidly diffuse into the void while
the ions remain approximately fixed. This electron expansion phase is depicted in
the first tier of figure 1. Charge separation creates an ambipolar electric field which
accelerates the ions into the negative charge region, referred to as the electron cloud
(to the right in figure 1). The expansion is accompanied by a rarefaction front, a
boundary of plasma depletion, which travels in the opposite direction at the ion
acoustic speed (to the left in figure 1). Up to the expansion front, the plasma bulk
remains quasi-neutral. At the expansion front there is an ion front boundary layer
– a narrow region of positive net charge – beyond which lies the electron cloud.
The second tier of figure 1 illustrates the evolution of the expanding plasma density,
with the left-moving rarefaction front and right-moving expansion front and ion front
boundary layer. Note that in reality the rarefaction front also contains a narrow
positive charge layer (Mora 2003), not depicted in figure 1, which is neglected in the
present model since it has no bearing on the plasma–surface interaction. The spatial
density distributions presented in the figure are based on (A 4) for the quasi-neutral
plasma domain (where ne = ni), equations (B 1) and (B 8) for the ion front layer, and
(C 8) for the electron cloud domain (where ni = 0).

The plasma expansion process evolves on the time scale of the ion plasma frequency
ωi. The widely used self-similar expansion model (see appendix A), incorporated as
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(a)

(b)

FIGURE 1. Initial plasma expansion process, depicted by the ion density (dashed red) and
electron density (solid blue) spatial distributions at two different times. In the initial phase
(a) the electrons expand outward while the ions stay relatively stationary. The rightward-
moving ion expansion front follows at a later time (b), accompanied by a leftward-moving
rarefaction front. The densities are described by (A 4) for the self-similar domain (where
ne= ni), equations (B 1) and (B 8) for the ion front layer, and (C 8) for the electron cloud
domain (where ni = 0).

part of the present model, takes ωit= 1 as the time step for a quasi-neutral expansion
to initialize. For the length scales of interest, ζs ∼ 10–100λD, we find that ωit ≈ 1
is a reasonable time frame for the initial electron cloud to fill the gap between the
plasma and the insulated surface. Thus we take t0=ω

−1
i to be the initial time for both

surface charging and ion front expansion. One oddity of this initial condition is the
slightly negative location of the ion front at ωit= 1, ∼−0.6λD, owing to the singular
asymptotic behaviour of the self-similar formulation approaching t = 0 (Mora 2003).
Keeping this caveat in mind, we focus the present work on the qualitative dynamics of
plasma–surface interaction, which is largely insensitive to the precise ion front location
for a reasonably distant surface.

Both the cold ion plasma and the electron cloud are assumed to expand isothermally,
and maintain a Maxwellian velocity distribution via the Boltzmann relation. When
the isothermal assumption – for both electrons and ions – is relaxed, numerical
computations of unbounded plasma expansion show that the thermal temperature
decay (the energy source for ion acceleration) causes a substantial departure from
the self-similar solution at the scale where ζ/t ∼ (Zmi/me)

1/2 (Denavit 1979; Mora
& Pellat 1979). Here Z, mi and me respectively represent the ion charge number, ion
mass and electron mass. Given a hydrogen plasma ((Zmi/me)

1/2
≈ 43), our range of

interest for the initial plasma expansion (ζ/t< 4) remains well within the validity of
a first-order isothermal approximation. Furthermore, while technically the presence of
a charge-accumulating surface causes a truncated velocity distribution that brings into
question the application of Boltzmann’s relation, this effect can be shown to be quite
small over the length scales of interest. Upon arrival of the electron cloud at the
surface, prior to charge accumulation, we find typical potential values of φ∼−5kT/e.
Under these conditions only electrons faster the 3 times the thermal speed arrive
at the surface, v > 3vte, or approximately 1 % of a Maxwellian velocity distribution.

https://doi.org/10.1017/S0022377820000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000148


Plasma expansion towards an electrically insulated surface 5

FIGURE 2. Four solution domains of the plasma expansion process; (i) undisturbed plasma,
(ii) quasi-neutral expansion, (iii) ion front boundary layer and (iv) electron cloud, defined
by the distribution of the electron density (solid blue) and ion density (dashed red) at a
fixed time. The densities are described by (A 4) for the self-similar domain (where ne=ni),
equations (B 1) and (B 8) for the ion front layer and (C 8) for the electron cloud domain
(where ni = 0).

As the surface potential continues to build, the distribution truncation shrinks well
below 1 %, and thus a Maxwellian distribution is reasonably justified.

The overall plasma expansion structure can be broken into qualitatively distinct
spatial regions. We adopt the four-layer framework of Medvedev (2011), which
explicitly incorporates a positively charged boundary layer at the plasma expansion
front. However, unlike the layer model by Medvedev (2011), which is interpolated
based on simulation data, the present model applies an analytic approximation
to describe the initial expansion phase in a self-contained manner. Our analytic
formulation facilitates the addition of an insulated surface boundary condition, which
is the focus of the present study.

In terms of the spatial variable ζ , the four layers are the (i) rarefaction front ζr,
(ii) boundary of quasi-neutrality ζb, (iii) ion front ζf and (iv) insulated surface ζs. The
corresponding four layers, depicted in figure 2 are:

(i) undisturbed plasma: −∞< ζ < ζr;
(ii) quasi-neutral expanding plasma: ζr < ζ < ζb;

(iii) ion front boundary layer: ζb < ζ < ζf ;
(iv) electron cloud: ζf < ζ < ζs.

We assume continuity of φ and ne at all boundaries. The ion front boundary layer
is introduced to resolve a continuous electric field at the interface of the quasi-neutral
plasma and the electron cloud. The layer width, ∆≡ ζf − ζb, is a free parameter to be
uniquely determined in the electric field matching process. This additional boundary
condition is necessary to account for the effect of the external field generated by the
charge-accumulating surface.

Prior to the application of boundary conditions, independent solutions are obtained
in each of the four regions, as described below.
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2.2. Independent solutions
We describe the model in general terms and present its independent domain solutions,
details of which are found in appendices A–C. Note that domain (i) contains
undisturbed plasma with a trivial solution.

A description of domain (ii) – the quasi-neutral expansion region – is described by
the well-known self-similar solution (Gurevich et al. 1966), detailed in appendix A.
The self-similar solution neglects charge separation (dropping Poisson’s equation),
assuming a Maxwellian electron fluid that equilibrates with the ion fluid much faster
than the ion dynamic time scale ω−1

i (defined below). The quasi-neutral plasma
layer is considered impervious to the external electric field. This last assumption, we
believe appropriate for the relatively short expansion time scales considered in the
present study. Field penetration into an expanding plasma is an open problem, beyond
the scope of the present paper.

Domain (iii) – the ion front boundary layer – is approximated by a constant
ion density, equal to the density at the boundary of quasi-neutrality ζb. With the
electron density spatially decreasing, this set-up emulates the thin positive charge
layer predicted by early numerical computations (Widner et al. 1971; Crow et al.
1975). Assuming a Maxwellian electron distribution and small potential variation, the
electron density and potential are determined by Poisson’s equation (see appendix B).
A key feature of this new formulation is that the layer width, rather than being pre-set,
is determined by the requirement of electric field continuity. Although the choice of
a constant density solution is not unique, it has the benefit of providing a convenient
analytic description of the early expansion phase. The resulting thin-layer solution
generates a reasonable first-order approximation, providing insight into the physical
mechanism by which a charge-accumulating surface can influence plasma expansion.

The solution for domain (iv) – the electron cloud – is determined by solving
Poisson’s equation for a Maxwellian electron distribution and zero ion density. The
electron density remains continuous at ζf , while the ion density jumps to zero. The
resulting solution, derived in appendix C, depends on the surface charge density and
resulting electric field at the insulated surface ζs. In the limit of an infinitely far
or uncharged surface, the solution reduces to the known formula for a steady-state
Maxwellian electron cloud (Rhodes & Farrell 2019).

The equations below are expressed in terms of the following dimensionless units

ζ ∼ λD =

√
ε0kTe

e2n0
, t∼ω−1

i =

√
ε0mi

e2n0
,

n∼ n0, φ ∼
kTe

e
.

 (2.1)

Here, n0 denotes the electron density of the undisturbed plasma. The ion temperature
is neglected, and the electron temperature Te is assumed constant throughout. In these
dimensionless units, the ion acoustic and electron thermal speed are given by ci = 1
and vTe =

√
mi/me. The resulting electric field units are E0 = (n0kTe/ε0)

1/2.
Assuming potential and electron density continuity across all boundaries, we find

the following solutions for the potential φ in the four domains:

φi = 0, (2.2)
φii =−(ζ/t+ 1), (2.3)

φiii = φb(t)− sinh[(ζ − ζb(t))/t], (2.4)
φiv = φf (t)− 2 log(α−1 sinh[gα(ζ )]). (2.5)
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Here, the subscript expressions refer to the spatial boundary; φb(t) = φ(t, ζb) and
φf (t)= φ(t, ζf ). Functions ζb(t) and gα(ζ ) are respectively defined in (A 3) and (C 9).
Here, the free parameter α characterizes the electron fluid pressure balance

1Pe(ζ )=
1
2 E2(ζ )− ne(ζ )≡ nfα

2, (2.6)

which is constant throughout the electron cloud region (see appendix C, equation
(C 4)). The magnitude of α can be thought of as a measure of the surface electric
field contribution. The limit α → 0 corresponds to an equilibrium pressure balance
with an infinitely far surface ζs→∞. This special case (1Pe= 0) is equivalent to the
finite surface floating potential derived by Rhodes & Farrell (2019), neglecting the
kinetic surface charging effect. In the general case, α 6= 0, the parameter α defines a
family of solutions based on the surface field pressure E2

s /2= ns+ nfα
2. The solution

in the next section (2.13) relates α to the ion front boundary layer width ∆, through
the requirement of electric field continuity.

The surface-generated electric field is assumed to penetrate only into the ion front
boundary layer, and not into the quasi-neutral plasma. In the absence of surface
charging, the quasi-neutral domain (i) and the electron cloud domain (iii) solutions
can be continuously matched at a single expansion boundary (∆ = 0), permitting a
δ-function ion density layer and corresponding electric field discontinuity (Rhodes &
Farrell 2019). With the addition of surface charging, however, a finite-∆ ion front
boundary layer (domain (ii)) is needed in order to account for the contribution of the
surface-generated electric field.

As the surface field penetrates into the ion front boundary layer, the layer width
is shown to expand. An important consequence is that the ions at the front are
accelerated faster than in the characteristic ambipolar plasma process. The accelerating
ion front then carries more electrons toward the surface, in spite of the surface
repulsion of the electron cloud. The present study is the first to establish a theoretical
framework for this feedback process between surface charging and plasma expansion,
predicted in simulations by Zimmerman et al. (2011).

Next, we describe the evolution of the surface charge and associated field, required
for the time-dependent boundary layer matching.

2.3. Surface charge accumulation
The surface electric field, given by the cumulative surface charge, can be computed at
each time step based on the velocity distribution of the electron cloud near the surface.
In dimensionless units, the electron cloud Maxwellian distribution is written

f (v, x)=
1

√
2πvTe

exp{φ(x)− (v/vTe)
2
}. (2.7)

Surface charge accumulation is determined by the electron flux, given by the first
velocity moment, evaluated at the surface in terms of the known solution for the
electric potential

dσs

dt
=−

∫
∞

0
vf (v, x= s) dv =−

vTe

2
√

2π
eφs . (2.8)

Here, φs= φ(t, ζs) is the time-dependent surface potential. The corresponding electric
field above an insulated surface is given by

Es(t)=−
σs(t)

2
= Es(t0)+

√
mi/me

4
√

2π

∫ t

t0

eφs(t) dt. (2.9)
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Here, the initial charging time is taken to be t0 = ω
−1
i , accounting approximately

for the initial electron expansion, as discussed earlier in this section. The initial
value Es(t0) is determined by the surface-free electron cloud solution, expressed by
(C 11). The time-dependent surface potential φs is not known a priori, but evaluated
consistently with (2.5) and (2.9) along with the boundary layer matching conditions
described below.

2.4. Boundary layer matching
The ion front boundary layer width, ∆, is determined by the continuity of both the
electron density and the electric field at the ion front, making use of (B 8), equation
(B 7) and (C 7). In addition, the electron cloud field at the ion front is characterized
by the electric field at the surface, according to (C 3). The combined set of algebraic
equations is as follows:

nef = t−2
{1− sinh[∆/t]}, (2.10)

Ef = t−1 cosh[∆/t] =
√

2nef (∆) cosh[arcsinh (α)], (2.11)

Es = α(∆)
√

2nef (∆). (2.12)

Note that (2.12) has been simplified by the assumption that ζs − ζf � 1, to avoid
removable singularities. The system above is solved for ∆ by isolating the surface
parameter α in (2.11)

α(∆)= sinh
[

arccosh
(

cosh[∆/t]
√

2{1− sinh[∆/t]}1/2

)]
. (2.13)

Given a value of Es, the function α(∆) is inserted into (2.12) to find a unique solution
for the boundary layer width ∆.

In the limit of α→ 0, where the surface field is based on the fluid floating potential
(as in Rhodes & Farrell (2019)), equation (2.12) reduces to an analytical expression

∆/t= arcsinh (−1+
√

2)≈ 0.40. (2.14)

This result provides the same qualitative form as in the semi-analytic interpolated
model by Medvedev (2011), who found that ∆/t ≈ 1.0 for ωit � 1. Note that
Medvedev (2011) is concerned with the long-time solution structure, whereas the
present model addresses the initial expansion phase ωit ∼ O(1). Owing to the
constant ion density approximation which tends to overestimate nif at ωit � 1,
an underestimation of the present boundary layer width is to be expected.

As we show in the following section, the presence of a charge-accumulating surface
causes the boundary layer width to expand faster than predicted by (2.14). As the
boundary layer width increases, we expect an eventual breakdown of the thin layer
approximations, namely that φf − φb � 1 and ni ≈ const. within the layer. These
approximations impose the following constraint on our solution validity

∆/t< arcsinh (1)≈ 0.88. (2.15)

Beyond the domain of this constraint, the electron cloud density vanishes (in (2.10))
and the solution becomes unphysical. This constraint limits our solution space to a
minimum plasma–surface distance and a maximum expansion time.

https://doi.org/10.1017/S0022377820000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000148


Plasma expansion towards an electrically insulated surface 9

(a)

(b)

(c)

FIGURE 3. Electrostatic potential spatial distribution (based on (2.2)–(2.5)) for a sequence
of three times, with an insulated surface at ζs/λD=20. The moving domain boundaries are
shown for reference: rarefaction front (dashed), quasi-neutral expansion boundary (solid)
and ion front (dotted).

The presented results below are strictly limited to the constraint in (2.15), upholding
the thin-layer approximation φf − φb � 1. While the model validity time domain
depends upon ζs, we plot only the domain that is common to all curves. For the
smallest presented surface distance of ζs/λD = 20, the validity domain is found to be
1 < ωit < 3.6. Beyond this time the model predicts an electron cloud that becomes
entirely depleted (ne→ 0). Another assumption that may break down at longer times
is that the surface-generated field only penetrates the ion front layer, and therefore
does not affect the location of the quasi-neutral expansion front. Further work is
required to examine the validity of these assumptions for larger times.

3. Results
The results below provide a sample calculation for a fixed surface distance

ζs/λD = 20, as well as a comparison of the surface effects for different values
of ζs. Our findings illustrate how the ion front boundary layer grows in time, and
how the ion front is accelerated by the presence of the charge-accumulating surface.

3.1. Example with fixed surface distance ζs/λD = 20
We begin with contour plots of the electrostatic potential (figure 3) and associated
charge density (figure 4), distributed throughout the region at three time slices. The
potential plots are based on (2.2)–(2.5), including a matching parameter determined
at each time step. The associated electric field and charge density for each region
are detailed in a series of appendices; appendices A–C. Although the results of our
1-D model can be presented by simple curves, the (vertically uniform) contour plots
provide a visualization of the plasma expansion and its distinct layers addressed in
the following discussion. For example, the density contours shown in figure 4 are
equivalent to the simple density curves shown in figures 1 and 2. The contour view
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(a)

(b)

(c)

FIGURE 4. Charge density spatial distribution for a sequence of three times, with an
insulated surface at ζs/λD = 20. The moving domain boundaries are shown for reference:
rarefaction front (dashed), quasi-neutral expansion boundary (solid) and ion front (dotted).
The densities are described by (A 4) for the self-similar domain (where ne= ni), equations
(B 1) and (B 8) for the ion front layer and (C 8) for the electron cloud domain (where
ni = 0).

places our work in the context of the 2-D plasma wake structures exhibited in the
study by Rhodes & Farrell (2019). Following the contour plots, figure 5 presents
the electric field and charge density distributions in the form of curves. Each view
highlights different features of the plasma expansion process.

Figure 3 shows the potential distribution, normalized by the constant electron
temperature. As discussed previously the initial time is set to ωit = 1, when the
self-similar solution becomes valid and the surface is set to begin charging. At this
initial time the electrons have already escaped to fill the void between the plasma and
the surface, leaving behind a positively charged ion front boundary layer (dotted line).
At the next shown time steps, ωit = 2.30 and ωit = 3.60, we observe the ion front
moving toward the surface (to the right), followed by the quasi-neutral expansion
boundary (solid line). The rarefaction front (dashed line) is observed to move in
the opposite direction (to the left). The surface potential, indicated by the colour at
the rightmost edge of the domain, becomes more negative in time as the surface is
charged by the electron cloud.

Coupled with the potential distribution, figure 4 shows total charge density n =
ni − ne, normalized by the undisturbed electron density ne0. As in figures 1 and 2,
the spatial density distributions are described by (A 4) for the self-similar domain
(where ne = ni), equations (B 1) and (B 8) for the ion front layer and (C 8) for the
electron cloud domain (where ni = 0). Beyond the quasi-neutral plasma on the left
(white), we observe the positively charged ion front boundary layer (red) followed by
the electron cloud (blue). This visualization highlights the double layer which forms
at the interface of the ion front boundary layer and the electron cloud, as described
in Farrell et al. (2008). The double layer is strongest at ωit= 1, when the boundary
layer positive charge is most concentrated, and gets weaker over time as the positive
charge layer expands. The electron density near the surface is observed to decrease
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(a)

(b)

(c)

FIGURE 5. Electric field (solid green) and total charge density (dashed yellow) spatial
distribution for three time slices, with ζs/λD=20. The unique feature is the surface electric
field (rightwards of the ion front), which increases in time and depletes the electron
density. The field distributions are described by (A 4) for the self-similar domain, equation
(B 7) for the ion front layer and (C 7) for the electron cloud domain.

in time, as electrons are absorbed by the surface, which in turn inhibits the arrival of
more electrons. As noted in the previous section, at larger times our approximation
of constant ni within the boundary layer may lead to an overestimation of the ion
front ion density in comparison with semi-analytic expansion models (Mora 2003;
Medvedev 2011). We also note that in reality the rarefaction front is also associated
with a narrow layer of positive charge (Mora 2003), which does not interact with the
charging surface and is not included in figure 4.

We now re-examine these results, visualized as simple curves. Focusing on a narrow
region surrounding the ion front, figure 5 highlights a central element of our model;
electric field continuity across the ion front (based on (A 4), (B 7) and (C 7)). The
electric field (solid green) and total charge density (dashed yellow) are shown for the
three time slices discussed above, ωit = 1.0, ωit = 2.3 and ωit = 3.6. The respective
right-moving ion fronts are observed at ζ/λD=−0.6, ζ/λD= 2.8, ζ/λD= 8.7, and the
respective left-moving rarefaction fronts are observed at ζ/λD = −1.0, ζ/λD = −2.3,
ζ/λD = −3.6. Each tier of figure 5 emphasizes different features of the expansion
process. The values are normalized by the undisturbed plasma electron density n0 and
related electric field units E0 = (n0kTe/ε0)

1/2.
In tier (a) of figure 5, when ωit = 1.0, the dominant feature is the electron cloud,

which fills the space between the plasma and the surface (ζ/λD= 20). The ion front is
marked by a substantial double layer jump in the total charge density, of the order of
the undisturbed electron density n0. Here, by construction, the nearby rarefaction and
expansion fronts start out overlapping. Note that the field jump implies a δ-function
layer of positive charge, as discussed in Rhodes & Farrell (2019). The rarefaction
front discontinuity is of little interest to the present study, except in comparison of its
magnitude with the peak at the ion front. Mora (2003) further explains how the initial
ion front electric field peak starts out relatively small compared to the rarefaction jump
– as observed in here – before obtaining the long-time asymptotic relation where they
are of comparable magnitude.
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FIGURE 6. Width of the ion front boundary layer versus time (based on (2.9), (2.12) and
(2.13)), shown for different distances of the charge-accumulating surface as well as the no
surface limit. Smaller surface distance is shown to accelerate the layer width expansion.

In tier (b) of figure 5, ωit= 2.3, we clearly observe the characteristic electric field
peak which coincides with the ion front, as expected from numerical studies (Crow
et al. 1975; Mora 2003; Medvedev 2011). This continuous electric field peak is
notably absent in our previous model (Rhodes & Farrell 2019), which employed a
δ-function approximation for the ion front boundary layer as well as the rarefaction
front. Consequentially, this image highlights the finite width of the double layer
structure around the ion front, apparent in the shape of the charge density distribution.

Lastly tier (c) of figure 5, ωit= 3.6, highlights the build-up of the surface electric
field, unique to the present study. The right-hand side of the field distribution, in the
electron cloud domain, is observed to approach a large uniform field. This uniform
field is approximately given by the vacuum solution, determined by the surface field
as the electrons get pushed back into the plasma and the electron cloud density
becomes small. By this mechanism the surface field penetrates the ion front and
accelerates it beyond the no-surface ambipolar rate. In the context of this feedback
mechanism, the ion front boundary layer can be thought of as the mediator between
the ambipolar-field-dominated quasi-neutral plasma and the surface-field-dominated
electron cloud region.

Additional effects of the surface charge accumulation and associated electric field
are demonstrated in the following section by varying the plasma–surface distance.

3.2. Varying surface distance
Having established the general behaviour of the four-layer plasma expansion model,
we now explore the surface effects by varying ζs, the initial distance between the
plasma and insulated surface. We begin with the ion front of the expanding plasma,
and then consider the related effects on the insulated surface.

In figure 6, we demonstrate the increased broadening rate of the ion front boundary
layer width, ∆, as the surface is set closer to the initial plasma position. The layer
width is solved at each time step based upon (2.9), (2.12) and (2.13). The layer
broadening effect is caused by penetration of the built up surface field into the
boundary layer. Even after a relatively short time, ωit= 3.5, the boundary layer width
is observed to double in the presence of a floating surface at ζs/λD = 20, relative to
the no-surface case. Here λD is the initial Debye length of the undisturbed plasma.
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FIGURE 7. Ion front velocity versus time (given by (B 9)), shown for different distances of
the charge-accumulating surface as well as the no-surface limit. Smaller surface distance
is shown to increase the ion front velocity.

As a corollary of the accelerated ∆ widening, figure 7 presents the increase in
ion front velocity (given by (B 9)) as the surface is brought closer to the plasma.
The velocity is calculated by integrating the continuity equation within the ion
front boundary layer, resulting in (B 9). At ωit = 3.5 and ζs/λD = 20, we observe
a velocity boost of approximately 20 % relative to the no-surface case. It is also
important to note where the model predicts the surface effects on ion front velocity
to become inconsequential. For the time scale shown (ωit < 3.5), we predict little
surface-generated ion front accelerate at distance of ζs/λD > 40. Equivalently, farther
surfaces require more time to feel the plasma coupling.

This insulated surface system is shown to be substantially different from that
discussed by Gurevich & Pitaevsky (1975), where a fixed-potential surface causes a
deceleration of the ion front. Furthermore, we note that our estimates of the surface
effect are conservative, given that the presented model tends underestimate the ion
front boundary layer width – and hence the ion front velocity – as time increases.
Further study is required for a more precise calculation of the predicted plasma
coupling effects of a charge-accumulating surface.

In addition to the effect of the surface on the expanding plasma, it is interesting to
examine how this feedback process changes the conditions at the surface. Figures 8
and 9 show the temporal variations in the surface potential and near-surface electron
density. These are respectively calculated based upon (2.5) and (C 8), evaluated at ζs,
along with the matching (2.9), (2.12) and (2.13), solved at each time step. Each curve
is scaled by its respective no-surface value, which depends upon the plasma distance
even the absence of a surface. For the shortest surface distance shown, ζs/λD = 20,
figure 8 shows a relative surface potential increase of over 50 % (more negative).
Figure 9 shows a corresponding order of magnitude reduction in the near-surface
electron density.

We note that, even for ζs/λD = 40, where there is little effect on the ion
front boundary layer (according to figures 6 and 7), we still observe an order of
magnitude reduction in near-surface electron density. Even at much larger distances,
e.g. ζs/λD = 160, the surface conditions are found to exhibit non-negligible plasma
coupling effects over a relatively short time frame. This localized effect of the surface
electric field build-up is relevant to the characterization of ambient plasma conditions
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FIGURE 8. Surface potential versus time (evaluating (2.5) at ζs), shown for different
distances of the charge-accumulating surface. Each curve is scaled by the no-surface curve
at its respective surface–plasma distance.

FIGURE 9. Near-surface electron density versus time (evaluating (C 8) at ζs), shown for
different distances of the charge-accumulating surface. Each curve is scaled by the no-
surface curve at its respective surface–plasma distance.

for explorers on the surface of lunar craters (Zimmerman et al. 2011; Rhodes &
Farrell 2019), which motivated the present study. Note that, for application to the
lunar wake problem, this dynamic model must be adjusted to the steady-state surface
condition. Other applications of plasma expansion theory, such as laboratory inertial
fusion (True 1981; Sack & Schamel 1987) or plasma contactors (Camporeale, Hogan
& MacDonald 2015), may also find relevance in this general dimensionless model.

4. Summary
We have developed a model of plasma expansion where the vacuum region

is bounded by an electrically insulated surface. The model separates the plasma
expansion process into four spatial domains; (i) undisturbed plasma, (ii) quasi-neutral
expansion, (iii) ion front boundary layer and (iv) electron cloud. Matching the
surface-generated electric field with the ambipolar expansion field determines the
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width of the ion front boundary layer. The model is valid during the early phase of
plasma expansion (ωit∼ 1), where the surface charging effect is most notable.

As the insulated surface accumulates negative charge, it is shown to repel the
electron cloud, expand the ion front boundary layer and accelerate the ion front. Even
after a relatively short period 3.5ω−1

i , a surface at 20λD is predicted to accelerate the
ion front by ∼20 % relative to the no-surface case. No less important, the model is
able to predict the parameter space where surface effects do not substantially change
the ion front velocity.

Another key result is the increased surface potential magnitude (which becomes
more negative) and corresponding reduction in near-surface electron density, in
comparison with the no-surface calculation. We find that even in the case where little
surface effect is predicted in the ion front (t = 3.5ω−1

i and ζs = 40λD), the surface
electric field causes an order of magnitude reduction in the near-surface electron
density.

Given the dimensionless scaling in our formulation, these substantial surface effects
may be relevant to a variety of plasma systems of different scales, including solar-
wind interaction with airless bodies (Rhodes & Farrell 2019), laboratory inertial fusion
(True 1981; Sack & Schamel 1987) or plasma contactors (Camporeale et al. 2015).
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Appendix A. Review of self-similar formulation
This section outlines the solution of domain (ii) from figure 2; the quasi-neutral

plasma expansion (bounding the trivial solution in domain (i); the undisturbed plasma).
Assuming cold ions and a Maxwellian electron distribution, the combination of the
ions’ equation of motion and continuity equation produces a self-similar structure,
in terms of a dimensionless parameter ξ ≡ ζ/t. For a pure hydrogen plasma in the
domain where ξ ∼ 1, these assumptions are reasonably accurate (Denavit 1979; Mora
& Pellat 1979).

Under the assumptions above, the self-similar solution in the bulk plasma is stable
(Gurevich et al. 1966). At the moving boundaries where quasi-neutrality down,
inclusion of Poisson’s equation around the discontinuities may lead to localized
short wavelength oscillations (Gurevich & Pitaevsky 1975). Additionally, we note
that a variety of instabilities may arise with the introduction of multiple ion species
(Gurevich, Par & Pitaevski 1973; Elkamash & Kourakis 2016), non-Maxwellian
electron distributions (True 1981; Bennaceur-Doumaz et al. 2015) and magnetic fields
(Gurevich & Pitaevsky 1975; García-Rubio et al. 2016). All of these auxiliary effects
are beyond the scope of the present study.

The well-known solution, with the normalization described in (2.1), is

v = ξ + 1, ne = e−(ξ+1), φ =−(ξ + 1), E=
1
t
, (A 1a−d)

where the velocity v is defined by the direction of the expansion variable ζ . Requiring
that the expansion length scale exceed the local Debye length (Samir et al. 1983;
Mora 2003), this solution is limited to the quasi-neutral wake region where

−1= ξr < ξ < ξb =−1+ 2 ln t, t > 1. (A 2)
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Evaluating the self-similar solution from (A 1) at the quasi-neutrality boundary ξb,
where

ζb = (−1+ 2 ln t)t, t > 1, (A 3)

we obtain the following boundary conditions:

vb = 2 ln t, neb =
1
t2
, φb =−2 ln t, Eb =

1
t
. (A 4a−d)

Applying these conditions at the quasi-neutrality boundary, the self-similar solution
is analytically continued into the non-neutral ion front layer. Note that the constant
electric field in the quasi-neutral expansion zone implies an electric field discontinuity
at the rarefaction boundary, since the field vanishes in the undisturbed plasma region
(Gurevich & Meshcherkin 1981b). The rarefaction front does not play a role in the
surface interaction and is not further addressed in the present paper. The self-similar
solution at the quasi-neutrality boundary ξb, however, does admit a continuous electric
field if properly matched to the non-neutral region as shown in § 2.4.

Appendix B. Ion front boundary layer
This section outlines the solution of domain (iii) from figure 2; the ion front

boundary layer. In this domain we approximate the ion density to be constant within
a thin layer, given by

ni = neb, (B 1)

the electron density at the quasi-neutral boundary ζb. Along with the Maxwellian
electrons, the potential is determined by Poisson’s equation

d2φ

dζ 2
= nb(eφ−φb − 1)≈ nb(φ − φb). (B 2)

This form uses the normalization convention established in (2.1). The expansion above
assumes a reasonably thin layer where φ − φb� 1. The resulting solution, requiring
potential and electron density continuity at ζb, is given by

φ − φb =−
Eb
√

neb
sinh[
√

neb(ζ − ζb)], (B 3)

dφ
dζ
=−Eb cosh[

√
neb(ζ − ζb)], (B 4)

d2φ

dζ 2
=−
√

nebEb sinh[
√

neb(ζ − ζb)]. (B 5)

The particle density, potential and electric field at the quasi-neutrality boundary ξb are
assumed to be continuous with the values in the self-similar region given in (A 4).
Given

√
neb = Eb = t−1, we obtain explicit expressions in terms of ζ and t

φ − φb =−sinh[(ζ − ζb)/t], (B 6)
dφ
dζ
=−t−1 cosh[(ζ − ζb)/t], (B 7)

d2φ

dζ 2
=−t−2 sinh[(ζ − ζb)/t], (B 8)
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with the quasi-neutrality boundary located at ζb= (−1+ 2 ln t)t. Owing to the spatially
constant ion density approximation (ni = neb) within the boundary layer, the velocity
can be obtained by directly integrating the continuity equation, resulting in

v = vb −

(
d ln neb

dt

)
(ζ − ζb),

= 2 ln t+
2
t
(ζ − ζb). (B 9)

The non-neutral ion front ζf and associated boundary layer width, ∆ = ζf − ζb, is
determined by matching the electron density (and corresponding potential) as well as
the electric field with the solution in the electron cloud.

Appendix C. Electron cloud
This section outlines the solution of domain (iv) from figure 2; the electron cloud.

Here, we calculate the general family of solutions for Poisson’s equation over a
Maxwellian electron cloud, allowing for surface potentials greater (more negative)
than the fluid floating potential. The family of solutions is parametrized by the surface
charge, accumulated over time due to supra-thermal electrons penetrating the electric
field.

In dimensionless form, Poisson’s equation for a Maxwellian electron cloud is
written as

d2φ

dζ 2
= nef eφ−φf , (C 1)

subject to the boundary conditions

φ(ζ = ζf )= φf , (C 2)
dφ
dζ
(ζ = ζs)=−Es. (C 3)

Here, σs is the surface charge density of the insulated surface. The first integration
yields

1
2

(
dφ
dζ

)2

− nef eφ−φf =
1
2

E2
s − ns ≡ nfα

2. (C 4)

The positive sign on the right-hand side of (C 4) above is selected to maintain the
boundary conditions, subject to the constraint that the solution is real, single valued
and resides in the physical domain where

−∞<φ < 0, −∞<
dφ
dζ
< 0. (C 5a,b)

To obtain the solution for φ, we further integrate (C 4), which yields the general
solution

φ(ζ )− φf =−2 log(α−1 sinh[gα(ζ )]), (C 6)
dφ
dζ
=−

√
2nefα coth[gα(ζ )], (C 7)

d2φ

dζ 2
= ne = nefα

2csch 2
[gα(ζ )], (C 8)

gα(ζ )= arcsinh (α)+ α
√

nef

2
(ζ − ζf ). (C 9)
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Here, the function gα(ζ ) has been set to satisfy the first boundary condition, equation
(C 2), and the positive constant α is to be determined by the second boundary
condition, equation (C 3), for a given value of the surface field Es.

In the limit where α→ 0 we regain the solution of Rhodes & Farrell (2019), where
the surface takes on the Maxwellian fluid floating potential, resulting in the following
potential distribution:

φ(ζ )− φf =−2 log(h(ζ )), (C 10)
dφ
dζ
=−

√
2nef h(ζ )−1, (C 11)

d2φ

dζ 2
= ne = nef h(ζ )−2, (C 12)

h(ζ )= 1+
√

nef

2
(ζ − ζf ). (C 13)

This solution is equivalent to the limit where the plasma–surface distance approaches
infinity, i.e. the no-surface case.
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