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In strictly collisionless electrostatic shocks, the ion distribution function can develop
discontinuities along phase-space separatrices, due to partial reflection of the ion
population. In this paper, we depart from the strictly collisionless regime and present
a semi-analytical model for weakly collisional kinetic shocks. The model is used to
study the effect of small but finite collisionalities on electrostatic shocks, and they
are found to smooth out these discontinuities into growing boundary layers. More
importantly, ions diffuse into and accumulate in the previously empty regions of phase
space, and, by upsetting the charge balance, lead to growing downstream oscillations
of the electrostatic potential. We find that the collisional age of the shock is the more
relevant measure of the collisional effects than the collisionality, where the former
can become significant during the lifetime of the shock, even for weak collisionalities.
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1. Introduction
Collisionless plasma shock waves are important in numerous space and astrophysical

phenomena (Caprioli, Blasi & Amato 2011; Karimabadi et al. 2014) and in laboratory
experiments (Romagnani et al. 2008). In particular, not only are they believed to be
responsible for cosmic ray acceleration (Bell 2013), but their ability to energize ions
makes them a possible candidate for laser plasma based generation of high-energy ion
beams with a narrow energy spectrum (Tikhonchuk et al. 2005; Haberberger et al.
2012). In practice, it is highly non-trivial to produce a quasi-monoenergetic peak in the
ion energy spectrum that competes in total beam charge with the more robust target
normal sheath acceleration mechanism. However, recent experimental results by Pak
et al. (2018) demonstrate that a shock-accelerated quasi-monoenergetic beam with a
high total charge can be achieved by optimizing plasma profiles.
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Often, the Coulomb mean free paths of the plasma particles are much larger
than the width of the shock front or its dynamically relevant vicinity. In this case,
the abrupt change in plasma parameters between upstream and downstream is set
up by some collisionless kinetic process (Tidman & Krall 1971; Marcowith et al.
2016), such as ion reflection in the electrostatic shock potential (Moiseev & Sagdeev
1963) or electromagnetic turbulence (Bret et al. 2013), and collisions do not play a
significant role in the dynamics of the shock (Balogh & Treumann 2013). In the other
extreme, when the mean free paths are shorter than the spatial structures of the shock
– with relevance to inertial confinement fusion (ICF) and other high-energy-density
applications – the dynamics is very similar to fluid shocks, where the entropy
generation of the shock is caused by binary collisions. The collisional limit is often
studied by single-fluid hydrodynamic codes, while the collisionless limit is mostly
studied by particle-in-cell (PIC) simulation codes.

The intermediate region of parameters where the physics is kinetic but collisions
also play a role is, however, much less explored than the above mentioned extremes,
although it can be relevant for laser plasma experiments. Approaching from the high
collisionality direction, the ICF community has already started to explore this region
using Fokker–Planck solvers (Thomas et al. 2012; Keenan et al. 2018). Other types of
laser plasma experiments, such as those aimed at ion acceleration, do not compress the
target but heat it considerably, which corresponds to small collisionalities. However,
when lasers predominantly couple their energy to the electrons, and the target is of
solid density and/or consists of a high charge number element, the ion collisionality
need not be vanishingly small. Among the limited number of studies on the effect of
a finite collisionality in electrostatic shocks relevant for ion acceleration experiments,
Turrell, Sherlock & Rose (2015) found that in multi-species plasmas the collisional
friction between the different ion species can lead to very rapid heating.

In the field of laser plasmas – perhaps owing to the short time scales of the studied
phenomena and that the systems considered are open – the fact that collisionality need
not be order unity to significantly affect the dynamics of the system is somewhat
overlooked. Meanwhile, there is a wealth of examples in the field of magnetic
confinement fusion where weak but finite collisionality is essential. The ability to
move particles across phase-space separatrices that divide regions with qualitatively
different particle dynamics – e.g. a trapped–passing boundary, a boundary of a loss
cone or the threshold of the runaway region – can make collisions important, even
when they are rare (Dreicer 1960; Chankin & McCracken 1993; Nemov et al. 1999;
Fülöp, Pusztai & Helander 2008).

In this paper, we depart from the strictly collisionless limit, and investigate the
effects of a weak but finite ion collisionality on kinetic electrostatic shocks. The
process we focus on here, the collisional population of the originally empty trapped
regions of the ion phase space, is a cumulative effect. Therefore, the relevant quantity
is the collisional age, which can reach order-unity values during the lifetime of the
shock, even if the collisionality is small. We consider laminar (i.e. non-turbulent)
shocks that exist at low (i.e. order-unity) Mach numbers (Sagdeev 1966), and are
relevant for plasma-based ion acceleration experiments (Haberberger et al. 2012).

The paper is organized as follows. Section 2 starts by describing the assumptions
of the model we use to calculate the effect of collisional scattering of ions across
the phase-space separatrices in kinetic electrostatic shocks, and qualitatively explains
the emerging physical picture. Then, in §§ 2.2 and 2.3, the perturbative orbit-averaged
treatment of collisions and the reduction of the problem to a diffusion equation are
detailed, respectively. Finally, we present the results in § 3, mostly concerning the
development of the potential structure with collisional age for various Mach numbers
and electron-to-ion temperature ratios.
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(a)

(b)

FIGURE 1. (a) Electrostatic potential, φ(x), of a typical kinetic electrostatic shock
propagating to the right. The shock has a ramp-up in potential, to a maximum of φmax;
behind that, the potential oscillates between φmin and φmax. (b) Phase-space diagram,
showing constant energy contours in the frame of the shock. The dashed curves denote
the upper and lower separatrices. Regions of phase space: I – passing, II – trapped, III –
co-passing and IV – reflected.

2. The kinetic shock model
An important process in the physics of electrostatic shocks is the partial reflection

of ions at the shock front. The electrostatic potential, see figure 1(a), ramps up from
φ = 0 in the far upstream to a maximum of φmax. The reflection of ions creates an
asymmetry between the up- (x> 0) and downstream (x< 0) regions of the shock. This
asymmetry, together with the potential response of the ions and electrons, creates a
downstream potential that oscillates between φmax and φmin (Sagdeev 1966).

In this paper, we use the following normalization scheme: the velocity is normalized
to the sound speed cs=

√
ZTe/m defined with the far upstream electron temperature,1

where the plasma is completely unaffected by the shock, Te; m and Ze denote the ion
mass and charge, with e the elementary charge. In particular, the ion flow velocity
becomes equal to minus the Mach number M= V0/cs, where V0 is the shock speed
with respect to the unperturbed upstream medium. The potential φ is normalized to
Te/e, the configuration coordinate x to the Debye length λD=

√
ε0Te/(e2n0) and time t

to λD/cs; here n0 is the electron density far upstream, where the plasma is completely
unperturbed by the shock, which we normalize to 1. All the calculations in this paper
are done in the reference frame of the shock front.

The one-dimensional (1-D) collisionless shock problem has a steady state solution,
which has been considered by Pusztai et al. (2018); its solution, in the frame of the
shock, is derived from the time-independent Vlasov–Poisson system,

v
∂fi

∂x
−
∂φ

∂x
∂fi

∂v
= 0 (2.1)

∂2φ

∂x2
= ne − Zni ≡−ρ, (2.2)

where ni =
∫
∞

−∞
fi dv. To keep the following discussion focused on collisional effects

and avoid issues with inter-species collisions, the model considered in this paper only
1The ion temperature is neglected here, since the electron-to-ion temperature ratio is assumed to be large,

which is required for the existence of these types of shocks (Cairns et al. 2015).
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concerns single ion species distributions, fi → f , and the electrons are assumed to
be Maxwell–Boltzmann distributed, which results in ne = ne,1 exp(φ), where ne,1 =

Zni(φ→ 0) is the electron density which balances both the incoming and reflected
ions. Note that ne,1 6= 1, because the normalized electron density only takes the value
1 in the unperturbed upstream plasma, i.e. where the reflected ion beam is not yet
present.

The solution to (2.1) is given by f (x, v)= f (E), where E = v2/2+ φ(x) is the total
ion energy; that is, ions stream along constant-energy contours in phase space, see
figure 1(b). With the assumption that the incoming ions have a Maxwell–Boltzmann
distribution, the ion distribution function in regions I and IV becomes2

f I,IV
=

1
Z

√
τ

2π
exp

[
−
τ

2

(√
v2 + 2φ −M

)2
]
, (2.3)

where τ ≡ ZTe/Ti. We also divide up phase space into four different regions: passing,
trapped, co-passing and reflected regions of phase space, which we denote by the
roman numerals I, II, III and IV, respectively. In the collisionless case, regions II
and III are completely empty, which consequently means that the ion distribution is
discontinuous at the separatrix. The separatrix is marked out by the dashed line in
figure 1(b), and it is given by ±v0=±

√
2(φmax − φ) in the up- (+v0) and downstream

(−v0). It is this discontinuity of the distribution function to which we will turn our
attention in the following sections.

2.1. Introducing collisions
In the following, we will describe the underlying assumptions of the collisional shock
model. While the collisionless model has a steady-state solution with a discontinuity,
that discontinuity can clearly not survive in the collisional problem. In this paper, we
consider a model problem where this discontinuous f is taken as the initial condition
for the collisional problem, which has a time dependence resulting from collisions.
We assume that the collision frequency is small; in particular, the collision time is
much longer than the typical time for ions to stream through some finite vicinity of
the shock front considered, i.e. across a few downstream oscillations.

The collisions will, heuristically, act to smooth out the original discontinuity into
a thin boundary layer. As ions are scattered into this boundary layer, they enter the
trapped region (II), where they will orbit; a population of trapped ions will develop
along both the upper and lower separatrices, as is illustrated in figure 2(a). A cut of
the same distribution at a certain downstream location is shown in figure 2(b). There
will also be scattering of ions near the upper separatrix into region III.

Far from the boundary layers, where the distribution function is not as sharp, the
solution remains essentially unchanged. Thus, for x > 0, we may assume f to be the
collisionless solution in regions I and IV. There is, however, a boundary layer in
region I, which is due to the depletion of ions near the separatrix in region I, but
since this layer is very thin and almost static in time, we disregard it and focus on
the thicker (but still thin compared to the thermal speed) and time varying boundary
layer which develops in regions II and III. We therefore use the value of f I,IV, from
(2.3), on the separatrix, v =−v0, as a boundary condition for f in region II.

2The factor 1/Z in the distribution function is due to the normalization of n0 = 1, together with quasi-
neutrality considerations in the far upstream of the shock. Furthermore, in our normalization, Z does not enter
the calculation in this single ion species problem, as the Z values in (2.2) and in (2.3) cancel, and the
remaining Z dependence is absorbed into our definition of τ = ZTe/Ti.
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(a) (b)

FIGURE 2. (a) Density plot of the ion distribution function at a collisional age of ν∗t=
0.01, for the parameters τ = 50, M= 1.25 (calculated using the model of § 2.2). Dashed
curves: phase-space separatrices. Regions of phase space: I – passing, II – trapped, III
– co-passing, IV – reflected. (b) The ion velocity distribution at x=−0.62, showing the
counter and co-propagating populations of the trapped ions (region II).

For this problem, we would like to solve the ion kinetic equation, which in the 1-D
electrostatic case reads

∂f
∂t
+ v

∂f
∂x
−
∂φ

∂x
∂f
∂v
=C[ f ], (2.4)

where C is the collision operator. Since we consider the dynamics of a thin boundary
layer, we only need to focus on the highest-order derivative term – the diffusion. Later,
as we will introduce other phase-space coordinates, first-order derivatives will be
systematically neglected, which will be justified a posteriori. For simplicity, we will
also neglect the velocity dependence of the collision frequency. With these choices,
it is sufficient to replace C[ f ] by (ν∗/τ)∂vv, where the collisionality is assumed to
be small, ν∗� 1. We have chosen to define the collisionality, ν∗= ν(vi,th)λD/cs, using
the natural time normalization, λD/cs, and the collision frequency at the ion thermal
velocity, vi,th/cs = τ

−1/2. This choice is the reason for the factor 1/τ in our model
collision operator.

In our analytical model, we only consider the effects of collisions within the
narrow boundary layer around the separatrices. This treatment of collisions effectively
means that the collisionality between high-energy ions and the bulk is suppressed. We
point this fact out since the shocks will have structures that are widely separated in
velocity space, e.g. the incoming and the reflected ions. Consequently, any attempt at
simulating collisional shocks must be done with a collision operator which accurately
captures the diminishing collisional effect on particles with high relative velocities.
In practice, this comment applies to any simulation with a strongly super-thermal
population. We elaborate further on collisional simulations in appendix A, with a focus
on the Lenard–Bernstein model collision operator.

2.2. Perturbative, orbit-averaged solution to the kinetic equation
To solve (2.4), we employ a perturbative scheme in the ordering ν∗ � 1, and we
assume that all explicit time dependence in the frame of the shock is due to collisions.
As such, all dependencies on t vary on much slower time scales than that of ions
streaming past a few downstream oscillations. With f (x, v, t) perturbatively expanded
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as f = f0 + f1 + · · ·, where fk+1/fk is small in ν∗, the lowest-order equation becomes

v
∂f0

∂x
−
∂φ

∂x
∂f0

∂v
= 0, (2.5)

which recovers (2.1) used for the collisionless model. Analogously to the collisionless
model, the solution to (2.5) is given here by f0(x, v, t)= f0(E, t), again with E = v2/2+
φ. However, whereas the collisionless model was static and the energy dependence
was derived from a Maxwellian ion distribution with the addition of reflected ions,
the energy and time dependence of f0 is as yet undetermined; to obtain an equation
for that, we need to consider the next-order correction to the kinetic equation,

∂f0

∂t
+ v

∂f1

∂x
−
∂φ

∂x
∂f1

∂v
=
ν∗

τ

∂2f0

∂v2
. (2.6)

In analogy to gyrokinetics, a closed equation for f0 is obtained by taking an
appropriate orbit average of (2.6) that annihilates the f1 terms. We employ the
following orbit average

〈g〉E ≡
[∮

E
dθ
]−1 ∮

E
g dθ ≡

[∮
E

dx
v

]−1 ∮
E

g dx
v
, (2.7)

where the integrals are taken along constant E contours, over a bounce period for
trapped particles and over a full oscillation period of the downstream potential for
passing particles. For any g that is periodic in these domains, we find that〈

v
∂g
∂x
−
∂φ

∂x
∂g
∂v

〉
E
∝

∮
E

∂g
∂θ

dθ = 0. (2.8)

We have found from (2.5) that df0/dθ = 0 and we assume f1 to have the required
periodicity to make the f1 terms in (2.6) vanish upon orbit averaging, which gives

∂f0

∂t
≈
ν∗

τ
〈v2
〉E
∂2f0

∂E2
, (2.9)

where we have neglected all first-order derivative ∂E f0 terms against the second-order
derivative term, due to the sharp variation of f0 across the boundary layer, and used
that ∂EE f0 is θ -independent to pull it through the orbit average. We have hereby
obtained an equation with only f0, which can be used to solve for the energy and
time dependence of f0.

In order to explicitly evaluate 〈v2
〉E , we need to specify φ(x). Orbit averages defined

by (2.7) for an arbitrary φ(x) would not lead to closed form expressions. To find the
qualitative behaviour while keeping the problem analytically tractable, we assume a
simple harmonic oscillation of the downstream potential, which can be justified in the
low amplitude limit, where the downstream oscillations reduce to linear ion acoustic
oscillations. We thus write

φ(x)= φmin + φA sin2
(πx
λ

)
, (2.10)

where λ is the wavelength of the downstream oscillation, and φA = φmax − φmin with
φmax and φmin the maximum and minimum downstream values of φ, respectively.
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Note that while normally x = 0 denotes the location of the first potential maximum,
as in figure 1, when evaluating orbit averages we set x= 0 at a downstream potential
minimum.

We also introduce k=
√
(E − φmin)/φA, for which k< 1 in the trapped regions and

k > 1 outside. The integrals of the orbit average in the passing region can now be
evaluated to:∮

E
dθ =

1
√

2

∮
dx

√
E − φ(x)

=
2λ

√
2φAπk

∫ π/2

0

dy√
1− k−2 sin2 y

=

√
2λ

π
√
φAk

K(k−2),∮
E
v2 dθ =

√
2
∮ √

E − φ(x) dx

=
2
√

2φAkλ
π

∫ π/2

0

√
1− k−2 sin2 y dy=

2
√

2φAkλ
π

E(k−2),


(2.11)

where K and E denote the complete elliptic integrals of the first and second kind, y=
πx/λ, and we made use of the symmetry of the potential about the potential minimum.
Thus, we have

〈v2
〉E |k>1 = 2φAk2 E(k−2)

K(k−2)
. (2.12)

In the trapped region, the calculation is slightly more complicated, since the particle
does not sample the entire [−λ/2, +λ/2] region, only [−λE/2, +λE/2], where the
limits ±λE/2 depend on E . Introducing z such that k sin z= sin y, we find∮

E
dθ =

2
√

2

∫ λE/2
−λE/2

dx
√
E − φ(x)

=
2
√

2λ
√
φAπk

∫ π/2

0

dz√
1− k2 sin2 z

=
2
√

2λ
π
√
φA

K(k2),

∮
E
v2 dθ = 2

√
2
∫ λE/2
−λE/2

√
E − φ(x) dx=

4
√

2φAλ

π
[(k2
− 1)K(k2)+ E(k2)],


(2.13)

which yields

〈v2
〉E |k<1 = 2φA

[
E(k2)

K(k2)
− 1+ k2

]
. (2.14)

With the explicitly evaluated orbit averages, (2.12) and (2.14), we can now express
(2.9) as

∂f0

∂t
= 2

ν∗

τ
φAk2F(k2)

∂2f0

∂E2
, F(k)=


1
k2

[
E(k2)

K(k2)
+ k2
− 1
]

for k< 1,

E(k−2)

K(k−2)
for k > 1.

(2.15)

2.3. Transformation to a diffusion equation and solution
It is practical to rewrite (2.15) as a simple diffusion equation

∂f0

∂t
≈

ν∗

2φAτ
F(k)

∂2f0

∂k2
=

F(ε)
Υ 2

∂2f0

∂ε2
≈
∂2f0

∂w2
, (2.16)
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where the approximations made are that only second-order derivatives are kept. The
intermediary variable, ε= 1− k, is positive in the trapped region and negative outside,
and w is defined by

dw
dε
=

Υ
√

F(ε)
, w(ε = 0)= 0, Υ =

√
2φAτ/ν∗. (2.17)

Thus, the stretched variable w is defined to be order unity across the boundary layer,
while ε� 1. Henceforth, the zero subscript of f is dropped to streamline notation, as
f1 is unimportant to this order in ν∗.

We use the collisionless distribution function, (2.3), as both the initial condition for
this problem as well as the boundary condition on the separatrix between regions I
and II, assuming that the collisionality is low enough that the shock has time to form
on a much faster time scale. In region II, f is solved for using

∂f
∂t
=
∂2f
∂w2

, (2.18)

where we take the value of f I at the separatrix

F ≡ f I(v =−v0)=
1
Z

√
τ

2π
exp

[
−
τ

2

(√
2φmax −M

)2
]

(2.19)

as a boundary condition and v0=
√

2(φmax − φ) is the magnitude of the velocity at the
separatrix. We do this since region I is constantly replenished with new ions passing
from the upstream.

The solution to the diffusion equation (2.18) with the initial condition f (t= 0,w)=
Θ(−w), where Θ denotes the Heaviside step function, together with the boundary
conditions f (w→ −∞) = 1 and f (w→ +∞) = 0, is f (w, t) = (1/2)erfc[w/(2

√
t)],

where erfc is the complementary error function. This is easily shown employing the
Green’s function G(t, w − w′) = (4πt)−1/2 exp[−(w − w′)2/(4t)]. Noting that for this
f (w, t), f (w= 0)= 1/2 for all times, it is clear that f can also be considered as the
solution for the problem in the semi-infinite domain, where the boundary conditions
are f (w=0)=1/2, f (w→+∞)=0, and the initial condition is f (w>0, t=0)=0. The
boundary condition f (w= 0)= 1/2 can only be sustained by a net influx of particles
across the boundary. The particles streaming along the lower separatrix, coming from
the upstream and keeping f fixed in region I, represent a reservoir that provides this
time-dependent influx into region II (with the slight difference that the value of f at
the separatrix is F instead of 1/2). The time scale separation between the streaming
and the collisional processes guarantees that f is held fixed at the boundary, even
though there is a net outflux to region III, on top of the random walk of particles
away from the separatrix, deeper into II. The fact that, formally, w only has a finite
range in region II is not a concern, since this range is large for a small value of our
perturbation parameter ν∗, and erfc drops rapidly for an argument larger than unity.
Hence the solution is

f II,III
=Ferfc

(
±w
2
√

t

)
, (2.20)

where the sign of the argument in region II (III) is + (−). Note that there is some
ambiguity of f in region III, as it depends on the behaviour of f far downstream.
This solution assumes an infinite downstream oscillation, and as such, it represents an
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upper bound to the density contribution from region III. We will find that the actual
behaviour of f in region III has only a minor effect: f being finite in this region leads
to a slight reduction of φmax.

The resulting densities in regions II and III, due to (2.20), are

nII
= 2

∫ v0

0
f II(v) dv = 2F

√
2φA

∫ 1

κ

erfc
(

w(k)
2
√

t

)
k dk

√
k2 − κ2

,

nIII
=

∫
∞

1
f II(v) dv =F

√
2φA

∫
∞

1
erfc

(
−

w(k)
2
√

t

)
k dk

√
k2 − κ2

,

 (2.21)

where κ = κ(φ) =
√
(φ − φmin)/φA; in region II, we used that f is even in v. The

practical aspects of how these integrals are evaluated, along with further details on
the numerical implementation of the model, are discussed in appendix B. These
densities, together with the velocity integrals of f I and f IV (v from −∞ to −v0
and v0, respectively) given by (2.3), are used in Poisson’s equation (2.2) to calculate
the potential.

Since the ion distribution function implicitly depends on φmax and φmin, these need
to be calculated before Poisson’s equation can be integrated to obtain φ(x). This is
achieved by introducing the Sagdeev potential, Φ(φ; φmax, φmin), with the property
dΦ/dφ =−d2φ/dx2 (Tidman & Krall 1971). Thus,

Φu(φ; φmax, φmin)=

∫ φ

0
ρu(φ′; φmax, φmin) dφ′ (2.22)

in the upstream and

Φd(φ; φmax, φmin)=

∫ φ

φmax

ρd(φ′; φmax, φmin) dφ′ (2.23)

in the downstream region. Then the potential extrema can be found solving the system
Φu(φ = φmax; φmax, φmin) = 0 and Φd(φ = φmin; φmax, φmin) = 0 simultaneously. Note
that ρu and ρd are slightly different due to the reflected ions, which indeed makes
(2.22) and (2.23) two independent equations for the two unknowns φmax and φmin. This
completes the calculation of φ(x) for any given instance of time.

Before we start discussing the results, we revisit the practice of neglecting first-
order derivatives across the boundary layer. If the first-order energy derivative was
not neglected on the right-hand side of (2.9), we would get〈

∂2f0

∂v2

〉
E
= 〈v2

〉E
∂2f0

∂E2
+
∂f0

∂E
= 2φAk2F(k)

∂2f0

∂E2
+
∂f0

∂E
. (2.24)

The approximation to neglect the second term must break down in a certain vicinity
of the separatrix, since 〈v2

〉E vanishes at the separatrix. To estimate the size of this
region, we balance the sizes of the two terms

F(δε)
f0

(1E)2
∼

f0

1E
, (2.25)

where 1 refers to the size of the collisional boundary layer and δ to the size of the
layer where the approximation breaks down. The width of the collisional layer in ε
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is 1ε ∼
√

t/Υ ∼
√
ν∗t� 1, since the width in w is ∼

√
t, and although τ is usually

large, it is considered to be an order-unity quantity in our perturbation theory, as is φA.
Thus, we also have 1E = 2φAkδk∼

√
ν∗t. Using the asymptotic behaviour of F(ε)'

2/ ln(8/|ε|) for ε→ 0, equation (2.25) yields

−
1

ln(|δε|)
∼1E ∼

√
ν∗t. (2.26)

We therefore find that the layer where the approximation breaks down is exponentially
small

δε ∼ exp
(
−

1
√
ν∗t

)
�1ε, (2.27)

and the accumulated contributions to f0 form first-order derivatives are thus negligible.
As it is relevant to the present discussion, we note again that we have also neglected

another small boundary layer around the separatrix of a time-independent width in v
of ∼
√
ν∗� 1.

To avoid significantly increasing the mathematical complexity of the problem, in
deriving (2.9), we have also neglected the term 〈Ė∂E f0〉E = 〈∂tφ〉E∂E f0, stemming from
the coordinate transformation {x, v}→{θ,E}. Due to the

√
ν∗t time dependence of the

downstream potential oscillations – as we shall find in § 3 – this term is formally of
the same order as the collisional diffusion term that we keep. Physically, it describes
adiabatic trapping of ions as their trapping region grows in time, and it speeds up
the accumulation of ions in the trapping region. Although not changing the character
of the solution, and importantly the ∝

√
t dependence of the potential variation (as

confirmed by numerical solutions of the problem), it leads to a somewhat higher
effective diffusion rate. Accordingly, our results represent a lower bound on the effect
of collisions.

3. Results
The qualitative effect of the collisional diffusion of ions is the following: as the

collisional boundary layer widens around the phase-space separatrices with time, the
difference between the upstream and downstream densities decreases. Accordingly, the
downstream behaviour of the potential becomes increasingly similar to that of the
upstream, namely, the minimum of the potential φmin decreases, and the wavelength λ
increases. This behaviour is illustrated in figure 3, which shows the potential for three
different values of the collisional age, ν∗t. Unless the shock is terminated by some
other mechanism, this process would continue until the width of the collisional layer
becomes comparable to the ion thermal width, at which point the shock has developed
into a symmetric, soliton-like structure. This stage of the evolution corresponds to
ν∗t∼ 1; however, over that time scale, the assumption of neglecting collisional friction
as compared to diffusion has already broken down. The maximum of the potential
φmax is less affected; it only changes due to the distribution function becoming finite
in region III. Indeed, if f III would be set to zero, φmax would stay constant in time,
as it is only affected by the upstream distribution function.

The changes of both the potential maximum and minimum with collisional age are
both approximately proportional to

√
t, although the effect on φmax is usually an order

of magnitude smaller than that on φmin. This result is illustrated in the log–log plot
of figure 4(a), showing [φmax(0) − φmax(t)]/φmax(0) and [φmin(0) − φmin(t)]/φmax(0)
as functions of ν∗t, corresponding to the symbols q and s, respectively. The

√
t
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FIGURE 3. The variation of electrostatic potential over time due to collisions, for τ = 50,
M= 1.15. φ(x) is plotted for the collisional ages ν∗t= 0 (solid curve), 0.02 (dotted) and
0.2 (dashed).

(a) (b)

FIGURE 4. (a) Reduction in φmax/φmax(t = 0) (q, blue) and φmin/φmax(t = 0) (s, red)
with collisional age, for τ = 50, and M = 1.15. For reference, the ∝

√
ν∗t dependence

is indicated by the dashed line. (b) The M and τ dependence of 1− φmin(t)/φmin(t= 0)
at the collisional age ν∗t= 0.1.

dependence is expected, since the width of the boundary layer is ∼
√
ν∗t. However,

the actual dependence is slightly stronger than
√

t, and it is not strictly a power law,
due to the mapping of w to v, and the nonlinear nature of the problem.

The importance of the collisional effects can be quantified by the relative reduction
of φmin for a given finite collisional age. Figure 4(b) shows [φmin(0)−φmin(t)]/φmin(0)
at ν∗t= 0.1 as a function of M and τ . We have chosen the normalization such that
the solution would become soliton-like when this quantity would reach the value 1.
Naturally, the importance of the collisions depends on the size of the ion trapped
region at t = 0, and thus on the amplitude of the downstream potential oscillation,
characterized by φA. There is an upper limit in M for laminar electrostatic shock
solutions to exist, see e.g. figure 2 of Cairns et al. (2015), and that is the reason
for the upper left corner of figure 4(b) being empty. At this limit, φA reduces to zero;
therefore, the effect of collisions on φmin vanishes. Thus, the effectiveness of collisions
decreases with increasing M, as seen in figure 4(b). The effect of collisions mostly
increases with τ , for the same reason. Thus, for a fixed M, a higher τ corresponds
to a larger relative downstream oscillation.
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(a) (c)

(b) (d)

FIGURE 5. (a,b) Relative reduction of φmin with collisional age. (a) For τ = 50; M= 1.08
(square symbols), 1.15 (circles) and 1.33 (diamonds). (b) For M= 1.25; τ = 30 (squares),
50 (circles) and 100 (diamonds). For reference, the ∝

√
ν∗t dependence is indicated by

dashed lines. (c,d) Relative reduction of φmin (dashed line) and φmax (solid), at ν∗t= 0.1:
(c) M scan for τ = 50. (d) τ scan for M= 1.25.

The above parametric dependencies are analysed further in figure 5. We find that
the scaling of [φmin(0) − φmin(t)]/φmin(0) is close to the

√
ν∗t scaling observed for

intermediate values of M, as seen in figure 5(a). For high M, where the trapped
region of the collisionless solution is small, we find an overall stronger scaling.
For low M the scaling gets stronger at larger collisional ages when the effect
of collisions on the potential becomes order unity, and the downstream oscillation
becomes significantly non-sinusoidal. Besides showing the strong M dependence
of the collisional effects on φmin, figure 5(c) also illustrates that the effect on φmax
remains negligible for all M values. As seen in figure 5(b), getting further away
from the limit of shock existence – as τ increases – also leads to a scaling closer
to
√
ν∗t. We find that for lower values of τ , collisional effects on φmax increase, see

figure 5(d). However, the corresponding changes on the reflected ion fraction are still
weak, as discussed in appendix C.

4. Conclusions and discussion
We have studied the effect of a weak but finite collisionality on the dynamics

of kinetic electrostatic shocks in one dimension. The electrostatic reflection of ions
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results in the trapped and co-passing regions of ion phase space being empty in the
exact collisionless case. This depletion of certain phase-space regions corresponds to
a discontinuity in the distribution function across the separatrix. In the presence of
collisions, ions are scattered into the originally empty regions of phase space, leading
to the development of collisional boundary layers around the separatrix. To focus
on this process, we discuss only single ion species plasmas. We consider an initial
value problem, initialized by the solution to the collisionless problem, and employ a
perturbative, orbit-averaged treatment based on the smallness of the ion collisionality
ν∗ = νλD/cs.

One might be tempted to neglect collisions when ν∗� 1; however, since particles
keep accumulating in the ion trapped regions, the important quantity for the process is
not ν∗, but rather the collisional age, ν∗t. Even though ν∗� 1, the collisional age can
become substantial during the lifetime of the shock. Furthermore, as expected from
a diffusion problem, the width of the collisional boundary layer is approximately
proportional to

√
ν∗t. For the effect of collisions to be non-negligible, low ion

temperature and high electron density are required. Meanwhile, the collisional
effects depend only weakly on the electron temperature. For a reference point,
in a hydrogen plasma with Ti = 0.1 keV and ne = 1027 m−3, t ∼ 30 (in dimensional
time, 30λD/cs ∼ 0.7 ns) corresponds to an order unity ν∗t.

While the effect of collisions on the shock potential φmax is small, as the trapped
region gets populated by ions, the trapped regions become increasingly similar to
the reflected region close to the shock. Accordingly, the minimum value of the
downstream electrostatic potential, φmin, decreases towards the far upstream value
of φ, which is zero in our choice of gauge, and the wavelength of the downstream
oscillations increases. These effects can reach significant levels more rapidly when
the trapped region in the initial state is larger, corresponding to smaller values of
M and higher values of τ . When ν∗t becomes order unity, our mathematical model
breaks down, but it is expected that the solution becomes somewhat similar to a train
of solitary waves, each one becoming symmetric about its maximum.

We would also predict, from the rather weak effect collisions have on φmax and the
reflected ion population, that these types of shocks have the potential to be used as
relatively long time stable high-energy ion sources – compared to other laser time
scales. Even though the shock downstream might degenerate due to collisions, the
upstream stays rather unaffected, both in terms of number of reflected ions and their
energy.

In more than one spatial dimensions ion–ion modes, beam-Weibel and temperature
anisotropy driven Weibel instabilities can become unstable and represent limitations
on the lifetime of the shock; see Kato & Takabe (2010) and references therein.
Considering scenarios where such instabilities develop and interfere with the
collisional process considered here is outside the scope of our studies, but we
presume that interesting synergistic effects from the growing trapped regions in the
downstream and anisotropy driven instabilities may arise.

We have considered only the early development of electrostatic shocks under the
influence of collisions. Realizing the similarity between the transport in phase space
across trapped region and the transport around magnetic islands in a magnetic
confinement fusion device, the long time asymptotic collisional behaviour of
weakly collisional shocks could be studied employing methods similar to those
used by Hazeltine, Helander & Catto (1997). Another possibility to generalize the
semi-analytical model of this paper would be to allow for multiple ion species, where
collisional friction between the various species can become important (Turrell et al.
2015).
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Appendix A. Kinetic simulations, limitations of the Lenard–Bernstein operator
Here, we first consider the collisional boundary layer formation in initially

discontinuous distributions in kinetic simulations, then we discuss the limitations
of the Lenard–Bernstein operator in the presence of energetic populations.

The development of a collisional boundary layer at a discontinuity of the
distribution function was reproduced in simulations with the Vlasov–Maxwell solver
in the open-source framework Gkeyll3 (Juno et al. 2018). While the implementation
of a Fokker–Planck operator is ongoing, collisions are currently modelled through a
generalized Lenard–Bernstein collision operator (LBO) (Lenard & Bernstein 1958),
allowing a finite flow speed and inter-species collisions (with some restrictions to
avoid negative entropy production). Here we only use the ion–ion collision part of
the operator that, in one dimension, reads

CLBO[ f ] = ν∗
∂

∂v

[
(v − V)f + v2

th
∂f
∂v

]
, (A 1)

where V and vth represent the flow and thermal speed of f (the latter defined such
that it is

√
T/m for a Maxwellian).

We first consider the time evolution of a spatially homogeneous distribution that is
Maxwellian with no flow and unit thermal speed for v < 1, and 0 above. Note that
this truncation means that V < 0 and vth < 1 for this distribution. The simulation uses
2048 cells in velocity spanning [−4cs, 2cs], and a polynomial order of 2; the electrons
and the electric field were not evolved. The box is 1λD wide in configuration space,
with 16 cells and periodic boundary conditions.

The sharp drop in f is quickly smoothed out, as seen in figure 6(a), showing
f at four instances of time. In figure 6(b), the density of ions scattered above the
cutoff velocity, nscat. =

∫
∞

1 f dv, is plotted against the collisional age ν∗t. For very
low collisional age, the scattered density (blue dots) follows a

√
ν∗t behaviour (black

dotted line) very closely, but above ν∗t∼ 0.01 it starts to deviate, growing more slowly
than
√
ν∗t. This behaviour is well approximated by taking the integral n(0)scat.=

∫
∞

1 f0 dv,
where

f0 =
1
√

2π
exp

(
−
v2

2

)
1
2

erfc
(

v − 1
2vth
√
ν∗t

)
, (A 2)

which is plotted in the figure with red solid line. At later times, as the collisional drag
becomes comparable with diffusion, the distribution will eventually evolve towards a

3https://gkeyll.rtfd.io/ (accessed: 2018-08-29).
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(b)(a)

FIGURE 6. (a) Simulated distribution function near a sharp cutoff, in an otherwise
Maxwellian ion distribution, at collisional ages ν∗t = 0 (black line), 10−3 (blue dotted),
10−2 (green dash-dotted) and 10−1 (red dashed). (b) The time evolution of the density
of the ions which have been scattered out above the cutoff, simulated value (blue dots)
compared to a theoretical estimate assuming only diffusion (red solid line), and the early
time asymptotic behaviour ∝

√
t (black dotted).

new Maxwellian characterized by V and vth. However, the good agreement with the
theoretical estimate based on assuming a pure diffusion suggests that neglecting drag
is reasonable, even up to a collisional age of ∼0.1.

The Lenard–Bernstein operator (LBO) (Lenard & Bernstein 1958) is often employed
as a simple collision model that captures both collisional diffusion and drag, and
importantly, because it is meaningful in one velocity dimension. By construction, the
LBO has a velocity independent collision frequency, which drives the distribution
towards a Maxwellian with density, flow speed and temperature determined by the
first three velocity moments of the original distribution function. This construction is
to ensure the conservation of particles, momentum and energy. However, the LBO
is not well suited for situations when the distribution has a significant super-thermal
population, as in our case.

The main contributor to the unphysical behaviour of the LBO is the large effect
super-thermal structures can have on the moments of the distribution, especially on v2

th.
Take, for instance, the collisional interaction between a high-energy beam and a bulk
plasma – a situation which we have in the shock upstream. In reality (as in the
Fokker–Planck operator), the collisionality between the particles in the beam and the
bulk would decrease as v−2, which would mean that the collisional interaction between
the beam and bulk would be virtually non-existent. However, the LBO has no such
features, and the high energy of the beam significantly skews the energy and velocity
moments; there will also be an artificially high drag due to the linear increase of the
friction term. Consequently, the bulk plasma will also be noticeably affected, even
when the beam only constitutes a very low fraction of the total density. In the case
of our shock simulations, the reflected ions only made up approximately 1 % of the
upstream plasma, but the artificially high collisional effects still render the simulation
unusable for testing our analytical model.

To illustrate this problem, we have performed collisional simulations of shocks in
Gkeyll, using the LBO. The shock simulations were initiated with the collisionless
shock ion distribution function. The initial condition was constructed by calculating
φ(x) from our semi-analytical model, which was then used to initialize the ion
distribution function according to (2.3) in regions I and IV. Above the separatrix,
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(a) (c)

(b) (d)

FIGURE 7. (a–d) Ion distribution functions at different stages of numerical simulations
of shocks with M = 1.3 and τ = 200. (a) All simulations were initialized with the
collisionless ion distribution function calculated from the analytical model. (b) The
time-evolved distribution function with no collisions. This shows that the shock is
static, as is required in the model. (c,d) The time-evolved distribution function with
the Lenard–Bernstein collision operator (LBO) acting on it. The unphysical collisional
interaction between the high-energy reflected ions and the incoming bulk quickly destroys
the shock structure.

a rapid Gaussian cutoff was employed,

f (v >±v0)= f I,IV(±v0) exp
[
−10

(v ∓ v0)
2

δv2

]
, (A 3)

where δv is the simulation velocity grid size. This gradual cutoff at the separatrix
makes the simulation discretization smoother, and thus also results in smoother
simulation results. Furthermore, the electrons were initialized to be Maxwell–
Boltzmann distributed with a flow velocity −M, and the initial electric field was
simply taken as −dφ/dx. The simulations are done in the shock frame, with 640
cells in configuration space covering x= [−29, 20]λD and employ perfectly matched
layer boundary conditions. The velocity space covers v= [−3.5, 3.5]cs with 512 cells
for ions, and v = [−5, 5]ve = [−214, 214]cs with 256 cells for electrons, with the
physical electron-to-proton mass ratio. A zero flux boundary condition is used in
velocity. The polynomial order is 2.

In figure 7, we show the resulting ion distribution functions at various simulation
times (measured in λD/cs) after the time evolution in Gkeyll, both with (c,d) and
without (b) collisions in the simulation. The initial ion distribution function for both
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simulation runs is shown in figure 7(a). From figure 7(b), we see that the shock is
indeed static, as was expected and required by our semi-analytical model. The time
evolution to t = 20, figure 7(b), required ∼30 000 simulation time steps. This result
demonstrates that the initial condition is faithfully imported and shows the numerical
stability of the code.

However, the collisional simulation of the shock in figure 7(c,d) is clearly not static,
and the collisional effects evolve at rates much faster than would have been expected
from the relatively low collisionality of ν∗ = 0.01. We see that the collisional effects
mostly originate upstream (x> 0) of the shock (c), and then they eventually propagate
downstream of the shock (d). This result is precisely the expected behaviour of the
LBO in a scenario with a high-energy beam interacting with the bulk plasma: the bulk
heats up at an unphysical rate due to collisions with the high-energy beam.

Since the LBO is relatively simple, it is often the first choice of model collision
operator to be implemented in a kinetic Eulerian simulation code. In some circum-
stances, where f remains close to a Maxwellian, the above discussed artefacts of LBO
will not arise. We would, however, point out the risk of using the LBO in simulations
with more complex systems: distributions which are strongly non-Maxwellian and/or
have high-energy structures will experience unphysical collisional effects due to
artificially strong collisionality between particles with a large velocity separation.

Appendix B. Numerical implementation of the analytical model
The solution for f , equation (2.20), is given in terms of w, while the densities are

more conveniently written in terms of k, equation (2.21). Thus w(k), or in practice
w(ε), needs to be evaluated. Note that the direct numerical integration of the equation
that relates them, equation (2.17), is problematic, since dw/dε is divergent at ε = 0.
For an accurate evaluation of w(ε), the numerical integration of (2.17) can be started
at some finite ε, where w is given by its small ε asymptotic value

w(ε)
Υ
=

ε
√

2

√
ln
(

8
|ε|

)
± 2
√

2π erfc

[√
ln
(

8
|ε|

)]
as ε→ 0±. (B 1)

For a less accurate but significantly faster evaluation of w(ε), we use an
approximation function4 ŵ(ε) that is defined in the following way. It takes the
asymptotic value (B 1) for 0< ε 6 0.1, then for 0.1< ε 6 1 it is given by

ŵ(ε)
Υ
=
√

2(ε − 1)−

√
2

48
(1− ε3)+C+, (B 2)

which is obtained by integrating the k→ 0 asymptote

1
Υ

dw
dε
'
√

2
(

1+
k2

16

)
, (B 3)

and setting the constant of integration C+ = 1.4756 by the numerically determined
value of w(ε = 1). For negative values of ε we use (B 1) for −0.5 6 ε < 0, and for
ε 6−2 we take

ŵ(ε)
Υ
= ε +C−, (B 4)

where in the ε → −∞ limit, Υ −1dw/dε ' 1 is integrated, and C− = −0.3310 is
determined by evaluating w(ε) at some sufficiently large negative value of ε, namely

4The scripts with these numerical implementations, together with the other numerical tools developed for
this paper, are freely available at https://github.com/andsunds/ShockLib as open-source.
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FIGURE 8. Approximate boundaries of the parameter regions where collisions qualitatively
affect the dynamics of shocks. Below the lines ν∗ > 0.01, thus for shocks which live
100λD/cs the cumulative effect of collisions becomes order unity. Baseline parameters
(corresponding to solid line): Z= 1, τ = 100. Dashed: Z= 2, long dashed: Z= 10, dotted:
τ = 1000, small dotted: τ = 10.

w(ε=−50)/Υ =−50.3310. For the region −26 ε <−0.5 a linear curve matching to
the two asymptotes is used. The relative error |ŵ/w− 1| of the above approximation
stays below 5 % and it is asymptotically correct in the most important limit |ε|→ 0.

Appendix C. Parameter region for relevance and reflected ion fraction
The importance of the fact that collisions act to populate ion trapped regions is that

the effect of collisions accumulates with time. Therefore, even when ν∗�1 – tempting
one to neglect collisions – if the lifetime of the shock corresponds to an order-unity
collisional age, the shock will be significantly affected. As a rough estimate for when
collisions are relevant, in figure 8 we plot ν∗ = 0.01 curves in the ne–Ti parameter
space for various values of τ and Z, which corresponds to ν∗t = 1 for a reasonable
shock lifetime of ∼100λD/cs. The Te dependences of λD and cs cancel, so only a
very weak Te dependence remains (see the dotted curves) due to that of the Coulomb
logarithm. Also, the mi dependences of νii and cs cancel, so it does not matter whether
the charge-to-mass ratio is hydrogen or deuterium like. As expected, there is a rather
strong dependence on Z, which is relevant for non-hydrogen targets. For a concrete
example, in a hydrogen plasma with the parameters ne = 1027 m−3, Ti = 100 eV and
Te = 1 MeV, a case with relevance to ion acceleration that was considered by Fiuza
et al. (2013), ν∗t becomes 1 at time 31λD/cs∼ 0.7 ns, that is shorter than the lifetime
of the shock.

While ν∗t � 1, and so our model is valid, the shock properties do not change
qualitatively, so the effect of collisions on φmax is rather weak. The reflected ion
fraction is

α =

∫ v0

0
f (v, φ = 0) dv∫ 0

∞

f (v, φ = 0) dv
=

erf
[√

τ

2
M
]
+ erf

[√
τ

2

(√
2φmax −M

)]
1+ erf

[√
τ

2
M
] , (C 1)
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(a) (b)

FIGURE 9. (a) Reflected ion fraction plotted as log10 α(t= 0), as a function of τ and M.
(b) Relative reduction in the reflected ion fraction for a collisional age of ν∗t= 0.1.

where f is the upstream distribution and erf denotes the error function. For τ� 1, this
result reduces to

α ≈
1
2

erfc
[√

τ

2
M(1−

√
F)
]
, (C 2)

where F = 2φmax/M2 and it takes values close to 1 for most cases of interest, as
discussed by Pusztai et al. (2018).

We find that α increases strongly with M – as seen in figure 9(a) – since φmax
increases more strongly than M2, corresponding to higher values of F. In turn, α
is exponentially sensitive to F. We have found that φmax is reduced by collisions, and
we might expect that the exponential sensitivity to φmax can lead to significant changes
in α. However, the reduction in φmax is so weak that even for a collisional age of ν∗t=
0.1, the maximum relative reduction in α is below 15 % in the region of parameter
space shown in figure 9(b). This effect is even weaker for higher τ , which is more
relevant for ion acceleration experiments.
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