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Recurring financial instabilities have led policymakers to rely on early-warning models to
signal financial vulnerabilities. These models rely on ex-post optimization of signaling
thresholds on crisis probabilities accounting for preferences between forecast errors, but
come with the crucial drawback of unstable thresholds in recursive estimations. We
propose two alternatives for threshold setting with similar or better out-of-sample
performance: (i) including preferences in the estimation itself and (ii) setting thresholds
ex-ante according to preferences only. Given probabilistic model output, it is intuitive that
a decision rule is independent of the data or model specification, as thresholds on
probabilities represent a willingness to issue a false alarm vis-à-vis missing a crisis. We
provide real-world and simulation evidence that this simplification results in stable
thresholds, while keeping or improving on out-of-sample performance. Our solution is
not restricted to binary-choice models, but directly transferable to the signaling approach
and all probabilistic early-warning models.

Keywords: Early-Warning Models, Loss Functions, Threshold Setting, Predictive
Performance

1. INTRODUCTION

The recent financial crisis has stimulated research on early-warning models.
These models signal macro-financial risks and guide macroprudential policy to
mitigate real implications of an impending crisis. Early-warning models mostly
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involve two parts: (i) an estimated measure of crisis vulnerability and (ii) a
threshold transforming these measures into binary signals for policy recommen-
dation. The currently predominant approach separates the two parts and optimizes
thresholds ex-post. This ignores estimation uncertainty, provides time-varying
thresholds, and results in suboptimal policy guidance out-of-sample. We pro-
pose two alternatives that avoid these problems: within-estimation and ex-ante
threshold setting.

The first part of an early-warning model is the estimation method. The two
dominating approaches for this are binary-choice methods and the signaling
approach. Binary-choice analysis (like probit or logit models) was already applied
by Frankel and Rose (1996) and Berg and Pattillo (1999) to exchange-rate
pressure, and has more recently been the predominant approach [Lo Duca and
Peltonen (2013) and Betz et al. (2014)]. The signaling approach is simpler in that
it only monitors univariate indicators vis-à-vis thresholds. It originally descends
from Kaminsky and Reinhart (1999), but has also been common in past years
[Alessi and Detken (2011) and Knedlik and von Schweinitz (2012)]. The second
part of an early-warning model concerns the setting of thresholds that trans-
form probabilities (univariate indicators for the signaling approach) into signals.
This transformation is based upon loss functions tailored to the preferences of
a decision-maker.1 These loss functions rely on the notion of a policymaker
facing costs for missing crises (type-1 errors) and issuing false alarms (type-2
errors). Different versions of a loss function have, for example, been introduced
by Demirgüç-Kunt and Detragiache (2000), Alessi and Detken (2011), and Sarlin
(2013).

Common practice implies an estimation of a binary-choice model and an
ex-post optimization of the threshold within a loss function given predefined pref-
erences for type-1 and type-2 errors. This approach implies several economic and
econometric drawbacks. Viewing the problem from an econometric perspective,
it ignores uncertainty about the true data-generating process (DGP). Thus, opti-
mized thresholds falsely react to and vary with probability estimates. They find
signal in noise by exhibiting an in-sample overfit and (more often than not) an
out-of-sample underfit. Accordingly, as optimized thresholds react to probability
estimates, new observations and increased knowledge about the true DGP lead
to unwarranted time variation in thresholds. For policy purposes, this is problem-
atic as the rationale for policy implementation needs to descend from changes in
vulnerability rather than changing thresholds.

This paper postulates that early-warning models should abstain from threshold
optimization. Instead, we present two alternatives to the currently predominant
approach for threshold setting: within-estimation and ex-ante threshold setting.
The first alternative relies on a weighted binary-choice model, where the weights
are given by the above-mentioned preferences. In the case of the loss function of
Sarlin (2013) (our preferred loss function, see the next section for a more detailed
description), weights are given by preferences. If a large preference is given to
correctly signaling crises, these observations will receive a large weight in the
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102 PETER SARLIN AND GREGOR VON SCHWEINITZ

TABLE 1. Optimization approaches at a glance

Current approach Alternative 1 Alternative 2

Estimation method Binary choice Weighted binary choice Binary choice

Loss function Sarlin (2013)

Preference parameter μ μ μ

Observation weights μ/1 − μ

Threshold λ∗ minimizes loss 0.5 λinf = 1 − μ

function in sample

Loss function Alessi and Detken (2011)

Preference parameter θ θ θ

Observation weights θ

P1
/ 1−θ

P2

Threshold λ∗ minimizes loss 0.5 λinf = (1−θ)P1
(1−θ)P1+θP2

function in sample

Note: Preference parameters μ, θ ∈ [0, 1] relate to the weights of different errors. P1 denotes the share of precrisis
periods, while P2 represents the probability of tranquil periods (P1 + P2 = 1).

estimation. The estimation shifts fitted values in a way that an invariant threshold
of 50% can now be employed to transform probabilistic into binary forecasts. The
second alternative is based on the usual binary-choice model, but sets probability
thresholds ex-ante according to preferences. It can be proven that this is the long-
run optimal threshold independently of the DGP. Given an unbiased probabilistic
model, it is intuitive that a decision rule is independent of the exact data or model
specification. By way of a simple example, the decision of signaling for probabili-
ties above 20% indicates a willingness to issue a false alarm (80%) vis-à-vis miss-
ing a crisis (20%). In terms of preferences, this means that the ex-ante optimized
threshold for a preference parameter μ (equal to 0.8 in the above example) is set
at a value of 1 − μ for the loss function of Sarlin (2013). Table 1 reports the three
alternative approaches to selection for two different loss functions at a glance.

The alternative approaches have three benefits. First, even in recursive estima-
tions they assure a stable threshold, because thresholds only depend on prefer-
ences which are exogenous to the model. With preferences and thresholds being
exogenous, time-varying policy guidance only depends on time-varying macro-
financial vulnerability. Second, we show that within-estimation and ex-ante
threshold setting on average improves out-of-sample predictive power. We can
show that threshold optimization does not account for estimation uncertainty.
Thus, it introduces a positive bias of in-sample performance, and has on average a
negative effect on out-of-sample performance.2 Third, ex-ante threshold selection
simplifies the process, as the second optimization step of the traditional approach
is left out.

These benefits, and the underlying critique, can easily be extended to more
general settings. First, the critique is not restricted to the specific loss functions
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analyzed in this paper, but applies to any loss or usefulness function optimiza-
tion that ignores estimation uncertainty. In general, using different loss functions
does not alleviate the described problem. Second, the critique extends to the
signaling approach that consists solely of the optimization step. However, the
equivalence of the signaling approach to a univariate probit model implies that
our proposed solutions equally apply. Third, the proposed alternatives extend to
methods beyond binary-choice models: accounting for preferences within esti-
mation is directly transferable to all methods used in the early-warning literature,
while ex-ante threshold setting is valid for any model yielding unbiased crisis
probabilities.

We provide two-fold evidence for our claims concerning threshold stability and
model performance. First, we make use of two real-world cases to illustrate both
threshold stability and in-sample versus out-of-sample performance for the three
approaches. Specifically, we replicate the early-warning model for currency crises
in Berg and Pattillo (1999) and the early-warning model for systemic financial
crises in Lo Duca and Peltonen (2013). Second, we run simulations with differ-
ent DGP to illustrate the superiority of weighted maximum-likelihood estimation
and ex-ante thresholds vis-à-vis ex-post optimization of thresholds on data with
known patterns. All exercises are performed for the loss functions of Alessi and
Detken (2011) and Sarlin (2013).

The paper is structured as follows. The next section presents the methods,
followed by a discussion of our experiments on real-world data in the third sec-
tion and our exercises on simulated data in the fourth section. The last section
concludes.

2. ESTIMATING AND EVALUATING EARLY-WARNING MODELS

This section presents the three methods analyzed in this paper, namely the cur-
rently used approach to derive an early-warning model as well as two alternatives.
All three methods consist of two elements: the estimation of a binary-choice
model and the setting of a probability threshold for the classification into signals.
These two elements will be described together with the current approach in the
first subsection, while the following subsections introduce the two alternatives.

In all cases, the binary event to be explained is a precrisis variable C(h). The
precrisis variable C(h) is set to one in the h periods before a crisis, and zero in
all other, so-called tranquil, periods.3 That is, Cj(h) = 1 signifies that a crisis is to
happen in any of the h periods after observation j ∈ {1, 2, . . . , N}, while Cj(h) = 0
indicates that all h subsequent periods are classified as tranquil.

2.1. Binary-Choice Models and Ex-post Thresholds

Estimation. Binary-choice models (logit or probit models) have been the most
important methods in the early-warning literature [Frankel and Rose (1996),
Kumar et al. (2003), Fuertes and Kalotychou (2007), and Davis and Karim (2008),
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TABLE 2. A contingency matrix

Actual class Cj

Precrisis period Tranquil period

Predicted class Sj

Signal
Correct call False alarm

True positive (TP) False positive (FP)
Rel. cost: 0 Rel. cost: 1 − μ

No signal
Missed crisis Correct silence

False negative (FN) True negative (TN)
Rel. cost: μ Rel. cost: 0

see among many others]. In a standard binary-choice model, it is assumed that the
event Cj(h) is driven by a latent variable

y∗
j = Xjβ + ε

Cj(h) =
{

1, if y∗
j > 0

0, otherwise.

Under the assumption ε ∼N (0, 1), this leads to the probit log-likelihood
function

LL(C(h)|β, X) =
N∑

j=1

1Cj(h)=1 ln(�(Xjβ)) + 1Cj(h)=0 ln(1 − �(Xjβ)),

which is maximized with respect to β. If we assume a logistic distribution of
errors, the likelihood function changes only with respect to a distribution function
F, which is logistic instead of normal.
Threshold setting. The model returns probability forecasts pj = P( y∗

j > 0) for the
occurrence of a crisis. While the level of crisis probabilities is of interest, a pol-
icymaker is mainly concerned with whether the probability ought to trigger (or
signal) preventive policy measures. Thus, estimated event probabilities pj are
turned into binary point predictions Sj by assigning the value of one if pj exceeds
a threshold λ ∈ [0, 1] and zero otherwise. The resulting predictions Sj and the
true precrisis variable Cj(h) can be presented in a 2 × 2 contingency matrix (see
Table 2). Based upon the threshold λ, the contingency matrix allows us to compute
a number of common summarizing measures, such as unconditional probabilities
P1 and P2, and type-1 and 2 error rates T1 and T2.4 It should be noted that all
entries of the contingency matrix, and hence all measures based upon its entries,
depend on the threshold λ.

An intuitive threshold would be 50%. However, as crises are (luckily) scarce
and (sadly) often very costly, one would usually choose a threshold below 50% in
order to balance the frequency and costs of the two types of errors.5 The entries
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of the contingency matrix, as well as error rates, can be used to define a large
palette of loss functions to optimize the threshold λ. Three components define
these measures: unconditional probabilities, type-1 and -2 error rates, and error
preferences. We mainly use the the loss and usefulness measures defined in Sarlin
(2013): To set policymakers’ preferences of individual errors in relative terms
(including economic and political costs, among others), falsely predicted events
(FP) get a weight of μ ∈ [0, 1], missed events (FN) a weight of 1 − μ. That is, we
assume that the cost of falsely predicting a crisis is μ, the cost of missing a crisis
is 1 − μ, while correct predictions incur zero costs to the policymaker (see also
Table 2). Accordingly, the preference parameter μ is a free parameter that should
in practice be set ex-ante by the policymaker. In practice, it is often chosen around
the share of tranquil periods P2 (around 80% in most samples).

From the three components (classification threshold λ and error rates, pref-
erence parameter μ, share of precrisis and tranquil periods), three equivalent
measures are derived. The first is a loss function L(μ) of preference-weighted
errors, the second is absolute usefulness Ua(μ) that relates the loss of the model
to disregarding the model altogether, and the third is a scaled relative usefulness
Ur(μ) that relates absolute usefulness to the maximal achievable usefulness:

L(μ) = μP1T1 + (1 − μ)P2T2 = μFN/N + (1 − μ)FP/N.

Ua(μ) = min(μP1, (1 − μ)P2) − L(μ).

Ur(μ) = Ua(μ)

min(μP1, (1 − μ)P2)
.

The relation between these three measures is strictly monotonic in thresholds:
suppose the threshold λ is decreased. There will be more false positives and less
false negatives. Suppose further that the change in classification errors is such
that the loss function increases. Then, absolute and relative usefulness decrease,
because the first summation term of the absolute loss function and the denomi-
nator of the absolute loss function (min(μP1, (1 − μ)P2)) is strictly positive and
independent of thresholds. When interpreting models, we can hence focus mainly
on Ur. The current approach in early-warning modeling chooses the threshold
that optimizes the three measures (loss function, absolute and relative usefulness)
simultaneously based on the results of the probabilistic model. We call this the
optimized threshold λ∗.

While the optimized threshold λ∗ produces the best in-sample fit given prefer-
ences μ, it has two undesirable properties. First, it is not an analytical function of
the preferences, but also depends on the realization of the DGP. Thus, if new data
are added to the sample, the optimized threshold will most likely change. This is
extremely relevant in practice, where the early-warning model is estimated recur-
sively over time, re-optimizing the threshold with every new estimation. Second,
good in-sample performance is not necessarily a sign of good out-of-sample per-
formance. In principle, the best out-of-sample performance would be achieved
by the threshold that maximizes usefulness out-of-sample. Thus, the optimized
threshold λ∗ may prove to be suboptimal out-of-sample.
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Alternative specifications: The loss function of Alessi and Detken (2011) is
conceptually close, but preferences θ apply to type-1 and type-2 error rates instead
of shares of all observations: LAD(θ ) = θT1 + (1 − θ )T2.6 In practice, values of θ

around 0.5 have received most attention. That is, the loss function of Alessi and
Detken (2011) measures error relative to the class in which they can occur (false
positives can only occur in tranquil periods). The loss function of Sarlin (2013)—
by taking errors as share of all observations—rather takes an observation-specific
mindset. However, if we set θ = μP1

μP1+(1−μ)P2
, then the loss function of Alessi and

Detken (2011) becomes

LAD(θ ) = LAD

(
μP1

μP1 + (1 − μ)P2

)
= μP1T1 + (1 − μ)P2T2

μP1 + (1 − μ)P2

= 1

μP1 + (1 − μ)P2
L(μ).

That is, the two loss functions are equal (up to a factor). The correspondence
between the preference parameters μ and θ has several consequences. First, it has
to be noted that the factor 1

μP1+(1−μ)P2
does not depend on model output and thus

also not on the threshold. Thus, if θ and μ are set correspondingly, they result in
an identical threshold λ (independent of the approach taken to set λ). That is, all
results reported in later sections equally apply to both preference settings. Second,
to assure that costs of individual (i.e., observation-specific) errors are reflected by
preferences, θ should vary with the probability of the two classes P1 and P2. In
recursive estimations, θ should thus be time-varying.

An alternative to binary-choice models in the early-warning literature is the
signaling approach [Kaminsky and Reinhart (1999)]. It derives predictions from
applying a threshold directly on indicator values, and proceeds with calculating
the contingency matrix and a usefulness measure as described above. The large
appeal it has for policymakers is due to the direct interpretability of the results
and the low data requirements. It is straightforward to show that the signaling
approach can be directly mapped to a univariate binary-choice model. In a uni-
variate binary-choice model (with a positive parameter β), higher indicator values
are associated with higher probabilities. Therefore, it makes conceptually no dif-
ference if a threshold is searched and set on indicator values or probabilities from
the associated univariate binary-choice model. Thus, all results presented in this
paper extend to the signaling approach as well.

2.2. Alternative 1: Thresholds Within Binary-Choice Models

Instead of using preferences μ to optimize thresholds, one could also include
preferences as class weights in the log-likelihood function of the binary-choice
model [King and Zeng (2001)]. Thus, precrisis observations in the estimation
sample will receive a higher weight in the likelihood if the policymaker aims at
avoiding false negatives. The log-likelihood function of the weighted probit model
is the following:
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LL(C(h)|β, X, w) =
N∑

j=1

1Cj(h)=1w1 ln(�(Xjβ)) + 1Cj(h)=0w2 ln(1 − �(Xjβ)).

For the usefulness function of Sarlin (2013), we set w1 = μ and w2 = 1 − μ.7

In the case of Alessi and Detken (2011), we use weights w1 = θ/P1 and w2 =
(1 − θ )/P2.

Class-specific weights have previously been used for other purposes in binary-
choice models. Manski and Lerman (1977) and Prentice and Pyke (1979) use
them to adjust for non-representativeness of an estimation sample in cases where
an average effect for the whole population is of interest. In other disciplines,
(penalized) weights are one possibility to avoid an estimation bias in severely
unbalanced samples with an absolute low number of events [Oommen et al.
(2011) and Maalouf and Siddiqi (2014)]. All of these strategies share the same
conceptual goal with our proposal. The imbalance introduced in our sample is
due to the differences in preferences, that is, different weights of type-1 and type-
2 errors in the loss function, and is thus independent of class frequencies. Setting
weights according to preferences accounts for the imbalance of errors in the loss
function.

This function can be maximized just as easily as the standard binary-choice
model. However, the resulting fitted values should be interpreted as preference-
adjusted probabilities. The appealing feature of the weighted binary-choice model
is that optimizing a probability threshold ex-post is not necessary anymore.
Instead, the intuitive threshold of λw = 50% already accounts for all policy pref-
erences captured in μ (or θ ). This provides a means to replace ex-post threshold
optimization in both multivariate binary-choice and univariate signaling exercises.

An advantage of this approach is the possible extension to full observation-
specific weights. In a cross-country study, one could argue that the potential loss
of an error depends not only on the type of error, but also on the (time-varying)
size of the affected economy [see Sarlin (2013)]. A second advantage is that this
extension can be applied to all methods that employ maximum-likelihood estima-
tion. Yet, weighted binary-choice models come at the disadvantage that different
preferences have a direct impact on first-stage estimation results. Thus, when the
early-warning model is used with a set of different preferences, the outcome does
not only differ in the contingency matrix, but also in different probability and
parameter estimates. Moreover, in the case of the loss function of Alessi and
Detken (2011) the dependence of class weights on class probabilities P1 and
P2 may prove to be problematic as weights will in general not be constant in a
real-time recursive estimation.

2.3. Alternative 2: Ex-ante Thresholds in Binary-Choice Models

Our final approach proposes setting the threshold before estimating the model.
The choice of the long-run optimal threshold is based on an argument already put
forward by classical decision theory in the vein of the seminal contributions by
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FIGURE 1. Type-1 and type-2 error shares at different event probabilities.

Wald (1950). First, we note that the selection of a threshold is a decision rule.
If the (estimated) probability is above the threshold, a signal is given, guiding
policy towards action. For probabilities below the threshold, no signal is given.
Savage (1951) shows that the optimal decision rule only depends on the costs of
different outcomes in the contingency matrix. Thus, a threshold λ can be derived
independently of the DGP. Instead, λ should be set at a probability of vulnerability
such that a policymaker is in expectation indifferent between a signal and no
signal. A classic example is the decision whether or not to carry an umbrella:
carrying an umbrella incurs a cost, as does standing in the rain unprotected. Thus,
a person would always decide to take an umbrella with her if the cost of carrying
one are lower than the expected disutility of being caught in the rain.

We call the threshold given by this optimal decision rule the long-run optimal
threshold λ∞. As correct signals have no costs, policymakers should choose a
probability threshold which equalizes total costs from false negatives and false
positives. The online appendix provides a mathematical derivation of λ∞ for the
usefulness functions of Alessi and Detken (2011) and Sarlin (2013). It is shown
that policymakers are indifferent between a signal and no signal at a threshold of

λ∞ =
{

1 − μ, for the loss function of Sarlin (2013)
(1−θ)P1

(1−θ)P1+θP2
, for the loss function of Alessi and Detken (2011).

(1)

In general, higher costs of missed events (i.e., a higher μ or higher θ ) will
lower the long-run optimal threshold, increasing the frequency of false alarms
and reducing the frequency of missed events.

The intuition for setting λ∞ = 1 − μ in the case of Sarlin (2013) is the follow-
ing: For every possible threshold λ, the share of false negatives and false positives
is just the integral over the respective areas in Figure 1. Let’s assume for the
sake of the argument, that observations are equally distributed. Then the share of
false negatives would be

∫ λ

0 pdp = λ2/2, and the share of false positives would

be
∫ 1
λ

(1 − p)dp = (1 − λ)2/2. Minimizing the loss function over λ now returns
λ∞ = 1 − μ.
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The long-run optimal thresholds λ∞ for the loss function of Alessi and Detken
(2011) depends not only on policymakers preferences, but also on the frequency
of classes P1 and P2. The reason is again that the loss function depends on error
rates. In practice, class frequencies have to be estimated. Thus, long-run optimal
thresholds in recursive estimations will vary with these estimates.

3. REAL-WORLD EVIDENCE OF THRESHOLD SETTING

This section illustrates early-warning modeling and threshold setting with two
real-world examples. With these exercises, we in particular focus on illustrating
challenges with threshold stability when modeling over time. We test the three
different approaches for deriving early-warning models and thresholds: (i) binary-
choice models with optimized thresholds, (ii) weighted binary-choice models, and
(iii) binary-choice models with pre-set thresholds. We show that in addition to
unstable thresholds, out-of-sample utility with optimized thresholds is on average
lower than in our two alternative approaches.

3.1. Two Datasets

We replicate the (logit) early-warning model for systemic financial crises by
Lo Duca and Peltonen (2013) and the (probit) early-warning model for currency
crises by Berg and Pattillo (1999).

The first model is the logit model of systemic financial crises of Lo Duca and
Peltonen (2013) (referred to as LDP). The dataset includes quarterly data for
28 countries, 18 emerging market and 10 advanced economies, for the period
1990Q1–2010Q4 (a total of 1729 observations). The crisis definition uses a
Financial Stress Index (FSI) with five components: the spread of the 3-month
interbank rate over the 3-month government bill rate, quarterly equity returns,
equity index volatility, exchange-rate volatility, and volatility of the yield on the
3-month government bill. Following LDP, a crisis is defined to occur if the FSI
of an economy exceeds its country-specific 90th percentile. That threshold on the
FSI defines 10% of the quarters to be systemic events. It is derived such that the
events led, on average, to negative consequences for the real economy. To enable
policy actions for avoiding a further build-up of vulnerabilities, the focus is on
identifying precrisis periods with a forecast horizon of six quarters. This goal
is achieved by employing 14 macro-financial indicators that proxy for a large
variety of sources of vulnerability, such as asset price developments, asset valu-
ations, credit developments and leverage, as well as traditional macroeconomic
measures, such as GDP growth and current account imbalances. The variables
are used both on a domestic and a global level, where the latter is an average
of data for the Euro area, Japan, UK, and USA. The dataset is divided into two
partitions: in-sample data (1990Q4–2005Q1) and out-of-sample data (2005Q2–
2009Q2, out of which LDP use only data until 2007Q2 for analysis). Figure 2
shows the share of precrisis observations at every point in time. It should be
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noted that the out-of-sample data contain the run-up to the great financial cri-
sis, increasing the unconditional probability of being in an precrisis window from
19% in-sample to 36% out-of-sample, which we also indicate in the figure.

The second model is the probit model for currency crises by Berg and Pattillo
(1999) (hereafter referred to as BP). The dataset consists of five monthly indi-
cators for 23 emerging market economies from 1986:1 to 1996:12 with a total
of 2916 country-month observations: foreign reserve loss, export loss, real
exchange-rate overvaluation relative to trend, current account deficit relative to
GDP, and short-term debt to reserves. To control for cross-country differences,
each indicator is transformed into its country-specific percentile distribution. In
order to date crises, BP use an exchange market pressure index. A crisis occurs
if the weighted average of monthly currency depreciation and monthly declines
in reserves exceeds its mean by more than three standard deviations. BP define
an observation to be in a vulnerable state, or precrisis period, if it experienced a
crisis within the following 24 months. To replicate the setup in BP, the data are
divided into an estimation sample for in-sample fitting from 1986:1 to 1995:4, and
a test dataset for out-of-sample analysis from 1995:5 to 1996:12 (around 15% of
the sample). Figure 3 shows again the share of precrisis observations over time,
together with the in-sample and out-of-sample mean. Despite the short period of
the test sample, nearly 25% of all events happen in that window due to the Asian
crisis.

One obvious difference between the two models is that currency crises and
the preceding early-warning windows (BP) are much more equally distributed
over time than systemic financial crises. The strong clustering of financial crises,
in turn, could lead to imprecise estimates of the true DGP. In the LDP case,
the estimated unconditional probability of being in an early-warning window
will fluctuate around the true probability, with the fluctuations being large and
persistent. Thus, new crisis observations in a recursive analysis may affect
in-sample probability estimates and potentially also thresholds. In principle, this
could warrant a certain variation of optimized thresholds λ∗ around the long-run
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FIGURE 3. Frequency of precrisis periods, full sample, BP model.

threshold λ∞.8 However, this variation would still be problematic in real-time
analysis, as full real-time knowledge of the “status” of current observations
(if they are in an early-warning window before a crisis or not) becomes only
available in the future, when the full early-warning horizon has passed.

3.2. Real-Time Thresholding

The main proposition of this paper is that ex-post threshold optimization leads to
unwarranted variation in thresholds, and that this is problematic for policy. New
observations increase knowledge on the true DGP and should thus affect estimates
of crisis probabilities. However, to the extent that these estimates are unbiased,
new observations should not have an effect on thresholds. Put differently, the
rational of recommendations for policy action (i.e., if estimated probabilities are
above or below the threshold) should descend from changes in crisis vulner-
ability rather than changing thresholds. Especially for policymakers, it should
be problematic to take different actions based on identical probability estimates,
only because of small variations in thresholds, everything else equal. Indeed, we
would argue that only policy preferences should affect thresholds [which is our
reason to prefer the usefulness function of Sarlin (2013)]. However, in reality
we observe sometimes strong variations in optimized thresholds. Moreover, we
find that these time-varying thresholds are only optimal for in-sample data, but
generate on average suboptimal signals out-of-sample.

The first line of evidence that we put forward is based upon recursive real-time
estimations. With the same division of data as in the two original papers, we
explore the characteristics and performance of the three approaches when apply-
ing them recursively over the out-of-sample part of the data. The recursive
analysis implies that we use information available at each period t to derive model
output and set optimal thresholds for the same period in question.9 This mimics a
real-time setting when applying early-warning models.
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FIGURE 4. Variation of λ∗ in recursive analysis with the LDP model, continuous
preferences.

The variability of thresholds in ex-post optimization (λ∗) is a major source of
uncertainty (and potentially confusion). We illustrate this by showing threshold
variation for the LDP model with ex-post optimization, where recursive tests run
from 2005Q2 to 2009Q2. Figure 4 shows a heatmap of thresholds λ∗ for every
quarter in that time and for different preferences μ. For a given μ value (horizon-
tal row), a model with stable thresholds would have a constant color over time.
We can observe that this is not the case. For instance, for μ = 0.8 the thresholds
seem to vary between 13% and 28%. This points to significant uncertainty that
would have serious implications in policy use. A similar result can be seen in the
corresponding Figure A.1 in Appendix for the BP model, where recursive tests
run from 1995:5 to 1996:12.10

As discussed in the description of datasets, fluctuations could in principle be
warranted by the clustering of crises. We report the development of optimized
thresholds λ∗ in the recursive estimation for four different preference parame-
ters μ = {0.2, 0.5, 0.8, 0.95} together with the frequency of crises in Figure 5.11

That is, we test over different potential preferences that a policymaker may have.
High values of μ = {0.8, 0.95} give a strong preference to avoiding crises, which
accounts for the fact that missing a crisis may be very costly. μ = 0.5 gives equal
weights to both errors and is a setting, where the weighted models boil down to
standard binary-choice estimation (without threshold optimization). μ = 0.2 gives
strong preference to avoiding false alarms, which accounts for high costs related
to external announcements and reputation losses. Overall, μ = 0.8 is probably
the most realistic choice of preference parameter. Crucially, there seems to be no
systematic link between the occurrence of crises and threshold variation in the
dataset. That is, thresholds, independent of the preferences, do not vary systemat-
ically with clustered financial crises. Instead, the variation of thresholds seems to
be largely driven by noise.

In the case of the BP model, we see in general less threshold fluctuation (see
Figure A.2 in the Appendix). This is consistent with the observation that precrisis
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windows are more or less equally distributed across the sample. However, another
point of criticism with respect to ex-post threshold optimization can be raised:
when using the usefulness function of Alessi and Detken (2011), the thresholds
for θ = 0.5 and θ = 0.7 nearly overlap. Thus, the model seems to have difficulties
finding truly different thresholds for very different preference parameters.

3.3. Performance Comparison

In this subsection, we show that the variation of thresholds can lead to worse out-
of-sample performance. Table 3 reports the usefulness for the above-mentioned
preference parameters and the three different logit models (LDP), together with
the probability that our proposed alternatives outperform the model with opti-
mized thresholds. This probability is derived from 1000 draws of a panel block
bootstrap over (recursive) in-sample data with a block-length of 12 quarters.12

We can first observe that absolute and relative usefulness is always negative,
because the frequency of crises out-of-sample is much higher than in-sample.
However, even though usefulness is negative, the models with ex-ante or within
threshold selection are nearly always on average better than their counterparts
with ex-post threshold optimization. This holds especially for preference parame-
ters that put a higher weight on the less frequent and more costly type-1 errors
(false negatives). For the most realistic preference parameter μ = 0.8, we see
for example that our two proposals signal much more often (correctly) than
an early-warning model with optimized thresholds would. If we examine the
data themselves (where signals should ideally be sent throughout the full early-
warning window of one to six quarters before the crisis), we see that the additional
correct warnings are mostly located at the beginning of the early-warning win-
dows. This makes sense as signals should “get stronger” once a crisis becomes
more and more imminent. However, in one example (Hong Kong during the great
financial crisis), optimized thresholds would have only picked up on the upcoming
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TABLE 3. Performance for LDP, recursive oos estimation 2005Q2–2009Q2

Method TP FP FN TN L Ua Ur Probability

μ = 0.2

Logit opt threshold 7 21 157 166 0.137 −0.044 −0.470
Weighted logit 8 21 156 166 0.137 −0.043 −0.463 0.516
Logit set threshold 6 18 158 169 0.131 −0.038 −0.402 0.819

μ = 0.5

Logit opt threshold 51 71 113 116 0.262 −0.028 −0.122
Weighted logit 40 66 124 121 0.271 −0.037 −0.159 0.466
Logit set threshold 40 66 124 121 0.271 −0.037 −0.159 0.466

μ = 0.8

Logit opt threshold 104 132 60 55 0.212 −0.105 −0.989
Weighted logit 113 128 51 59 0.189 −0.083 −0.775 0.810
Logit set threshold 117 146 47 41 0.190 −0.084 −0.786 0.706

μ = 0.95

Logit opt threshold 155 167 9 20 0.048 −0.022 −0.807
Weighted logit 152 160 12 27 0.055 −0.029 −1.075 0.642
Logit set threshold 152 167 12 20 0.056 −0.030 −1.112 0.586

Note: The table reports performances [Sarlin (2013)] of recursive estimations in the LDP model over an out-
of-sample period from 2005Q2 to 2009Q2 for the three different methods and four preference choices.

crisis half a year before it actually happened, while our two approaches would
have been able to send signals four quarters earlier.

A similar result can be derived (i) for all possible policy preferences μ and (ii)
for the usefulness function of Alessi and Detken (2011). For computational rea-
sons, we perform a one-off split of the data instead of a recursive out-of-sample
analysis. That is, we derive probabilities and signals for observations between
2005Q2 and 2009Q2 based on estimates on data prior to 2005Q2. As above,
we use a panel-block bootstrap to derive the probabilities that our two propos-
als outperform ex-post threshold optimization. Our two alternatives outperform
optimized thresholds in more than 50%, independently of the employed useful-
ness function and nearly independently of preferences.13 We thus find that our
alternatives are better than the current approach in the majority of cases, and that
their average out-of-sample performance is higher. Moreover, the weighted logit
is slightly better than threshold setting ex-ante for μ ≥ 0.7 (or θ > 0.3), both in
terms of mean usefulness and the probability of outperformance.

The findings above are largely corroborated by the BP model. However, in
this case we find larger areas where threshold optimization seems on average to
be better than our two proposals. A possible reason for this is that the uncer-
tainty regarding (short-run) optimal thresholds is lower than in the LDP case, as
indicated by the lower degree of threshold variability during the out-of-sample
period (see Figure A.1 in the Appendix).
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FIGURE 6. ROC curve for three simulations with random events (N = 100, 1000, and
10,000) from the probit estimation.

4. COMPARING OPTIMAL THRESHOLDS WITH SIMULATED DATA

The real-world experiments allowed us to observe obvious differences in thresh-
old setting. However, it did not allow us to show variation in thresholds and
performance differences on a scale beyond single cases. In this section, we rely
on simulated data to further strengthen the evidence in this paper.

To illustrate differences among the three approaches to threshold selection, we
provide a large number of experiments on a range of different simulated data.
Given that λ∗ is selected to optimize the loss function on in-sample data, we
expect λ∗ to perform best on that part of the data. However, we are mainly inter-
ested in the out-of-sample performance of the the three approaches to threshold
selection. There, we expect the optimized threshold to fare much worse, possibly
to be outperformed by our proposed alternatives.

4.1. Randomness of Thresholds

As an illustrative example, let us take a look at a DGP, where explanatory vari-
ables and events are unrelated, and where the event probability is 50% in every
period. Figure 6 shows the in-sample receiver operator characteristics (ROC)
curves from a probit model for three simulations with different numbers of obser-
vations N. An ROC curve shows the trade-off between type-1 errors and type-2
errors at different thresholds. Usefulness optimization basically chooses the com-
bination of type-1 and -2 errors on the black curve that maximizes the weighted
distance to the red diagonal [for a discussion of the ROC curve, see Drehmann
and Juselius (2014)].

Ideally, the distance (and therefore absolute usefulness) should be zero, because
explanatory variables X and events C(h) are unrelated in this specification.
However, in practice this is not the case. For small N, β is estimated to produce an
optimal fit. This means that the ROC curve will be above the diagonal on average

https://doi.org/10.1017/S1365100518000603 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100518000603


116 PETER SARLIN AND GREGOR VON SCHWEINITZ

(otherwise, the fit would be worse than for coefficients equal to zero). In fact, the
area under the ROC curve (i.e., the AUC) is significantly above 0.5 at the 10%
level for the three simulations.

With less observations there is more uncertainty concerning true coefficients,
resulting in a larger upward bias of the ROC.14 If now, in a second step, the
weighted distance of the ROC curve is maximized in order to maximize useful-
ness, this introduces randomness in thresholds and creates an overfit. Essentially,
threshold optimization chooses the best possible outcome (in-sample) instead of
the most likely possible outcome, which leads to threshold instability, as indicated
by the three substantially different threshold values in the plot.

The distance of the ROC curve to the diagonal, and therefore usefulness of the
random model, decreases strongly with increasing N. This happens because, as N
increases, uncertainty on the true DGP decreases, bringing the ROC curve closer
to the diagonal and bringing usefulness closer towards its true level of zero.

4.2. Simulation Setup

Now, let us compare our approaches in a simulation setup where explanatory vari-
ables and events are related, that is, where the estimation of event probabilities is
actually meaningful. We present the setup of the baseline scenario here. A number
of robustness checks are introduced in a later subsection. In our (simple) simu-
lated data, we use three explanatory variables X = (X1, X2, X3), a coefficient vector
β = (1, 0, 0) and a negative constant of −1. That is, only X1 contains information
on the latent variable y∗ and therefore the observable event. The constant is cho-
sen such that the probability of an event is slightly below 25%, in-line with usual
event frequencies in early-warning models.

We draw the explanatory variables independently from a standard normal distri-
bution. Every simulation study is performed with 21 logarithmic-spaced number
of observations between N = 100 and N = 10, 000. For every N, we draw X,
calculate the event probabilities �(Xβ) and draw C(h) from these probabilities
(abstracting from index j).15 Drawing events from a normal distribution means
that we simulate data from a probit model. Every simulated dataset is split evenly
into an in-sample and an out-of-sample part.

We then apply the three approaches presented in Section 2 to the in-sample
part of the data, using both probit and logit estimations. That is, for every dataset
and policy preference μ, we construct six different early-warning models. First,
a probit with optimized thresholds λ∗. Second, a weighted probit with threshold
λw = 0.5. Third, a probit with fixed thresholds λ∞ = 1 − μ. The fourth, fifth and
sixth model are equal to the first three, replacing the probit estimation by a logit
estimation. Logit estimations are a simple way to test if the results are robust
against an admittedly very mild form of misspecification. For all models, we cal-
culate the in-sample and out-of-sample measures of goodness-of-fit defined in the
previous section. The above steps are performed for the four different preferences
μ = {0.2, 0.5, 0.8, 0.95} already employed in the real-world examples.
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FIGURE 7. Mean λ∗ with 90% confidence bands, for different values of μ.

Every simulation is performed R times to get a clear picture of the influence of
sampling uncertainty. This allows us to provide a measure for the uncertainty of
optimized thresholds λ∗, as well as the size of the in- and out-of-sample bias
of usefulness. Furthermore, we can calculate the probability that the current early-
warning model (probit/logit with threshold optimization) is outperformed by our
alternatives. The probabilities of outperformance are bootstrap estimates. That is,
they vary slightly with the number of replications R. To be sure that probabilities
of outperformance are truly larger than 50% (and not only by chance), one can
either choose a very large number of replications R, or adopt the approach of
Davidson and MacKinnon (2000) to select R endogenously. We follow the latter
approach.

In the following, we will only present results from the baseline specification.
Many other specifications, as described in in the online appendix, yield both
qualitatively and quantitatively very similar results.

4.3. Variation and Limit of Optimized Thresholds

In this subsection, we analyze the behavior of the optimized threshold λ∗ in our
simulation setup. We are specifically interested in the question if λ∗ approaches
the long-run optimal threshold λ∞ as N → ∞. Figure 7 presents the mean λ∗
together with confidence bands from R replications for the different policy prefer-
ences μ and different number of observations N. We first see that there is basically
no difference between probit and logit estimations.

As the true DGP is always identical, all uncertainty on λ∗ comes from the
estimation uncertainty, which depends mainly on the number of observations.
Therefore, the width of the confidence bands of λ∗ does not depend on preferences
μ and decreases with N. However, even for a large number of observations there
remains considerable uncertainty. As expected and in line with the mathematical
proof of our second alternative, λ∗ approaches 1 − μ as N increases.

4.4. Comparison of Out-of-Sample Performance

This subsection analyzes the out-of-sample performance of the three approaches
to threshold setting. We are particularly interested in the question if the in-sample
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FIGURE 8. Mean relative usefulness of the three probit models.

superiority of the current approach has negative effects on its out-of-sample
performance or not.

Under the assumption that data are created by a constant DGP, and that this
process can be captured by the estimated model, in-sample and out-of-sample use-
fulness should both converge to the true long-run usefulness of that process. As
in-sample models are fitted to the data, we would expect that in-sample usefulness
is higher for a lower number of observations and that it drops towards a bound-
ary value. This view is confirmed by Figure 8 for probit models.16 These figures
show the mean relative usefulness from simulations with different numbers of
observations for the three different approaches. In-sample results are presented
in the first row of plots, out-of-sample results in the second row, differentiating
for different preferences μ. Contrary to in-sample usefulness, the out-of-sample
usefulness improves as N goes to infinity. The reason is the slow uncovering of
the true DGP, which improves inference from in- to out-of-sample data.

In addition to these general results holding for all estimation methods, we see
that the usefulness (in- and out-of-sample) of our proposals is on average closer
to their true limiting value than those of the benchmark models. Concerning
in-sample usefulness, this seems to be bad at first sight. However, it has to be
acknowledged that one of the main reasons for calculating in-sample usefulness
is an evaluation of the quality of the early-warning model. If there is an upward
bias, it induces an overstated sense of confidence, trust and security. This bias is

https://doi.org/10.1017/S1365100518000603 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100518000603


OPTIMIZING POLICYMAKERS’ LOSS FUNCTIONS 119
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
l= 0.2

Observations

P
ro

b 
of

 h
ig

he
r 

U

100 1000 10,000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

l= 0.5

Observations

P
ro

b 
of

 h
ig

he
r 

U
100 1000 10,000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

l= 0.8

Observations

P
ro

b 
of

 h
ig

he
r 

U

100 1000 10,000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

l= 0.95

Observations

P
ro

b 
of

 h
ig

he
r 

U

100 1000 10,000

Weighted probit Probit, set threshold

FIGURE 9. Probability of outperformance of alternative approaches out-of-sample (probit
estimations).

much lower for our proposals. However, what really matters in the early-warning
practice is out-of-sample usefulness. Here, our proposals perform on average
better. This holds both for the weighted model and for the ex-ante threshold
setting.

Even though out-of-sample usefulness of our proposals is on average better
than that of threshold optimization, this difference is not statistically signifi-
cant in most cases. By construction, our proposals produce nearly always worse
in-sample usefulness than their threshold peer. Out-of-sample, our proposals out-
perform the benchmark in slightly more than 50% of the cases (see Figure 9).
Why do our alternatives often outperform the benchmark model only in slightly
more than 50% of the cases, while still providing (on average) sizable higher out-
of-sample relative usefulness? The reason for this is the uncertainty in the DGP
that makes threshold optimization prone to variation. As the innovations in- and
out-of-sample are uncorrelated, there is a (roughly) 50% chance that the out-of-
sample innovations would push the optimized threshold in a similar direction as
the in-sample innovations. Therefore, there is a 50% chance that thresholds opti-
mized based on in-sample data perform (slightly) better for out-of-sample data
than the fixed thresholds of our two alternatives. However, in the other 50% the
performance losses are much higher.

5. CONCLUSION

The traditional approach for deriving early-warning models relies on a separate
ex-post threshold optimization step. We show in this paper that this ex-post opti-
mization of thresholds is prone to suffer from estimation uncertainty, resulting in
unstable probability thresholds and potentially reduced out-of-sample usefulness.

We propose two alternative approaches for threshold setting in early-warning
models, where preferences for forecast errors are accounted for by setting
thresholds not after, but within or even before the estimation of early warning
probabilities.

Including preferences as estimation weights (resulting in a threshold λw = 0.5)
in the early-warning model outperforms optimized thresholds out-of-sample in
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the large majority of the cases. Thus, weighted binary-choice models are a valid
alternative to the current approach of threshold optimization. Moreover, the idea
of weighting classes according to preferences is not restricted to binary-choice or
even maximum-likelihood methods. As weighting can be implemented by resam-
pling data, our approach can be extended to any classification method employed
in the early-warning literature [Chawla et al. (2004)]. However, weighting comes
with two drawbacks: First, fitted values can only be interpreted as weighted prob-
abilities. Second, introducing weights into an estimation requires moving away
from standard statistical packages.17

Contrary to the two other approaches, the long-run optimal threshold λ∞ =
1 − μ is independent of estimated vulnerabilities and the DGP as a whole.
Moreover, λ∗ will approach λ∞ as the true DGP is uncovered over time (see
Figure 7). That is, in the case of a correctly specified model, the long-run opti-
mal threshold will alleviate all challenges to optimized thresholds. However, in
comparison to the two other approaches, the performance of long-run optimal
thresholds depends more on the correct estimation of the true DGP. For exam-
ple, a DGP with clustered events could easily lead to biased probability estimates
in-sample, which affects the performance of long-run optimal thresholds both in-
and out-of-sample.

We first compare our two approaches to the current standard of threshold
selection ex-post by looking at two real-world examples. In both these mod-
els, we can document a strong variability of optimized thresholds which is not
warranted by the data. For policymakers, variations in thresholds due to uncer-
tainty might be challenging to communicate. How can policies in a country with
unchanged macro-financial conditions be implemented only due to a shift in “opti-
mal” λ? Signals should depend on changes in the vulnerability indicators, not
on unjustified (random) variation in thresholds. But our two proposals do not
only imply stable thresholds. A bootstrap analysis shows us that at least in the
case of the model of systemic financial crises of Lo Duca and Peltonen (2013),
our approaches on average outperform threshold optimization out-of-sample for
nearly all preferences. Both results are confirmed by a range of simulation stud-
ies, where we sample explanatory variables and crises from a simple and known
DGP.

To subsume, we find that our two alternative proposals outperform their tradi-
tional counterpart in three ways. First, we eliminate unjustified (random) variation
in thresholds and allow hence all signals to descend purely from variation in prob-
abilities. This supports policy implementation and communication based upon
these models. Second, out-of-sample performance can on average be improved
by our approaches, while the bias on in-sample usefulness is reduced. Third, at
least ex-ante threshold setting is simpler than ex-post threshold optimization, as it
forgoes the second optimization step.

As our results hold not only for the simple binary-choice models tested in this
paper, but for every early-warning model using threshold optimization (includ-
ing the much-used signaling approach), we strongly recommend to include
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policymakers’ preferences as weights in the estimated likelihood or specifying
thresholds ex-ante, and thus to move away from threshold optimization in general.

NOTES

1. We do not herein summarize measures used for assessing model robustness that do not explicitly
provide guidance on optimal thresholds, such as the Receiver Operating Characteristics curve and the
area below it.

2. This was also indicated by El-Shagi et al. (2013) and later by Holopainen and Sarlin (2015),
which both show and account for the fact that a positive usefulness can be insignificant. We approach
the problem of uncertainty and significance from a different angle.

3. In most applications, one would exclude actual crisis periods and possibly even some periods
after a crisis from the estimation altogether, as they may not be tranquil, and should therefore not be
used for early-warning purposes [Bussière and Fratzscher (2006)].

4. Following the literature, the measures are defined as follows: P1 = P(Cj(h) = 1) =
(TP + FN)/N, P2 = 1 − P1, T1 = P(Pj = 0|Cj = 1) = FN/(FN + TP), and T2 = P(Pj = 1|Cj = 0) =
FP/(FP + TN).

5. In spirit, this is very similar to the finding of Riccetti et al. (2018), that overly tight regulation
puts too much of a burden on credit availability, while overly loose regulation increases the probability
of financial crises.

6. There exists a myriad of alternative performance measures with larger differences. Two other
measures have been commonly applied in the early-warning literature. The signal-to-noise ratio
[Kaminsky and Reinhart (1999)] has been shown to lead to corner solutions, resulting in a high share
of missed crisis episodes if crises are rare [Demirgüç-Kunt and Detragiache (2000) and El-Shagi et al.
(2013)]. Fuertes and Kalotychou (2007) and Bussière and Fratzscher (2008) use a slightly different
loss function. Many additional measures are summarized in Wilks (2011).

7. This is in principle equivalent to the approach of King and Zeng (2001), where weights are
normalized to have a sample mean of unity (i.e., w1 = μ

μP1+(1−μ)P2
and w2 = 1−μ

μP1+(1−μ)P2
).

8. If crises are equally costly and if probability estimates do not increase, a higher frequency of
crises could imply lower thresholds.

9. Thus, we recalculate the precrisis variable in every recursive step given available information
on the crisis variable.

10. The original authors do not perform recursive out-of-sample analysis.
11. Results regarding the performance under the usefulness function of Alessi and Detken (2011)

are very similar and reported in the online appendix.
12. We combine the two approaches by El-Shagi et al. (2013) and Holopainen and Sarlin (2015).

To allow measuring uncertainty around usefulness (taking countries as given) we use a simple panel
block bootstrap that accounts for cross-sectional and autocorrelation of both right and left-hand side
variables and pairs events and indicators.

13. For a visual result, we refer to Figure B.3 in the online appendix, which also reports
corresponding results for the BP model.

14. El-Shagi et al. (2013) therefore argue that—in order to judge the quality of an early-warning
model—it is paramount to obtain a distribution of the usefulness under the null hypothesis of no
relation between X and C(h), instead of only a measure of usefulness itself.

15. This procedure introduces one difference to usual early-warning models: there is no continuous
chain of events in an early-warning window of predefined length. However, this difference is irrelevant
from an econometric perspective.

16. An alternative way to look at this would be the difference of relative usefulness between the
benchmark model and our two proposals, see the online appendix. Similar results for the logit models
can also be found there.

17. An R-package for weighted binary-choice models can be obtained from the authors.
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APPENDIX: ADDITIONAL TABLES AND FIGURES
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FIGURE A.1. λ variation in recursive analysis with the BP model.
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FIGURE A.2. BP model, frequency of precrisis periods, and variation of λ∗, selected
preferences μ.
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