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Abstract

Background: To enhance enrollment into randomized clinical trials (RCTs), we proposed
electronic health record-based clinical decision support for patient–clinician shared deci-
sion-making about care and RCT enrollment, based on “mathematical equipoise.”
Objectives: As an example, we created the Knee Osteoarthritis Mathematical Equipoise
Tool (KOMET) to determine the presence of patient-specific equipoise between treatments
for the choice between total knee replacement (TKR) and nonsurgical treatment of advanced
knee osteoarthritis. Methods: With input from patients and clinicians about important pain
and physical function treatment outcomes, we created a database from non-RCT sources of
knee osteoarthritis outcomes. We then developed multivariable linear regression models that
predict 1-year individual-patient knee pain and physical function outcomes for TKR and for
nonsurgical treatment. These predictions allowed detecting mathematical equipoise between
these two options for patients eligible for TKR. Decision support software was developed to
graphically illustrate, for a given patient, the degree of overlap of pain and functional out-
comes between the treatments and was pilot tested for usability, responsiveness, and as sup-
port for shared decision-making. Results: The KOMET predictive regression model for knee
pain had four patient-specific variables, and an r2 value of 0.32, and the model for physical
functioning included six patient-specific variables, and an r2 of 0.34. These models were
incorporated into prototype KOMET decision support software and pilot tested in clinics,
and were generally well received. Conclusions: Use of predictive models and mathematical
equipoise may help discern patient-specific equipoise to support shared decision-making
for selecting between alternative treatments and considering enrollment into an RCT.

Introduction

The ethical and scientific basis for randomly assigning treatments in a randomized clinical trial
(RCT) is the presence of clinical equipoise, the absence of a clearly superior treatment. However,
this is typically not an individual patient-centered determination, but rather based on inference
from groups defined by pivotal studies’ inclusion and exclusion criteria.

An alternative would be to compare patient-specific predictions of treatment outcomes, if
available. If such predictions are generated by mathematical models that account for individual
patient characteristics, then the potential outcomes can be compared, looking for “mathematical
equipoise” [1]. Thereby, individuals could be enrolled in an RCT only when there is equipoise
between treatment options based on their specific characteristics and preferences. And, if in
making this determination, the treatment outcomes’ predictions are importantly different,
i.e., mathematical equipoise is not present, then the patient can be offered the treatment most
likely to benefit this individual. The objective is to adhere to the RCT principle of equipoise,
based on patient-individualized information.

If there is the capacity to identify patient-specific equipoise embedded in electronic health
records (EHRs), it could serve as a practical way in routine clinical care to detect potentially
eligible patients for RCT enrollment. It also could identify those not appropriate for random
treatment assignment, for whom this decision support could enhance care by indicating the
potentially superior treatment for a given patient. This could help make transparent the basis
for selection for an RCT in real time and enhance fully informed consent in the midst of clinical
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care. It could facilitate patient–clinician shared decision-making,
both in care and in the decision to participate in an RCT.

We previously created and tested predictive instrument deci-
sion aids based on multivariable logistic regression models that
provide 0%–% predictions of medical diagnoses and treatment
outcomes [2–5]. These predictive instruments support decisions
about hospitalization and/or treatments for acute myocardial
infarction, emergency decisions substantially dominated by physi-
cian judgment, rather than complex treatment decisions that
require longer patient–clinician collaboration.

Decision support for more complex and longer term decisions
benefits patients when they improve knowledge, accuracy of risk
perceptions, and concordance with patient values [6]. They also
reduce decisional conflict due to feeling uninformed and unclear
about treatment choices [6].

Shared patient–clinician decision-making is central to choosing
between medical treatments and surgical total knee replacement
(TKR) for long-standing knee osteoarthritis. The shared decision
process involves the clinician and patient, and others as desired,
sharing information about treatment options and their risks and
discussing patient preferences and values [7]. Patient preferences
have great relevance, as do the availability of treatments, their
inconvenience and expense, and the patient’s future prospects of
developing comorbidities [8]. Hampering these decisions are gaps
in patient-specific evidence about alternative treatments [9] and
lack of reliable measurements of clinical changes in knee osteoar-
thritis to allow comparisons of treatments [10]. The cross-sectional
national DECISIONS survey found that more than half of patients
discussing knee or hip surgery underestimated the harm from sur-
gery, and only 28% correctly estimated the amount of pain relief
following surgery [11].

Symptomatic knee osteoarthritis, estimated as affecting 17%–
34% US adults [12], is the most frequent cause of dependency
in lower limb tasks, especially in the elderly [13]. It contributes
to 68 million work-loss days per year and over 5% of the annual
retirement rate [14–17]. For many patients, as medical and physi-
cal therapy become less satisfactory, TKR is done, making it the
most frequently surgically replaced joint [15], now done for
680,886 patients per year in the United States, with aggregate
charges over $36 billion [18].

In this context, we sought to create the Knee Osteoarthritis
Mathematical Equipoise Tool (KOMET) to be embedded in
EHRs as decision support for shared clinical decision-making.
KOMET was intended to identify patients for whom, based on
their specific characteristics, there is no sufficient evidence to favor
medical or surgical treatment. This is a circumstance in which
shared patient–clinician decision-making is important – when
patients’ personal preferences and objectives may dominate what
might appear as a “toss-up” decision [1]. This also is the circum-
stance in which KOMET is intended to support shared decision-
making about participation in RCTs, based on patient-specific
equipoise, for practical, ethical, and targeted enrollment into RCTs.

To create the mathematical models for our prior predictive
instruments, we used data from RCTs. Using data from treatments
that were randomly assigned avoided the treatment effects being
biased by the selection of their use among patients. Thereby, the
multivariable regression models more accurately reflect the effects
of treatments when used in comparable patients. However, there
are many conditions and treatments for which RCT data are not
available. Indeed, for the very circumstances that would call for
an RCT, for which predictive models and mathematical equipoise
might be wanted to assist participant selection, there often will be

little RCT data on which such models could be based. Therefore, to
create predictive models for this purpose, we must use data from
other sources, including observational studies, registries, EHR-
based data warehouses, and patient-acquired data. If these non-
RCT sources could be used for creating predictive models, there
would be vast opportunities for the mathematical equipoise
approach to facilitate the conduct of clinical effectiveness RCTs.
However, there are protean challenges and limitations.

This project sought to create KOMET as an example of the use
of mathematical equipoise for determining patient-specific equi-
poise. As an example of this approach, we used patient-level data
from existing non-RCT sources to build predictive models of treat-
ment outcomes to determine the presence or absence of patient-
specific equipoise, to inform decision-making. Demonstrating
the ability to do this could support wider applicability of the math-
ematical equipoise method.

Methods

To develop the KOMET’s predictive models, we created a consoli-
dated database with treatment outcomes of knee osteoarthritis
from clinical studies and patient registries. Model variables and
predicted outcomes were selected based on input from stakehold-
ers, availability of data, and variables’ contributions to models’
predictive performance. When completed, the models were incor-
porated into prototype decision support software and tested with
clinicians and patients. Throughout, we involved stakeholders with
an interest in the outcomes of the project including patients and
their families, advocacy group representatives, clinicians, and
researchers [19].

Datasets

To create the modeling database, we used the following databases,
which are described in more detail elsewhere [20]:

• The Multicenter Osteoarthritis Study (MOST), an NIH-
sponsored longitudinal, prospective, observational study of
knee osteoarthritis in adults with osteoarthritis or at increased
risk of developing osteoarthritis [21]. The database includes a
community-based sample of 3,026 participants aged 50–79
years, with preexisting osteoarthritis or those at high risk for
osteoarthritis based on weight, knee symptoms, or a history
of knee injuries or operations. Approximately 60% are women,
and 15% are African–Americans. Data used in this article were
obtained from http://most.ucsf.edu [21].

• The Osteoarthritis Initiative (OAI), an NIH-sponsored multi-
center, longitudinal, prospective observational study of osteoar-
thritis intended as a public domain research resource that
includes 4,796 men and women aged 45–79 who have, or are
at high risk for developing, symptomatic knee osteoarthritis.
Data were obtained from http://oai.ucsf.edu [22].

• The New England Baptist Hospital (NEBH) Orthopedic Surgery
Registry of 2,462 patients who underwent TKR since 2011 [23].
Assessments occur prior to surgery and at 6 weeks and at 12
months and include demographic, vital signs, clinical measures,
medications, knee exam, the Knee Society Score (KSS) pain and
physical function score, the 12-Item Short Form Health Survey
(SF-12) health status score, surgical complications, and pro-
cedure outcomes. The mean age of patients is 68 years; 57%
are women.
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• The Tufts Medical Center (TMC) Orthopedic Surgery Registry of
535 patients who had TKR surgery since 2007 [24]. Assessments
occur prior to surgery, at 6 weeks, 12 months, and 24 months,
including demographic, vital signs, clinical measures, medica-
tions, knee exam, pain and physical function (KSS), health
status (SF-12), surgical complications, and procedure outcomes.
The mean age of patients is 62 years; 61% are women.

Predicted Clinical Outcomes

The models created on these databases predicted clinical outcomes
expressed as scales; for pain, theWOMAC Index [25] and for func-
tional status, the SF-12 Health Index, both outlined as follows
[26, 27]:

• The Western Ontario and McMaster Universities Arthritis
Index (WOMAC) [25], developed in 1982, widely used in the
evaluation of hip and knee osteoarthritis. It is a self-
administered questionnaire of 24 items, divided into 3 subscales:
(1) pain (5 items) during walking, using stairs, in bed, sitting or
lying, and standing upright; (2) stiffness (2 items) after first wak-
ing and later in the day; and (3) physical function (17 items)
using stairs, rising from sitting, standing, bending, walking, get-
ting in and out of a car, shopping, putting-on and taking-off
socks, rising from bed, lying in bed, getting in and out of a bath,
sitting, getting on and off the toilet, heavy domestic duties, and
light domestic duties. The knee pain scale was used as the pri-
mary outcome in this project. In its raw form, the WOMAC
knee pain scale ranges from 0 to 20. To make it easier to inter-
pret and represent in the final models, we rescaled it to 0–100,
with 0 representing absence of pain and 100 representing
extreme pain.

• The SF-12® Health Survey a multipurpose “short-form” generic
measure of health status [26, 27]. It was developed to be a much
shorter, yet valid, alternative to the SF-36® for use in large sur-
veys of general and specific populations and for large longi-
tudinal studies of health outcomes. We used its physical
functioning summary score as the second predicted outcome
for this project. The SF-12 scores range from 0 to 100, with
higher scores indicating better function [28].

Creating the Modeling Database

The database for creating KOMET models included two types of
registries. MOST andOAI had data collected on knee osteoarthritis
at fixed intervals per their protocols, including those who under-
went TKR and were continued to be followed. The other two regis-
tries, NEBH and TMC, were from hospitals that collected baseline
and follow-up data only on their patients who had TKR.

For KOMET, our target patients were those with knee osteoar-
thritis who had reached the clinical state at which they would be
making a decision of whether or not to have TKR. Lacking a cohort
of such patients randomized to medical or surgical options,
we used data from patients who had TKR, and matched them to
patients (knees) who did not have TKR, but otherwise had similar
characteristics. To do this, we created a database in which the
“knee” was used as the unit of analysis, and matching was done
based on characteristics of the knee and the patient. Thereby,
we created a study sample of pairs of similar patients who could
be considering this therapeutic choice.

For the MOST and OAI registries, we identified all knees that
underwent TKR and then used data collected at the closest previous
visit as the “baseline” visit for that TKR including demographics,

knee characteristics, comorbidities, mental and physical function,
and other clinical features. To find non-TKR “control knees,”we cre-
ated a subdatabase of all knee visits of all patients, excluding any that
occurred after a TKR. We then used a “greedy”matching computer
algorithm [29] to select control knees for each “TKR knee” (within
the same database). Thereby, each TKR knee in OAI wasmatched to
a similar non-TKR knee from OAI, based on matching variables at
baseline. Because the TMC and NEBH samples only included TKR
subjects, we drew their matched non-TKR controls from a pooled
dataset of knee visits from the OAI and MOST registries.

The variables used for matching differed among the databases,
based on data availability. As a guide to determine variables to use
for matching, we used input from the research team, clinicians,
stakeholders, and the literature [30]. For matching, we converted
continuous variables to categories. We did not always require exact
matches because we did not want to lose patients who had TKR
from the model-building sample, and we could statistically adust
for differences between the TKR and non-TKR groups in the mod-
eling process.

Creating Predictive Models for Outcomes

Analyses were done using SAS for Windows, version 9.4 TS Level
1M2, Copyright © 2002-2012 by SAS Institute, Cary, NC and SAS
Enterprise Guide, version 7.13 HF3 (Copyright SAS Institute, Cary
NC, USA). More details of modeling can be found in a separate
article [20].

We developed a multivariable linear regression model for the
1-year knee pain outcome based on the WOMAC score, or when
a database lacked WOMAC items, using an estimated WOMAC
score. Our approach was to develop the model using a set of
matched TKR to non-TKR knees from the OAI database, then
to validate/test it on a set of matched TKR and non-TKR knees
from the MOST database, and then update it by pooling the
OAI and MOST datasets and building a new model, starting with
variables used in the model developed in the OAI data and tested
on the MOST data. We also rederived models, using a similar var-
iable selection process, but with a more limited set of candidate
predictor variables, in order to include NEBH and Tufts datasets
together with OAI and MOST. This entire process was repeated
for the 1-year functional outcome (SF-12 physical component
score). To create models that could provide predicted estimates
of 1-year knee pain and 1-year function, with and without TKR,
for any patient based on their characteristics, all models included
a treatment indicator (interaction) variable. Covariates and inter-
actions of treatment with covariates were explored in the different
phases of the modeling process. No adjustment for matching was
done in the linear regression during modeling. This was because
the purpose of matching was to create a reasonably balanced study
sample of patients who either had TKR or did not have TKR with
comparable characteristics, with covariates in the models account-
ing for remaining imbalances between the groups [31].

Prototype Decision Support Software Development
and Usability Testing

The goal of software development and usability testing was to
translate the results of the predictive models into easily under-
stood, patient-specific reports that could be produced in the course
of clinical care for shared treatment decision-making and, if appro-
priate, enrollment into an RCT.

Decision Support Software Development. There were two
KOMET software development tasks: one for the analytics and
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another for the user interface. Analytics development included
implementing the predictive models as reusable, multiplatform
software components to generate the current and 1-year-predicted
pain and function outcomes for nonsurgical and surgical treat-
ments. The analytics software also calculated the respective 95%
confidence intervals around each prediction as the basis for con-
sidering the degree of overlap that would suggest near equivalence
or patient-specific equipoise. User interface development included
creating a web browser-based questionnaire interface to collect
patient demographics, items for computing the WOMAC pain
score, the SF-12 physical functioning scale, and comorbidities.
Together, the analytics and user interface components included
methods for data retention and presentation of the predicted out-
come results.

Then, the predictive models then were incorporated into the
web-based decision support application for iterative user testing.
Usability testing included a “think-aloud” protocol and a usability-
testing script administered by research staff. The IRB determined
that the project was exempt from IRB review.

Depiction of Pain and Function Predictions for Nonsurgical
Treatment versus TKR and Patient-Specific Equipoise

Mathematical equipoise was defined for KOMET as when the pain
and functioning outcome predictions with nonsurgical care and
TKR are close, i.e., within, or overlapping, each other’s “uncer-
tainty circle.” In Fig. 1, this is illustrated by hypothetical example
graphs with small, moderate, and large amounts of “uncertainty
circle” overlap. The uncertainty circle is defined by the shaded area
extending around each of the point estimates and is derived from
the 95% prediction intervals associated with the predictions for the
two outcomes. The blue diamond represents the outcome predic-
tion point estimate for nonsurgical care; the green circle represents
the point estimate for TKR. The points are plotted on an X–Y plane
with function on the x-axis and pain on the y-axis. The large
shaded blue and green overlapping circles around the 95% predic-
tion intervals of the pain and function point estimates and
represent the uncertainty associated with the individual predic-
tions. We computed the mathematical distance between the non-
surgical and TKR predictions as the distance between the two
coordinates on the pain and function graph using the following
equation:

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx2� x1Þ � ðx2� x1Þ þ ðy2� y1Þ � ðy2� y1ÞÞ

p

where the coordinate for pain and function predictions with non-
surgical care is represented as (x1, y1) and the coordinate for pain
and function predictions with TKR as (x2, y2).

Results

Study Design and Database Creation

The final database included 1,452 knees (726 with TKR and 726
without) of 1,322 patients. Ninety-one percent of patients (1,204)
had a single knee included in the database, 8% (106) had two
knees used or a single knee used two times, and 1% (12) had their
knees used three times. OAI TKR knees were matched to control
knees fromOAI, andMOST TKR knees were matched to controls
fromMOST. Because NEBH and TMC included only TKR knees,
their controls were drawn from non-TKR knees from OAI and

MOST. In the final matched database, the relative contributions
of TKR knees were OAI, 252; MOST, 154; NEBH, 248; and TMC,
72. For the control knees, contributions were OAI, 472, and
MOST, 254.

Fig. 1. Three sample graphs with small, moderate, and large amounts of “uncer-
tainty circle” overlap.
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Study Sample

Characteristics of the study sample are summarized in Table 1.
Approximately 60% were women, the mean age was 65 years,
and the mean body mass index (BMI) was 31 kg/m2. On the
0–100 pain scale (100 indicating extreme pain), the mean base-
line knee pain was significantly higher in the TKR than non-TKR
group (mean = 45.6 vs. 40.5, P < 0.01), despite efforts to match
on this variable (categorized). Baseline characteristics of interest
to clinicians and stakeholders that were considered for the mod-
eling process were comparable between TKR and non-TKR
knees, and also for the variables used in the final models, using
imputed data. Irrespective of significance, all variables listed in
Table 1 were used in building the multivariable models of the
clinical outcome scales.

Comparisons of mean SF-12 scores between TKR and non-
TKR groups showed better physical and mental function in the
non-TKR groups than TKR groups, with the difference being sig-
nificant for physical function (mean= 37.2 vs. 38.6, P= 0.008).
Overall, at follow-up, there was less knee pain and better physical
function in the TKR than the non-TKR groups. Distributions of
variables used for the matching process confirmed that in each
database, characteristics used for matching were well balanced
between the TKR and non-TKR knees.

Model Development

Linear regression was used to model the two outcomes the
WOMAC knee pain scale (rescaled 0– 100) and the SF-12 physical
functioning component score. Based on extensive discussions with
patient and clinician stakeholders, 1 year was chosen as the target
follow-up time to have a time point beyond recovery from surgery
(estimated as up to 9 months). Stakeholders felt benefits of surgery
were stable beyond that time point, and so to address data incon-
sistencies and gaps, data from up to 5 years past baseline were
allowed for use when no closer follow-ups were available.

Summary of Multivariable Models

The final predictive models for pain and physical functioning are
presented in Table 2.

We used these models to predict 1-year knee pain and physical
functioning for the treatment each subject underwent (TKR or non-
TKR), and also for the counterfactual (alternative) treatment. These
data allowed us to predict the difference in pain and function out-
comes for each patient for TKR and non-TKR. The distribution of
predicted differences is in Fig. 2. The figure shows that there was a
range of predicted improvement with TKR, and those patients pre-
dicted to have benefit in knee pain may not be the same as those
predicted to have benefit in physical functioning. Nine percent of
subjects had a predicted gain in function of at least 8 SF-12 physical
function points and a predicted reduction in knee pain of at least 20
points (on WOMAC scale of 0–100). At the other end of the spec-
trum, 6% had predicted gains in physical function of less than 4
points and reduction of knee pain of less than 10 points. Only
2% had larger gains in physical function and smaller improvements
in pain. For illustrative purposes, Fig. 2 also shows sample subjects
from each of nine combinations of estimated knee pain and physical
function change. Examples of subjects with the most, intermediate,
and least estimated reduction of pain and gain in function, with 95%
prediction intervals for the estimates, are shown in Table 3. Subjects
with higher baseline knee pain had the largest predicted reductions
in knee pain with TKR compared to non-TKR. Younger patients
with lower SF-12 scores had the largest predicted benefits in physical
function with TKR versus not having TKR. These differences in esti-
mated benefit between subjects are a result of the interaction terms
included in the multivariable models.

Prototype Decision Support Software Development, Interface
Design, and Usability Testing

The KOMET development process resulted in the creation of one
web-based application for clinicians (http://medicalequipoise.

Table 1. Description of pooled study sample used for model derivation for N= 1,452 matched knees (imputed data); TKR= Total Knee Replacement; WOMAC = The
Western Ontario and McMaster Universities Arthritis Index

Variable
TKR (n= 726)
Mean ± SD

Non-TKR (n= 726)
Mean ± SD

TKR minus non-TKR
Delta (Δ) and [95% CI] Effect size*(Δ/SD)

Baseline characteristics

Age 65.29 ± 8.57 64.77 ± 8.57 0.52 [−0.36, 1.40] 0.03

Male, N (%) 0.43 ± 0.49 0.42 ± 0.49 0.00 [−0.05, 0.06] 0

Baseline BMI 31.31 ± 6.49 30.97 ± 6.36 0.34 [−0.32, 1.00] 0.03

Baseline SF-12: Physical 37.16 ± 9.46 38.59 ± 10.94 −1.44 [−2.49, −0.38] −0.07

Baseline SF-12: Mental 52.56 ± 11.48 53.62 ± 11.82 −1.07 [−2.27, 0.13] −0.05

Baseline WOMAC knee pain (0–100) 45.59 ± 21.87 40.48 ± 21.76 5.11 [2.87, 7.36] 0.12

Baseline knee pain, contralateral (0–100) 18.92 ± 21.06 19.66 ± 22.05 −0.74 [−2.96 , 1.48] −0.02

Baseline hip pain or pain/ache/stiff 0.34 ± 0.50 0.62 ± 0.51 −0.27 [−0.33 , −0.22] −0.27

At least one comorbidity, N (%) 0.32 ± 0.52 0.31 ± 0.56 0.01 [−0.05, 0.07] 0.01

Narcotics, N (%) 0.14 ± 0.36 0.13 ± 0.36 0.00 [−0.03, 0.04] 0.01

Follow-up results

Follow-up SF-12: Physical 44.48 ± 11.88 39.81 ± 10.80 4.67 [3.51, 5.84] 0.21

Follow-up WOMAC knee pain (0–100) 13.92 ± 19.44 29.22 ± 19.45 −15.30 [−17.30, −13.30] −0.39

*Shaded rows indicate variables where definitions varied between databases so that these variables ultimately were excluded as candidates in the building of final models.
TKR = Total Knee Replacement; WOMAC = The Western Ontario and McMaster Universities Arthritis Index
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com/tkrclinician) and one for patients (http://medicalequipoise.
com/tkrpatient). Both applications are composed of an analytics
software library that also could be embedded into an EHR
system.

Based on the mathematical equipoise approach and the uncer-
tainty estimates around the predictions, we developed for KOMET
a way to identify patients for whom enrollment in a RCT might be
appropriate. We defined mathematical equipoise as when predic-
tions of pain and functioning outcomes with nonsurgical care and
TKR are relatively close and their uncertainty circles around each of
the point estimates depicting the 95% limits of the predictions over-
lap on a two-dimensional graph of pain and function (see Figs. 3
and 4). As outlined above, we computed the mathematical distance

between the nonsurgical and TKR predictions as the distance
between the two coordinates on the pain and function graph.
Empirically, a distance of less than or equal to 20 was used to flag
the presence of equipoise. When mathematical equipoise was
present, an alert appeared on the software’s results page and a patient
contact and screening form was generated to initiate a clinical trial
recruitment conversation. When we asked patients about usefulness
of the information for decision-making, each stated that the tool was
helpful or somewhat helpful. All wanted to discuss the results with
their physician.

Discussion

This project created KOMET, which uses mathematical models
that predict patient-specific outcomes of treatment options to
detect patient-specific equipoise between nonsurgical and surgical
TKR. To support decisions both for clinical care and RCT enroll-
ment, KOMET’s graphical software is intended for use in EHRs
during routine clinical care. When the patient-specific predictions
of outcomes between the two treatment options are not impor-
tantly different, suggesting clinical equipoise for that patient,
enrollment in an RCT that compares the treatments can be con-
sidered. Alternatively, when the predictions suggest that one treat-
ment is likely to have a better outcome for that patient, trial
enrollment would not be appropriate, but the identification of
the potentially superior treatment can inform patient–clinician
decision-making. Thereby, this approach for enrolling RCT partic-
ipants also can support clinical decision-making for those not to be
enrolled in an RCT.

For the use of patient-specific mathematical equipoise to help
fill in gaps in RCTs, predictive models for the target conditions will
need to be built on non-RCT data, e.g., from clinical registries,
EHRs, and other sources. As an example, this project applied this
approach to treatment question on which there were essentially no
prior RCTs, but one for which such evidence would be important
for patients and society.

Fig. 2. Mosaic plot showing distribution of predicted differences (TKR vs. non-TKR) for
1-year knee pain and SF-12 physical function in pooled data (N = 1,452 subjects).

Table 2. Final models for 1-year knee pain (P2) and SF-12 physical function (F2)

Term in model,
status at baseline

Range in dataset
(5th–95th percentile)

P2: knee pain model
(higher scores mean more knee pain)

F2: physical function (SF-12)
(higher scores mean better function)

Adjusted r2 = 0.32 Adjusted r2= 0.34

Beta coeff (std err), P value* Beta coeff (std err), P value

Model intercept (constant) 31.44 (5.52), P < .0001 17.40 (4.27), P < .0001

Treatment (1= TKR, 0= control) −3.33 (2.16), P= 0.1246 25.41 (4.33), P < .0001

WOMAC knee pain (base), 100 point scale 10–80 0.49 (0.03), P <.0001

Interaction: treatment × WOMAC knee pain −0.33 (0.05), P <.0001

Age, years 51–79 −0.12 (0.05), P= 0.0225 −0.05 (0.04), P= 0.2397

SF-12 mental component [base] 34–66 −0.11 (0.05), P= 0.033 0.19 (0.04), P <.0001

SF-12 physical component [base] 23–53 −0.21 (0.07), P= 0.0017 0.55 (0.03), P <.0001

Gender (1=male, 0= female) 42% male 0.99 (0.57), P= 0.0873

Body mass index, kg/m2 23–41 −0.19 (0.05), P= 0.0008

Charlson comorbidity score ≥ 1 (vs. 0) 31% with at least 1 −2.05 (0.60), P= 0.0009

Interaction: treatment × age −0.15 (0.06), P= 0.0084

Interaction: treatment × SF-12 mental score −0.18 (0.06), P= 0.0013

Beta coefficients, standard errors, and P values are from combined linear regression models built on an imputed dataset
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Table 3. Estimated outcomes for a sample of cases

Predicted change with TKR compared
to non-TKR

Baseline
characteristics

Knee pain
(1 year): estimate and 95%

prediction interval

SF-12 function
(1 year): estimate
and 95% prediction

interval

Estimated
reduction
in knee pain

Estimated
improvement
in function

Gender Age BMI Any
comorbidities

SF-12
mental

WOMAC
knee pain

SF-12
physical

Non-TKR TKR TKR
minus

non- TKR

Non-TKR TKR TKR
minus

non-TKR

Most pain
reduc (≥20 pt)

Most gain fcn
(≥8 pt improve)

F 58 33.3 N 38 65 30 46
(12 to 80)

21
(80 to −13)

−24.5
(−72.4 to 23.5)

32
(15 to 49)

42
(49 to 25)

9.6
(−14.6 to 33.8)

Most pain reduc
(≥20 pt)

Mid gain fcn
(4−<8 pt
improve)

F 63 35.0 N 60 70 41 43
(09 to 77)

17
(77 to −17)

−26.1
(−74.1 to 21.9)

42
(25 to 59)

47
(59 to 30)

4.7
(−19.5 to 28.8)

Most pain reduc
(≥20 pt)

Least gain fcn
(<4 pts
improve)

M 77 24.3 Y 60 55 36 35
(01 to 69)

14
(69 to −20)

−21.2
(−69.2 to 26.7)

39
(22 to 56)

42
(56 to 25)

2.7
(−21.5 to 26.9)

Mid pain reduc
(≥10 to <20 pts)

Most gain fcn
(≥8 pt improve)

M 63 28.3 N 34 45 36 34
(00 to 68)

16
(68 to −17)

−18.0
(−65.9 to 30.0)

36
(19 to 53)

46
(53 to 29)

9.6
(−14.6 to 33.8)

Mid pain reduc
(≥10 to <20 pts)

Mid gain fcn
(4−<8 pt
improve)

M 66 31.3 Y 62 25 50 18
(−16 to 52)

7
(52 to −27)

−11.5
(−59.4 to 36.5)

46
(29 to 63)

50
(63 to 33)

4.0
(−20.2 to 28.2)

Mid pain reduc
(≥10 to <20 pts)

Least gain fcn
(<4 pts
improve)

M 71 35.8 Y 59 30 44 22
(−12 to 55)

8
(55 to −25)

−13.1
(−61.0 to 34.8)

42
(25 to 59)

46
(59 to 29)

3.7
(−20.4 to 27.9)

Least pain reduc
(<10 pts)

Most gain fcn
(≥8 pt improve)

M 51 23.4 N 39 20 49 20
(−14 to 54)

11
(54 to −23)

−9.8
(−57.9 to 38.2)

46
(29 to 63)

56
(63 to 39)

10.5
(−13.7 to 34.8)

Least pain reduc
(<10 pts)

Mid gain fcn
(4−<8 pt
improve)

F 62 26.3 N 61 20 44 18
(−16 to 52)

8
(52 to −26)

−9.8
(−57.8 to 38.1)

45
(28 to 62)

50
(62 to 33)

4.7
(−19.5 to 28.8)

Least pain reduc
(<10 pts)

Least gain fcn
(<4 pts
improve)

F 74 27.4 Y 56 5 51 8
(−26 to 42)

3
(42 to −31)

−5.0
(−53.0 to 43.1)

46
(28 to 63)

49
(63 to 32)

3.7
(−20.4 to 27.9)
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To build KOMET,we created a consolidated database fromnon-
RCT sources on which we created predictive models of the out-
comes of surgical TKR and nonsurgical treatments. Informed by
patients and clinicians views on the representation of pain and
functional outcomes, we developed multivariable mathematical
models that predict patient-specific outcomes of surgical and non-
surgical treatment. We used statistical and analytic methods to
adjust, to the extent possible, for the inherent biases in the databases
– and a variety of analyses were done to understand how to best
model and represent the predicted outcomes. We incorporated
these models into an stakeholder-informed prototype decision sup-
port software for potential incorporation into EHRs. Thereby, the
KOMET is intended to exemplify a tool that is responsive to the
perspectives and needs of patients and clinicians in supporting
shared decision-making both for RCT enrollment and treatment.

We think this approach could be useful for comparative effec-
tiveness research (CER). The impact of CER is based on evidence
generation, which then leads to evidence synthesis, interpretation,
application, dissemination, implementation in widespread prac-
tice, and then feedback for the generation of new evidence.
Ideally, this entire chain rests upon having unbiased and general-
izable RCT evidence. An EHR-based method for patient-centered
enrollment into RCTs should allow more targeted comparative
effectiveness trials inmore diverse clinical sites andmore represen-
tative participants, thereby applicable to more patients and more
care settings. Moreover, more complete EHR-based identification
of potential participants could reduce clinical trial duration, bring-
ing results to the public sooner and reducing costs.

Aside from these potential benefits, we hope that this method
might facilitate overall care by promoting conversations between
clinicians and patients based on evidence specific to their care.
This also could facilitate clinicians’ and the public’s understanding
of, and participation in, clinical trials.

Although not ready for widespread implementation, in its con-
tent, user interface, and connectability to EHRs, KOMET did func-
tion as intended. We believe it warrants further development for
implementation in clinical settings, even while KOMET has limi-
tations related to the available data, modeling methods, analytic
methods, and the prototype software.

An important limitation of our approach is that the models
were created on potentially biased data. We sought data from stud-
ies that had both surgical and medical treatment of knee osteoar-
thritis, and two of our studies had that, but two other registries
included only one treatment (surgery). Both types of sources pro-
vide challenges for creating comparable patients who underwent
the two treatments, as is needed to make accurate models of the
two treatments. However, for mathematical equipoise to serve
its intended purpose of facilitating RCTs of treatments for which
none have yet been done, its models will need to be made on non-
RCT data, as was the case in this project. We undertook many
checks to accurately represent effects despite the likely biased sam-
ples. KOMET’s models performed well despite this challenge, but
for wider use of this approach, additional sources of data and ana-
lytic methods should be developed.

The modeling methods also have limitations. Multivariable
regression methods we used have advantages over some more
computer-intensive methods, including their clearly interpretable
variable coefficients and resistance to overfitting, compared with
some computer-driven methods [32]. However, larger databases
on which more corrections might be made (e.g., by propensity
scores) and newer computer methods might have advantages in
terms of performance and ease of development and should be
explored.

In addition to the modeling methods, the variables we used
have limitations. Based on the collection of important variables
in the available databases, published clinical evidence, and stake-
holder input, we believe we used very credible variables to
represent independent and dependent (treatment outcome) var-
iables. However, there is a specific limitation in the functional
outcome we predicted, which reflected our intent to capture a
holistic physical function of the patient, based on the SF-12 func-
tional scale. In looking at the results of the KOMET’s predictions,
we noticed that pain is often very substantially changed by sur-
gery, but function tends to have a relatively modest improve-
ment. In discussing this with patients, it appears possible that
we might have better captured their meaningful knee functional
improvement if we had used a more knee-specific function rather
than overall physical functioning. Meetings with stakeholders
suggest that both overall and knee-related function are impor-
tant, and future work should develop predictions of the more spe-
cific knee-related function would be useful to both patient and
clinical stakeholders [33, 34]. There are examples in other dis-
eases in which, for specific conditions, disease-specific outcomes
are more useful than more general functional outcomes [35, 36].
Additional research that uses a more specific functional outcome
seems warranted. In addition, ideally, this approach could be
expanded to incorporate outcomes of harm or different weight-
ings of efficacy and safety outcomes, which would presumably
enhance its utility.

We believe the basis for patient-specific equipoise, mathemati-
cal equipoise will benefit from further development, including a
generalizable method by which the overlap of two patient-specific
predictions can be designated as sufficient to constitute equipoise.
In addition, as we learned from our clinical testing, ways to effec-
tively convey the meaning of patient-specific equipoise deserve
development such that is clear to patients and clinicians.

The prototype KOMET software has limitations. The creation
of full-featured, user-friendly, robust software was beyond the
scope of this project. Our prototype needs significant further devel-
opment before it could be used in routine care. Nonetheless, we
believe that it is quite attractive and functional, and in the context

Fig. 3. Early combined pain and function predicted outcome results page.
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of its intended role in this project, a successful product of this
project. More research is needed for this type of decision support,
which should be full-featured, user-friendly, interoperable, and
robust, and will be attractive to help identify patients for whom
enrollment in an RCT might be appropriate.

The limitations listed above all suggest areas for future research.
Approaches must be developed that lessen the biases inherent in
clinical registry data. Just having more data, such from EHR data
warehouses and other sources, will not eliminate biases. Finding
ways to mitigate the biases, using selection and sampling methods
and other approaches, will be extremely important for work on
mathematical equipoise, and for many other efforts to harvest clin-
ically important insights from clinical data.

Modeling clinical outcomes based on data is evolving rapidly,
and increasingly sophisticated computer-based methods, such as
artificial intelligence and machine learning, are being applied to
analysis of clinical data [37]. Although computer-based algorithms
have had tendencies to over-fit [32], which can limit generalizabil-
ity to new populations, these methods are advancing, and an inves-
tigation of best methods is certainly warranted.

Conclusions

This project demonstrated the use of predictive instruments and
mathematical equipoise as a method for detecting patient-specific
equipoise between alternative treatments. Embedded in EHRs, this
approach should help identify patients for whom one or the other
treatment seems likely to yield better outcomes based on their spe-
cific characteristics, and also patients for whom there is insufficient
evidence to favor one treatment. This can be part of a shared deci-
sion-making process that incorporates the patient’s preferences
and priorities, and it also, as clinical equipoise, can support enroll-
ment into an RCT. This approach will require further develop-
ment, and will benefit from testing in clinical practice and for
facilitating comparative effectiveness trials.
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