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Abstract. We investigate whether angular momentum transport due to unstable pulsation
modes can play a significant role in the rotational evolution of massive stars. We find that these
modes can redistribute appreciable angular momentum, and moreover trigger shear-instability
mixing in the molecular weight gradient zone adjacent to stellar cores, with significant evolu-
tionary impact.
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1. Background: Pulsation in Massive Stars
As the many, extensive variability surveys of the past couple of decades have revealed,

pulsation in massive stars appears to be ubiquitous. Examples of these surveys include
the HIPPARCOS astrometry mission, which photometrically discovered over a hundred
new pulsating B stars (e.g., Waelkens et al. 1998); the study by Fullerton et al. (1996),
revealing optical line-profile variations consistent with pulsation in 23 out of a sample of
30 O stars; and the IUE Mega campaign (Massa et al. 1995), which highlighted systematic
variability in the wind of the early B supergiant HD 64760, subsequently attributed to
co-rotating interaction regions rooted in photospheric pulsations (Fullerton et al. 1997;
see also Kaufer et al. 2006).

Against this observational background, it seems reasonable to conjecture that those O
and B stars already confirmed as pulsators could represent just the tip of the iceberg —
that, in fact, a far greater proportion of massive stars are undergoing pulsations, albeit
at amplitudes that fall below present-day detection thresholds. This expectation is lent
considerable support by theoretical calculations (e.g., Pamyatnykh 1999, his Figs. 3 & 4)
showing that any star with a mass M∗ � 3M� must pass through one or more pulsation
instability strips as it evolves from ZAMS to TAMS.

These instability strips all arise from the operation of a thermodynamic engine within
the star, which converts radiant heat into mechanical energy associated with periodic
pulsation. As Eddington (1926) originally pointed out (‘. . . we require, in fact, something
corresponding to the valve-mechanism of a heat engine. . . ’), a key component of this
engine is a regulatory process that adds heat to the stellar material when at its hottest,
and removes heat when at its coolest. In classical (δ) Cepheid pulsators, the regulatory
process is the positive temperature dependence of the Rosseland mean opacity κ at
temperatures log T ≈ 4.5 where second helium ionization occurs. For massive pulsators, a
similar ‘κ mechanism’ operates on the opacity peak at log T ≈ 5.3 associated with bound-
bound transitions of iron-group elements. This ‘iron bump’ leads to overstable p-mode
pulsations in the β Cepheid stars (M∗ � 7M�; Dziembowski & Pamyatnykh 1993),
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and to g-mode pulsations in the slowly pulsating B (SPB) stars (3M� � M∗ � 7M�;
Dziembwoski et al. 1993) and in supergiant B stars (M∗ � 25M�; Pamyatnykh 1999).
Here, the quoted mass ranges are for modes of harmonic degree � = 0 . . . 2; toward
larger values of �, the SPB and supergiant g-mode instability strips merge (see Balona
& Dziembowski 1999).

2. Wave Transport of Angular Momentum
Traditionally, massive-star pulsation has been regarded simply as a dynamical phe-

nomenon to be modeled: we see variations in the photospheric or wind diagnostics of a
particular star, and we attempt to interpret these variations as arising from pulsation
perturbations. More recently, the advent of specialized space observatories such as MOST
(Walker et al. 2003) and COROT (Baglin et al. 2006) has opened the door to applying
the techniques of asteroseismology to massive stars — using the oscillation spectrum of a
pulsating star to place constraints on interior physics such as the incidence of convective
overshoot, or the degree of differential rotation.

In both of these contexts, pulsation is seen as a passive player in a star’s evolution. But
what if, conversely, the star’s evolutionary trajectory were determined to some extent by
its pulsation? This idea has already been applied to low-mass stars; Talon & Charbonnel
(2003, 2005), for instance, argue that internal gravity waves (IGWs — essentially, g-
mode transients damped over a timescale commensurate with their period) play a role
in braking the rotation in the inner regions of such stars.

To include the effects of IGWs on stellar evolution, an extra term is added to the
equation governing angular momentum transport, so that
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This equation applies to shellular differential rotation (as argued by Zahn 1992, strong
horizontal turbulence will tend to enforce uniform rotation across shells of constant radius
r). Modulo geometrical factors of order unity, the term on the left-hand side represents
the local rate of change of angular momentum per unit radius, with Ω(r) the local
angular velocity. On the right-hand side, the first term represents angular momentum
transport due to meridional circulation with a velocity U(r). The second term represents
diffusive processes with a transport coefficient ν; the major contribution to ν comes from
convection and, in radiative zones, from secular shear instability (e.g., Maeder & Meynet
1996). Finally, the third term represents wave transport, as described by a luminosity
function LJ (r) that quantifies the net amount of angular momentum carried per unit
time through the shell at radius r. The main contribution to LJ comes from the Reynolds
stress,

LJ = 4πr2ρ〈r sin θ vr vφ〉. (2.2)

Here, vr and vφ are the radial and azimuthal velocity perturbations due to the wave,
and 〈〉 denotes the average over all solid angles.

3. Application to Massive Stars
In low-mass stars, stochastic processes such as turbulent stresses or convective pene-

tration are considered as the dominant wave excitation mechanism (e.g., Talon & Char-
bonnel 2003). Many authors have assumed that the same processes (albeit operating in
different parts of the interior) are responsible for wave excitation in massive stars; for
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Figure 1. The angular momentum luminosity LJ (left), and its radial derivative dLJ /dr (right),
plotted as a function of radius for the {n, �, m} = {40, 4,−4} g mode of the 10 M� model. The
inset in the right-hand panel details the variation of the luminosity derivative in the µ-gradient
zone adjacent to the core.

instance, Maeder & Meynet (2000) remark that ‘. . . we could expect gravity waves to be
generated by turbulent motions in the convective core.’

However, as should be clear from §1, the waves observed in massive stars are not
stochastic IGWs but unstable global standing oscillations, driven to large amplitudes by
the iron-bump κ mechanism. Thus, the appropriate formalism for treating wave trans-
port in these stars is a normal mode analysis with inclusion of excitation and damping
processes — that is, nonradial, nonadiabatic pulsation theory. This was clearly recog-
nized by Ando (1986, and self-references therein), who was the first to conjecture that
nonadiabatic pulsation may play an important role in shaping the internal rotation pro-
file of massive stars. Unfortunately, Ando’s investigations predated the release (in the
early 1990’s) of updated opacity data that revealed the iron bump; thus, he was unable
to reach any firm conclusions.

To build on this prior work, we examine angular momentum transport by high-order,
intermediate-degree g modes in a 10M� stellar model near the end of its main-sequence
evolution (Xcore = 0.02). (There is nothing particularly significant about this M∗; our
results generalize to stars of both higher and lower masses. However, the late evolutionary
stage is chosen to emphasize the deposition of angular momentum in the molecular
weight gradient zone, discussed further below). We use the boojum pulsation code (see
Townsend 2005) to calculate the complex oscillation spectrum of the stellar model. Modes
whose eigenfrequency ω has a negative imaginary part (i.e., �(ω) < 0) are unstable; the
eigenfunctions of these modes encapsulate all of the information necessary to evaluate the
vr and vφ terms in eqn. (2.2), with the exception of an arbitrary overall normalization.

Fig. 1 plots the angular momentum luminosity LJ as a function of fractional ra-
dius r/R∗ for a single unstable g mode of the 10M� model, having indices {n, �,m} =
{40, 4,−4} and normalized so that the peak photospheric velocity perturbation is 1 km s−1

(this is a conservative choice; for reference, the typical photospheric velocities observed
in pulsating massive stars are on the order of the sound speed, ∼ 10 − 20 km s−1). Also
plotted is the luminosity derivative dLJ /dr; as eqn. (2.1) indicates, this quantity is pos-
itive where angular momentum is extracted, and negative where it is deposited. The
figure reveals angular momentum extraction from the surface layers, where the κ mech-
anism excites the g mode, and matching angular momentum deposition in the interior,
primarily in two regions where the g mode is strongly damped. The outer damping region
(0.78 � r/R∗ � 0.92) arises from the κ mechanism operating in reverse: the opacity has
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Figure 2. Snapshots of the angular velocity Ω of the 10 M� model, plotted as a function of
radius at six epochs during the heimdall simulation.

a strongly negative temperature dependence, and so the thermodynamic engine converts
mechanical energy into radiant heat. The inner damping region (0.07 � r/R∗ � 0.13) is
associated with the zone of varying molecular weight (µ) adjacent to the convective core.
In this zone, the g mode has a very short wavelength due to the steep gravitational strat-
ification; this leads to a spatially oscillatory pattern of angular momentum deposition,
as can be seen from the inset in the right-hand panel of Fig. 1.

The angular momentum luminosity shown in Fig. 1 reaches a peak magnitude of 1.2×
1038 g cm2 s−2 ; by way of comparison, Talon & Charbonnel (2003, their Fig. 4) find a
net luminosity of ∼ 2 × 1036 g cm2 s−2 for IGWs in their model for a 1.2M� star. The
two orders-of-magnitude difference between these values is simply a reflection of the far-
higher amplitudes associated with the unstable modes found in massive stars, than the
stochastically excited waves in low-mass stars. To give a rough estimate of the expected
impact of the unstable modes, we note that over 1Myr (a typical timescale for main-
sequence evolution) the total angular momentum deposited in the µ-gradient zone by the
{n, �,m} = {40, 4,−4} mode would, ceteris paribus, be on the order of 8×1050 g cm2 s−1 .
This is approaching the total angular momentum ∼ 1051 g cm2 s−1 stored in the core if
the 10M� star were rotating uniformly at the critical rate. Thus, the angular momentum
transport due to the pulsation can be expected to have an appreciable impact on the
star’s rotational evolution, and — at the most general level — the answer to the question
posed in this paper’s title is in the affirmative.

4. A Self-Consistent Simulation
Of course, the estimates given above neglect the fact that as the internal rotation pro-

file evolves in response to the angular momentum transport, there will be a corresponding
feedback effect on the pulsation. Clearly, some kind of self-consistent simulation is desir-
able, and to this end we have developed a prototype pulsation-transport code. The code,
named heimdall, solves the angular momentum transport equation (2.1) for an input
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Figure 3. The evolution of the angular velocity Ω in the µ-gradient zone, for the same simulation
shown in Fig. 2. Note how the steep shears in the left-hand panel have been mixed away by the
shear instability in the center and right-hand panels.

stellar model. The meridional circulation term is neglected, because we are interested in
transport occurring on timescales shorter than the circulation timescale R∗/U ; however,
the diffusion term is retained, to allow the rotation profile to relax from the steep angular
velocity gradients created by the wave transport term. To evaluate the wave transport
term, a modularized version of the boojum code is used to calculate the complex os-
cillation spectrum of the stellar model at each simulation timestep. As in the preceding
section, the angular momentum luminosity is obtained from mode eigenfunctions; how-
ever, rather than arbitrarily fixing mode amplitudes, heimdall allows them to evolve
over each timestep in accordance with individual linear growth/damping rates −�(ω).

Fig. 2 shows snapshots of the rotation profile Ω(r) for the 10M� model, from a heim-

dall simulation of transport by {�,m} = {4,−4} g modes. The simulation begins in a
state of uniform rotation at 33% of the critical rate Ωc. Initially, a broad spectrum of g
modes, with radial orders n = 26 . . . 47, are unstable toward the κ mechanism. As these
g modes grow in amplitude, they transport angular momentum inwards from the surface
layers. Because these layers contain little mass, they are braked quite rapidly; this estab-
lished a broad shear region separating the interior from the surface, which acts to damp
all but one of the initially unstable g modes. The radial order of the single remaining
mode progressively increases from n = 47 to n = 63 in a sequence of mode-switching
episodes; in between the switching, the mode hovers at the borderline of neutral stability,
maintaining a surface amplitude of ∼ 1 − 2 km s−1 .

In the 10, 000 yr panel of Fig. 2, the long-term impact of the single remaining mode
begins to emerge: angular momentum is deposited in the µ-gradient zone, resulting in
its gradual spin-up. For the reasons discussed previously the deposition is spatially os-
cillatory, and leads to the establishment of nested shear layers of very narrow extent
(∼ 10−3 R∗). These shear layers are clearly revealed in the left-hand panel of Fig. 3; how-
ever, in the center and right-hand panels, the shear layers have been partly dissolved by
diffusive transport associated with the secular shear instability, which tends to smooth
out steep gradients in Ω.

This result represents perhaps the most exciting finding in our exploratory calculations.
As it dissolves shear layers established by pulsation angular momentum transport, the
shear instability will mix the chemical composition in the µ-gradient zone. Given that
this zone plays a pivotal role in modulating angular momentum transport, in particular
serving as an insulator which inhibits meridional circulation coupling between core and
envelope, we expect that the disruption of this zone by shear/pulsation-assisted mixing
(SPAM) will have a profound impact on the rotational evolution of massive stars. Building
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on the foundation established by our heimdall simulations, we plan further calculations
to examine the precise nature of this impact.
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Discussion

Cranmer: Are your plots showing the equatorial plane? If so, might the angular mo-
mentum be circulating back toward the surface at mid-latitudes, say?

Townsend: No, since the rotation is shellular, the angular velocity is uniform over each
spherical surface.

Maeder: [In considering angular momentum transport by g modes], if we account for
horizontal turbulence, with the coefficient by S. Mathys and myself, it introduces a strong
damping factor which considerably reduces the efficiency of this transport process.

Townsend: I think that the horizontal turbulence will be efficient at damping IGWs
excited stochastically in the core; but the g modes I’m considering are excited by the
iron-bump κ mechanism in the envelope, and are far more robust. Don’t forget that we
see direct observational evidence for these unstable g modes.

Skinner: Could you comment on what observational data are now available or might
be available in the near future to test the validity of the models/simulations?

Townsend: Survey data will be most useful in looking for evidence (e.g., a correlation
between pulsation and surface enrichment) that the µ-gradient zone has been disrupted
by SPAM. In this respect, both the Large Synoptic Survey Telescope and the Kepler
mission look to be promising developments.
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