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Abstract. In theoretical as well as practical issues of the asteroidal hazard problem, it is
important to be able to assess the degree of predictability of the orbital motion of asteroids.
Some asteroids move in a virtually predictable way, others do not. The characteristic time of
predictability of any motion is nothing but the Lyapunov time (the reciprocal of the maximum
Lyapunov exponent) of the motion. In this report, a method of analytical estimation of the
maximum Lyapunov exponents of the orbital motion of asteroids is described in application
for two settings of the problem. Namely, the following two types of the motion are considered:
(1) the motion close to the ordinary or three-body mean motion resonances with planets, and
(2) the motion in highly eccentric orbits subject to moderately close encounters with planets.
Whatever different these settings may look, the analytical treatment is universal: it is performed
within a single framework of the general separatrix map theory. (Recall that the separatrix maps
describe the motion near the separatrices of a nonlinear resonance.) The analytical estimates of
the Lyapunov times are compared to known numerical ones, i.e., to known estimates obtained
by means of numerical integration of the orbits.
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1. Introduction
Assessment of the degree of predictability of the orbital motion of asteroids and other

potentially hazardous objects is one of the most complicated aspects of the asteroidal
hazard problem. Some asteroids move in a virtually predictable way, others do not.
Whipple (1995) wrote: “The existence of a significant population of extremely chaotic
Earth-crossing asteroids must be factored into the thinking about the potential hazard
posed by these objects. An asteroid with a Lyapunov time of 20 years may be considered
as an example. If the initial error in its position is 100 km (a very optimistic assumption)
then that error will grow to one Earth radius in 83 years and to an Earth–Moon distance
in 165 years. Assessments of the threat from specific objects like this can be made for
only short spans of time.”

Generally, the estimation of the Lyapunov exponents is one of the most important
tools in the study of chaotic motion (Lichtenberg & Lieberman (1992)), in particular in
celestial mechanics. The Lyapunov exponents characterize the mean rate of exponential
divergence of trajectories close to each other in phase space; in the Hamiltonian systems,
nonzero Lyapunov exponents indicate chaotic character of motion, while the maximum
Lyapunov exponent equal to zero signifies regular (periodic or quasi-periodic) motion.
The Lyapunov time (quantity reciprocal to the maximum Lyapunov exponent) gives the
characteristic time of predictable dynamics.

The development of methods of numerical computation of the Lyapunov exponents
has more than a thirty year history (see reviews in Froeschlé (1984), Lichtenberg &
Lieberman (1992)). On the contrary, methods of analytical estimation of the Lyapunov
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exponents started to be developed only recently (Holman & Murray (1996), Murray &
Holman (1997), Shevchenko (2000a), Shevchenko (2002), Shevchenko (2004a)).

In this report, a method of analytical estimation of the maximum Lyapunov exponents
of the orbital motion of asteroids is described in application for two settings of the
problem. Namely, the following two types of the motion are considered: (1) the motion
close to the ordinary or three-body mean motion resonances with planets, and (2) the
motion in highly eccentric orbits subject to moderately close encounters with planets.
Whatever different these settings may look, the analytical treatment is universal: it is
performed within a single framework of the general separatrix map theory.

The analytical estimates of the Lyapunov times are compared to known numerical
ones, i.e., to known estimates obtained by means of numerical integration of the orbits.

2. The model of perturbed resonance
Under general conditions (Chirikov (1977), Chirikov (1979), Lichtenberg & Lieberman

(1992)), a model of nonlinear resonance is provided by the Hamiltonian of the nonlinear
pendulum with periodic perturbations:

H =
Gp2

2
−F cos ϕ + a cos(ϕ − τ) + b cos(ϕ + τ). (2.1)

The first two terms in Eq. (2.1) represent the Hamiltonian H0 of the unperturbed pen-
dulum; ϕ is the pendulum angle (the resonance phase angle), p is the momentum. The
periodic perturbations are given by the last two terms; τ is the phase angle of perturba-
tion: τ = Ωt+τ0, where Ω is the perturbation frequency, and τ0 is the initial phase of the
perturbation. The quantities F , G, a, b are constants. The frequency of the pendulum
small-amplitude oscillations ω0 ≡ (FG)1/2.

An example of section of phase space of the Hamiltonian (2.1) at τ = 0 mod 2π is
shown in Fig. 1 (Ω = 5, ω0 = 1, a = b, ε ≡ a

F = 0.5). This is a chaotic resonance triplet.
The motion near the separatrices of Hamiltonian (2.1) is described by the so-called

separatrix algorithmic map (Shevchenko (1999)):

if wn < 0 and W = W− then W = W+,

if wn < 0 and W = W+ then W = W−;
wn+1 = wn − W sin τn,

τn+1 = τn + λ ln
32

|wn+1|
(mod 2π); (2.2)

with the parameters

λ =
Ω
ω0

, (2.3)

W+(λ, η) = ελ (A2(λ) + ηA2(−λ)) ,

W−(λ, η) = ελ (ηA2(λ) + A2(−λ)) , (2.4)

ε = a
F , η = b

a . The Melnikov–Arnold integral A2(λ) is given by the relation

A2(λ) = 4πλ
exp(πλ/2)
sinh(πλ)

, (2.5)

see (Chirikov (1979), Shevchenko (1998b), Shevchenko (2000b)).
The quantity w denotes the relative (with respect to the separatrix value) pendulum

energy: w ≡ H0
F −1. The variable τ retains its meaning of the phase angle of perturbation.
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Figure 1. An example of a chaotic resonance triplet.

One iteration of map (2.2) corresponds to one half-period of pendulum’s libration or one
period of its rotation.

If a = b (symmetric case), the separatrix algorithmic map reduces to the well-known
ordinary separatrix map

wi+1 = wi − W sin τi,

τi+1 = τi + λ ln
32

|wi+1|
(mod 2π), (2.6)

written in the present form in (Chirikov (1977), Chirikov (1979)); the expression for W
(Shevchenko (1998b), Shevchenko (2000b)) is

W = ελ (A2(λ) + A2(−λ)) = 4πε
λ2

sinh πλ
2

. (2.7)

Formula (2.7) differs from that given in (Chirikov (1979), Lichtenberg & Lieberman
(1992)) by the term A2(−λ), which is small for λ � 1. However, its contribution is
significant for λ small (Shevchenko (1998b)), i.e., in the case of adiabatic chaos.

An equivalent form of Eqs. (2.6), used, e.g., in (Chirikov & Shepelyansky (1984),
Shevchenko (1998a)), is

yi+1 = yi + sin xi,

xi+1 = xi − λ ln |yi+1| + c (mod 2π), (2.8)

where y = w/W , x = τ + π; and
c = λ ln

32
|W | . (2.9)

The applicability of the theory of separatrix maps for description of the motion near
the separatrices of the perturbed nonlinear resonance in the full range of the relative fre-
quency of perturbation, including its low values, was discussed and shown to be legitimate
in (Shevchenko (2000b)).
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The half-width yb of the main chaotic layer of the separatrix map (2.8) in the case
of the least perturbed border of the layer is presented as a function of λ in Fig. 1 in
(Shevchenko (2004a)). The observed dependence follows the piecewise linear law with
a transition point at λ ≈ 1/2. This transition takes place not only in what concerns
the width of the layer, but also in other characteristics of the motion, in particular, in
the maximum Lyapunov exponent. The clear sharp transition at this point manifests a
qualitative distinction between two types of dynamics, “slow” and “fast” chaos.

3. The method of analytical estimation of Lyapunov times
In (Shevchenko (2000a), Shevchenko (2002)), a method for estimation of the maximum

Lyapunov exponent of the chaotic motion in the vicinity of separatrices of perturbed non-
linear resonance was derived in the framework of the separatrix map theory. Following the
general approach (Shevchenko (2000a), Shevchenko (2002)), we represent the maximum
Lyapunov exponent L of the motion in the main chaotic layer of system (2.1) as the ratio
of the maximum Lyapunov exponent Lsx of its separatrix map and the average period T
of rotation (or, equivalently, the average half-period of libration) of the resonance phase
ϕ inside the layer. For convenience, we introduce a non-dimensional quantity Tsx = ΩT .
Then the general expression for L is

L = Ω
Lsx

Tsx
. (3.1)

The quantity TL ≡ L−1, by definition, is the Lyapunov time.
We consider four generic resonance types: the fastly chaotic resonance triplet, fastly

chaotic resonance doublet, slowly chaotic resonance triplet, slowly chaotic resonance dou-
blet (we call them, respectively, the “ft”, “fd”, “st”, “sd” resonance types).

3.1. Fast chaos. Resonance triplet
Consider the case of a = b, λ > 1/2. This means that there is a symmetric triad of
interacting resonances (first condition), and chaos is fast (second condition).

The case of the fastly chaotic triad is completely within the range of applicability of the
method presented in (Shevchenko (2000a), Shevchenko (2002)). The perturbed nonlinear
resonance is modelled by Hamiltonian (2.1) with a = b. Following (Shevchenko (2000a),
Shevchenko (2002)), we take the dependence of the maximum Lyapunov exponent of the
separatrix map (2.8) upon λ in the form

Lsx(λ) ≈ Ch
2λ

1 + 2λ
, (3.2)

where Ch ≈ 0.80 is a constant (Shevchenko (2004b)).
The average increment of τ (proportional to the average rotation period, or libration

half-period) inside the chaotic layer is (Chirikov (1979), Shevchenko (2000a), Shevchenko
(2002)):

Tsx(λ,W ) ≈ λ ln
32e

λ|W | , (3.3)

where e is the base of natural logarithms. From Eq. (3.1), one has for the Lyapunov time
for the “ft” resonance type:

TL =
Tpert

2π

Tsx

Lsx
≈ Tpert

(1 + 2λ)
4πCh

ln
32e

λ|W | , (3.4)

where Tpert = 2π/Ω is the period of perturbation.
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3.2. Fast chaos. Resonance doublet

The previous analysis of the symmetric case a = b sets a foundation for an analysis of the
more general asymmetric case a �= b, since the Lyapunov exponents in the asymmetric
case can be found by averaging the contributions of the separate components of the
chaotic layer (Shevchenko (2004a)).

Calculation of the average constitutes a complicated problem. In particular, one should
know the relative average times of residence of the system in three different components of
the layer corresponding to direct rotation, reverse rotation, and libration of the pendulum.
The relative times of residence depend on the asymmetry of perturbation. A simple
heuristic method of averaging was proposed in (Shevchenko (2000a), Shevchenko (2002)),
but rigorous solution is still far from being found.

In view of these difficulties, we consider the limit case of a or b equal to zero. It means
that one of the two perturbing resonances simply does not exist, and instead of the
resonance triad we have a duad.

If λ > 1/2, the equality b = 0 implies |W−| � |W+|, and, vice versa, a = 0 implies
|W−| � |W+|. We designate the dominating quantity by W .

Consider first the libration side of the chaotic layer. Then W− and W+ alternate
(replace each other) at each iteration of the separatrix algorithmic map (2.2). It is
straightforward to show that, if W− or W+ is equal to zero, the separatrix algorith-
mic map (2.2) on the doubled iteration step reduces to the ordinary separatrix map (2.6)
with the doubled value of λ and the same non-zero value of W . One iteration of the new
map corresponds to two iterations of the old one. Since the half-width of the chaotic
layer of map (2.6) is ≈ λW (Chirikov (1979), Shevchenko (2004a)), the layer’s extent in
w on the side of librations doubles, it becomes ≈ 2λW . Note that the parameters λ and
W are considered here as independent from each other.

Consider then the circulation sides of the chaotic layer. The side corresponding to
reverse (or direct) rotations does not exist, if W− (or, respectively, W+) is equal to
zero; its measure is zero. The other side, corresponding to direct (or reverse) rotations is
described by the ordinary separatrix map (2.6) with the parameters λ, W ; its extent in
w is ≈ λW .

The averaged (over the whole layer) value of the maximum Lyapunov exponent is the
sum of weighted contributions of the layer components corresponding to the librations,
direct rotations and reverse rotations of the pendulum. The weights are directly pro-
portional to the times that the trajectory spends in the components, and, via supposed
approximate ergodicity, to the relative measures of the components in phase space. Tak-
ing into account the just made estimates of the widths of the chaotic layer’s components
in the duad case, one can expect that the relative weights of librations and circulations
in the “fd” case are respectively 4 and 1.

Hence the formula for the Lyapunov exponent for the “fd” resonance type is

L =
Ω

µlibr + 1

(
µlibr

Lsx(2λ)
Tsx(2λ,W )

+
Lsx(λ)

Tsx(λ,W )

)
, (3.5)

and

TL =
Tpert

2π
· µlibr + 1

µlibr
Lsx (2λ)

Tsx (2λ,W ) + Lsx (λ)
Tsx (λ,W )

, (3.6)

where µlibr ≈ 4, and W , Lsx, Tsx are given by formulas (2.7, 3.2, 3.3).
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3.3. Slow chaos. Resonance triplet
In the case of λ < 1/2, the diffusion across the layer is slow, and on a short time interval
the phase point of the ordinary separatrix map (2.8) follows close to some current curve.
We call this curve guiding. Let us derive an analytical expression for the guiding curve
with an irrational winding number far enough from the main rationals. We approximate
the winding number by the rationals m/n. Thus c ≈ 2πm/n. Noticing that at an iteration
n of the map the phase point hits in a small neighborhood of the starting point, one
obtains for the derivative:

dy

dx
=

1
nc − 2πm

n−1∑
k=0

sin(x + kc) =

=
1

nc − 2πm
sin

nc

2
cosec

c

2
sin

(
x +

n − 1
2

c

)
. (3.7)

Integrating and passing to the limit n → ∞, one obtains:

y = −1
2

cosec
c

2
cos

(
x − c

2

)
+ C, (3.8)

where C is an arbitrary constant of integration.
The motion is chaotic only when the curve (3.8) crosses the singular line y = 0. Hence

the half-width of the chaotic layer is yb =
∣∣cosec c

2

∣∣. Averaging (by taking an integral
analytically) the quantity − ln |yi+1| (equal to (〈∆x〉 − c) /λ, Eqs. (2.8)), where yi+1 is
substituted by y of Eq. (3.8), over the chaotic layer in the derived boundaries, we find
the approximate analytical expression for Θ ≡ (Tsx − c)/λ:

Θ ≈ ln
∣∣∣4 sin

c

2

∣∣∣ . (3.9)

Then, we need an expression for Lsx(λ). We explore the λ dependence of Lsx in a
numerical experiment. At each step in λ (namely, ∆λ = 0.005, λ � 0.005) we find the
value of c corresponding to the case of the least perturbed layer and plot the value of Lsx.
At λ < 0.3, the dependence turns out to be practically linear. The linear fit Lsx(λ) = aλ
gives a = 1.01132 ± 0.00135, and the correlation coefficient R = 0.9998.

We set Lsx ≈ λ for the generic (non-resonant) values of c and for λ < 1/2. Then, from
Eqs. (3.1, 3.9) one has the following approximate formula for the maximum Lyapunov
exponent:

L ≈ Ω

ln
∣∣∣4 sin

c

2

∣∣∣ +
c

λ

, (3.10)

where c = λ ln 32
|W | (Eq. (2.9)).

For λ � 1 one has W ≈ 8ελ, hence the formula for the Lyapunov time for the “st”
resonance type:

TL ≈ Tpert

2π
ln

∣∣∣∣16
ελ

sin
(

λ

2
ln

4
|ε|λ

)∣∣∣∣ . (3.11)

3.4. Slow chaos. Resonance doublet
Utilizing the approximation of the Melnikov–Arnold integral A2(λ) ≈ 2πλ + 4 at λ �
1, η = 0, one has: W± ≈ ελ(4 ± 2πλ) ≈ 4ελ. So, in the “sd” case, the separatrix
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Figure 2. The maximum Lyapunov exponent of the chaotic motion of system (2.1) in depen-
dence on the magnitude of perturbation: the results of direct computation (circles) and the
theoretical curves.

algorithmic map (2.2) degenerates to the ordinary separatrix map (2.6) with W ≈ 4ελ,
i.e., mathematically the case is equivalent to the “st” case, but with a different (halved)
value of W .

Following the lines of the previous Subsection, it is then straightforward to write down
the formula for the Lyapunov time for the “sd” resonance type:

TL ≈ Tpert

2π
ln

∣∣∣∣32
ελ

sin
(

λ

2
ln

8
|ε|λ

)∣∣∣∣ . (3.12)

3.5. Theory versus numerical experiment
To check the theory, the Lyapunov exponents of the chaotic motion near the separatri-
ces of Hamiltonian (2.1) have been directly computed by means of the program pack-
age (Shevchenko & Kouprianov (2002), Kouprianov & Shevchenko (2003)) utilizing the
HQRB method by von Bremen, Udwadia & Proskurowski (1997). The power of this
method is far greater than that necessary in the present computation. It allows one to
evaluate the full Lyapunov spectrum of a multidimensional system. The spectrum of our
system consists of a sole pair of Lyapunov exponents — the maximum one and its nega-
tive counterpart. The integration of the equations of motion has been performed by the
integrator by Hairer, Nørsett & Wanner (1987). It is an explicit 8th order Runge–Kutta
method due to Dormand and Prince, with the step size control. We choose the time unit
in such a way that ω0 = 1.

The results of the computations for λ = 0.1 and 2 are shown in Fig. 2 (circles). The
integration time interval has been chosen to be equal to 106. This is sufficient for the
computed values of the Lyapunov exponents to saturate in each case. Local wave-like pat-
terns represent prominent features of the constructed dependences; they are conditioned
by the process of encountering resonances, while ε changes.
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The theoretical dependences are shown in Fig. 2 as solid curves. TL are given by
formulas (3.4, 3.6, 3.11, 3.12); L = 1/TL. Close correspondence is observed between the
theory and experimental data for each value of λ.

4. Lyapunov times of the asteroidal motion subject to resonances
The mean motion resonances and secular resonances represent the main classes of the

orbital resonances in the motion of asteroids. The mean motion ones represent commen-
surabilities of the periods of the motion of asteroids and planets. There are two main
subclasses of the mean motion resonances: ordinary (two-body) resonances and three-
body resonances.

4.1. Ordinary mean motion resonances

The Hamiltonian of the motion of a zero-mass test particle in the gravitational field of
the Sun and Jupiter, in the plane of Jupiter’s orbit, in the vicinity of a mean motion
resonance with Jupiter can be represented in some approximation in the form (Holman
& Murray (1996), Murray & Holman (1997)):

H =
1
2
βΛ2 −

q∑
p=0

φk+q,k+p,k cos(ψ − pω), (4.1)

where β = 3k2/a2, Λ = Ψ − Ψres, Ψ = (µ1a)1/2/k, Ψres = (µ2
1/(k2(k + q)nJ ))1/3, µ1 =

1− µ, ω ≡ −� (i.e., ω is minus the longitude of asteroid’s perihelion; its time derivative
is assumed to be constant); a and e are asteroid’s semimajor axis and eccentricity. The
integer non-negative numbers k and q define the resonance: the ratio (k + q)/k equals
the ratio of mean motions of an asteroid and Jupiter in the exact resonance. The phase
ψ ≡ kl − (k + q)lJ , where l and lJ are the mean longitudes of an asteroid and Jupiter.

Here the units are chosen in such a way that the total mass (Sun plus Jupiter), the
gravitational constant, Jupiter’s semimajor axis aJ are all equal to one; µ = 1/1047.355,
µ1 = 1 − µ. Jupiter’s mean longitude lJ = nJ t, eccentricity eJ = 0.048. Jupiter’s mean
motion nJ = 1, i.e., the time unit equals 1

2π th part of Jupiter’s orbital period.
According to Eq. (4.1), the resonance (k+q)/k splits in a cluster of q+1 subresonances

p = 0, 1, . . . , q. The coefficients of the resonant terms are

|φk+q,k+p,k| ≈
µ

qπaJ

(
q

p

)( ε

2

)p (εJ

2

)q−p

, (4.2)

where ε = eaJ/|a − aJ |, εJ = eJaJ/|a − aJ | (Holman & Murray (1996), Murray & Hol-
man (1997)). The approximation (4.2) is good, if εq < 1 (Holman & Murray (1996)).
Besides, the model is restricted to the resonances of relatively high order, q � 2.

The signs of the coefficients φk+q,k+p,k alternate with changing p, so, the coefficients
with numbers p and p + 2 are always of the same sign. This means that whatever is the
choice of the guiding resonance in the multiplet, its closest neighbors have coefficients of
equal signs, and η is always non-negative.

The frequency of small-amplitude oscillations at the subresonance p

ω0 = (β|φk+q,k+p,k|)1/2 ≈ aJ

|a − aJ |
nJ

(
µ1µ

4q

3π

(
q

p

)(
a

aJ

)( ε

2

)p (εJ

2

)q−p
)1/2

(4.3)
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Table 1. Numerical and analytical estimates of Lyapunov times for ordinary
mean motion resonances, TL in years, e = 0.1

k+q
k λ lg Tnum

L † lg T theor
L Res. type

3/1 0.093 3.8–4.3 4.3 sd
5/2 0.192 3.5–3.8 4.1 st
7/3 0.415 3.8–4.2 4.0 st
9/4 0.932 3.9–4.3 4.2 fd*

11/5 1.970 3.9–4.3 4.3 ft*
9/5 0.323 3.6–3.8 3.7 st*
7/4 0.166 3.2–3.3 3.7 st

12/7 0.594 3.6–4.0 3.9 fd*
5/3 0.101 2.5–3.3 3.7 sd
8/5 0.156 2.5–3.3 3.6 st*

11/7 0.264 3.3–3.6 3.5 st*

† Morbidelli & Nesvorný (1999), Holman & Murray (1996)

and the perturbation frequency

Ω = ω̇ ≈ µ1µ

2π
nJ

(
a

aJ

)1/2 (
aJ

a − aJ

)2

, (4.4)

cf. (Holman & Murray (1996), Murray & Holman (1997)). The ratio of Ω and ω0 gives
the value of λ.

Now we are able to apply the theory developed in Section 3. For comparison, we take
the data on the numerical (based on integrations) values of TL for the motion near mean
motion resonances from Fig. 1 in (Morbidelli & Nesvorný (1999)) and Fig. 6 in (Holman
& Murray (1996)). The theoretical estimates are made by means of formulas (3.4, 3.6,
3.11, 3.12). Before they are used, the guiding resonance in the multiplet is identified (it
has the maximum value of |φk+q,k+p,k|), and its two closest neighbors are considered
as the perturbing resonances. Then, the formula is chosen in accord with the resonance
type (fastly chaotic triad “ft”, fastly chaotic duad “fd”, slowly chaotic triad “st”, or
slowly chaotic duad “sd”). If the amplitudes of the neighbors differ from each other less
than twice, the model resonance is considered to be a triad, otherwise a duad. Those
resonances which have εq > 1 are marked in Table 1 by an asterisk.

The analytical maximum Lyapunov exponent estimates are generally in agreement
with the numerical ones. However, some differences can be clearly seen, especially in the
domain of slow chaos. This should be attributed to the imperfectness of model (4.1), and
mainly to the fact that the coefficients φk+q,k+p,k are treated as constants. They fix the
frequencies ω0 of small amplitude oscillations at subresonances, and when the period of
perturbation is large in relation to the period of these oscillations, the variations of ω0

can have greater dynamical influence.
Also another effect can be of importance. The differential distribution, built by

Shevchenko, Kouprianov & Melnikov (2003) for a representative plane of starting values
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(the trajectories were computed by the Wisdom map (Wisdom (1983)) in the planar
elliptic restricted three-body problem), demonstrates that the maximum Lyapunov ex-
ponent of the trajectories near the 3/1 mean-motion resonance with Jupiter has two, and
not one, preferable numerical values: the distribution has a bimodal peak structure. This
signifies that there are two distinct domains of chaos in phase space; thus the perturbed
pendulum model as applied to this low-order mean motion resonance turns out to be too
approximate. This example shows also that generally a closer look at the numerical data
may be necessary when comparing it with theory.

Now consider an example of an estimate for a real asteroid, namely (522) Helga. This
object is famous to be the first example of “stable chaos” among asteroids (Milani &
Nobili (1993)): while its Lyapunov time is relatively small (6900 years), its orbit does not
exhibit any gross changes on cosmogonic time scales, according to numerical experiments.
It is known to be in the 12/7 mean motion resonance.

Let us apply our method. The necessary data on a, e, the perihelion frequency g = �̇
are taken from the “numb.syn” catalogue (Knez̆ević & Milani (2000)) of the AstDyS
web service†. Tpert is defined by the value of g. We find that the guiding subresonance
in the resonance sextet is the third one (p = 2), consequently the perturbing neighbors
in our model have the numbers p = 1 and 3. The quantity εq = 0.624 < 1, so there
are no problems with the potential model. The derived separatrix map parameters are:
λ = 2.325, η = 0.812, consequently the model resonance type is the fastly chaotic triplet
“ft”. Applying formula (3.4), one has TL = 9700 years. The agreement with the values,
obtained in integrations in the full problem, (6900 years (Milani & Nobili (1993)), 6860
years (AstDyS)) should be considered as satisfactory.

4.2. Three-body mean motion resonances

An important role in the orbital dynamics of bodies of the Solar system, in particular
asteroids, is played by the so-called three-body resonances (Murray, Holman & Potter
(1998), Nesvorný & Morbidelli (1998), Nesvorný & Morbidelli (1999)). In the case of a
three-body resonance, the resonant phase is a combination of angular elements of the
orbits of three bodies (a test one and two perturbing ones; e.g., an asteroid, Jupiter, and
Saturn).

The three-body resonances can be described by the perturbed pendulum model (Mur-
ray, Holman & Potter (1998), Nesvorný & Morbidelli (1998), Nesvorný & Morbidelli
(1999)). The Hamiltonian of the motion of a zero-mass test particle near a three-body
resonance {mJmSm} with Jupiter and Saturn in the planar-elliptic problem can be ex-
pressed, in some approximation, in the following form (Nesvorný & Morbidelli (1999)):

H = αS2 +
∑

pJ ,pS ,p

βpJ pS p cos σpJ pS p , (4.5)

where the conjugated to S resonance argument σpJ pS p = mJ lJ + mSlS + ml + pJ�J +
pS�S + p� (it is assumed that the time derivatives of lJ , lS , �J , �S are constants),
α = −(3/2)n2a−2

res. Analytical expressions βpJ pS p(e) for some important three-body res-
onances are given in Tables 3–6 in (Nesvorný & Morbidelli (1999)). It is clear from
Eq. (4.5) that the three-body resonance {mJmSm} splits in a cluster of subresonances
with various {pJpSp} combinations.

† http://hamilton.dm.unipi.it/cgi-bin/astdys/
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Table 2. Numerical and analytical estimates of Lyapunov times for asteroids in
three-body mean motion resonances

Asteroid Resonance
{mJmSm} λ

Tnum
L
yr †

Tnum
L
yr ‡

T theor
Lyr

Res.
type

258 Tyche 2 + 2 − 1 0.536 35900 – 43100 ft
485 Genua 3 − 1 − 1 0.376 6550 6500 35700 sd
1642 Hill 3 − 1 − 1 0.643 36100 – 43300 fd
936 Kunigunde 6 + 1 − 3 0.624 22200 – 54600 fd
490 Veritas 5 − 2 − 2 0.546 10200 8500 9100 fd
2039 Paine-Gaposchkin 5 − 2 − 2 0.449 22000 – 6020 sd
3460 Ashkova 5 − 2 − 2 0.433 65100 8300 5940 sd

† AstDyS
‡ Nesvorný & Morbidelli (1998), Nesvorný & Morbidelli (1999), Milani, Nobili & Knez̆ević (1997)

The frequency of small-amplitude oscillations at the subresonance {pJpSp} is
(Nesvorný & Morbidelli (1999)):

ω0 = 2πn(3βpJ pS p)1/2a−1
res. (4.6)

The perturbation frequency Ω is generally an algebraic combination of perihelion fre-
quencies of Jupiter, Saturn and the asteroid. The formula for this combination is defined
by the choice of the guiding subresonance (see below). The ratio of Ω and ω0 gives the
value of λ.

We consider the asteroids residing close to the three-body resonances studied in
(Nesvorný & Morbidelli (1999)), and utilize the analytical data in Tables 3–6 in (Nesvorný
& Morbidelli (1999)) on the coefficients of resonant terms. The theoretical estimates of
Lyapunov times are made by means of formulas (3.4, 3.6, 3.11, 3.12). Before they are
used, the guiding resonance in the multiplet is identified (it has the maximum value
of |βpJ pS p|), and its two closest neighbors are considered as the perturbing resonances.
Then, the formula is chosen in accord with the resonance type (“ft”, “fd”, “st”, “sd”).

On identification of the guiding resonances in the multiplets, it turns out that the
three-body resonances under study subdivide in two distinct classes: those for which the
perturbation frequency Ω in model (2.1) is equal to �̇ − �̇J , and those for which it is
equal to �̇S − �̇J . The resonances 5− 2− 2 and 3− 1− 1 belong to the first class, while
2 + 2 − 1 and 6 + 1 − 3 to the second. We use �̇J = 4.257′′/yr and �̇S = 28.243′′/yr
(Bretagnon (1990)). The data on �̇, a, and e are taken from the “numb.syn” catalogue
(Knez̆ević & Milani (2000)) of the AstDyS web service.

The theoretical estimates, obtained in this way, are presented in Table 2. Some of
them are in accord with the numerical ones (in particular, in the case of (490) Veritas),
others are not. From the fact of disagreement in the cases of (485) Genua and (2039)
Paine-Gaposchkin, one can judge that these objects do not, most probably, reside in the
chaotic layers of the prescribed resonance multiplets. Thus the analytical estimation of
Lyapunov times represents a promising tool for discerning between possible models of
chaos in the motion of real asteroids, and, generally, celestial bodies.
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5. Lyapunov times of the asteroidal motion subject to encounters
5.1. Lyapunov exponents of the motion described by the Kepler map

Consider a map similar to Eqs. (2.8), but with a power-law phase increment instead of
the logarithmic one:

yi+1 = yi + sin xi,

xi+1 = xi − λ|yi+1|−γ + c (mod 2π). (5.1)

A number of mechanical and physical models are described by such maps. The case
of γ = 3/2, c = 0 corresponds to the Kepler map. It was derived and analyzed in
(Chirikov & Vecheslavov (1986), Vecheslavov & Chirikov (1988), Chirikov & Vecheslavov
(1989), Petrosky (1986)) in order to describe the chaotic motion of the Halley comet and,
generally, the motion of comets in nearly parabolic orbits. The motion model consists in
the assumption that the main perturbing effect of Jupiter is concentrated when the comet
is close to the perihelion of its orbit. This effect is defined by the phase of encounter with
Jupiter. The variable y has the meaning of the normalized full energy of the comet, while
x is the normalized time. One iteration of the map corresponds to one orbital revolution
of the comet.

Chirikov’s constant Cgen
h for general separatrix map (5.1) with an arbitrary value of γ

is introduced in the same way as one for basic map (2.8): it is the least upper bound for
the maximum Lyapunov exponent of the motion in the main chaotic layer of the map.
The proper limit can be shown to exist in the same way as it was done in (Shevchenko
(2004b)) for the ordinary separatrix map.

By means of linearization of map (5.1) in y it is straightforward to see that the value
of y corresponding to the critical value of the stochasticity parameter K = KG of the
approximating standard map is yb = (γλ/KG)

1
γ +1 , while the value of y corresponding

to K = 4 is yp = (γλ/4)
1

γ +1 . The first of these values marks the border of the chaotic
layer, while the second one roughly separates mostly “non-porous” and mostly “porous”
parts of the layer. The ratio yb/yp ≈ 4

1
γ +1 ; hence the contribution of the porous part

to the value of the maximum Lyapunov exponent in the layer becomes negligible with
γ increasing. This makes the estimation of Chirikov’s constant in the case of general
separatrix map (5.1) with γ > 0 more precise than in the case of map (2.8), because the
contribution of the porous part, which is small here, is most uncertain.

An expression for Chirikov’s constant Cgen
h for the general separatrix map is derived

from Eq. (9) in (Shevchenko (2004b)) in the same way as in the case of Chirikov’s constant
Ch for the basic separatrix map (cf. Shevchenko (2004b)), except the change of the
variable and the expression for layer’s half-width are different. The resulting expression
is

Cgen
h (γ) =

K
1

γ +1
G

(γ + 1)σ(γ)

∞∫
KG

L(K)µ(K)
dK

K
γ +2
γ +1

, (5.2)

where

σ(γ) =
K

1
γ +1
G

γ + 1

∞∫
KG

µ(K)
dK

K
γ +2
γ +1

. (5.3)

The functions L(K) and µ(K) (the maximum Lyapunov exponent of the standard map
and the measure of the chaotic component in phase space of the standard map, both
in dependence on the stochasticity parameter) were computed in (Shevchenko (2004b)).
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Figure 3. The λ dependence of the maximum Lyapunov exponent of the Kepler map and the
curve (5.4).

Performing numerical calculation of integral (5.2), we obtain the value of CK ≡ Cgen
h (γ =

3/2), that turns out to be equal to 2.21 . . ..
Let us check the obtained value CK ≈ 2.21 versus a direct computation of the maximum

Lyapunov exponent of the Kepler map. In Fig. 3, the computed maximum Lyapunov
exponent of map (5.1) is plotted versus λ. The limit λ → ∞ of the dependence gives
Chirikov’s constant; one can see that the computed dependence is in accord with this
prediction. All the observed data are below the line CK = 2.2, as expected. A good fit
to the computed dependence is given by the function

LK(λ) = CK − 3
λ

, (5.4)

where, however, CK = 2.15. Therefore, for usage in applications, it is prudent to set
CK ≈ 2.2.

The derivation of the Lyapunov time estimate for a highly-eccentric object is based
on a consideration of the Kepler map as a separatrix map, the unperturbed parabolic
trajectory playing the role of the separatrix. Then, the Lyapunov time estimate is given
by the relation

TL ≈ Torb

LK(λ)
, (5.5)

where Torb is the average orbital period of the object. The lower bound for the Lyapunov
time is just

TL ≈ Torb

CK
. (5.6)

This value of TL corresponds to the motion with λ � 1.
The cradle cause of dynamical chaos in this setting of the problem lies not in “close en-

counters”, as is often physically interpreted, but in the overlapping of resonances in phase
space of the Kepler map. So, the intrinsic source of chaos — the resonant interaction —
for the orbital motion of planet-encountering bodies and for the motion of ordinary as-
teroids is one and the same.
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5.2. Lower bounds for the Lyapunov times of NEAs and comets

The lower bound for the Lyapunov time of the orbital motion of a planet-encountering
body is given by relation (5.6). For the comet 1P/Halley, with the orbital period of 76
years, the lower bound, given by this formula, is about 34 years. Using the data (Chirikov
& Vecheslavov (1986), Vecheslavov & Chirikov (1988), Chirikov & Vecheslavov (1989)) on
the amplitude of perturbation of the full energy of the comet, one finds λ ≈ 1.2 ·104 � 1;
consequently, the found lower bound for TL is close to the expected TL value itself.

It is very probable that relation (5.6) applies for the motion of any long-periodic comet,
or any Halley-type comet, or any asteroid in a highly-eccentric orbit with a similar kind
of perturbation; i.e., the value of the Lyapunov time of such an object is determined
solely by its orbital period.

Whipple (1995) explored the chaotic orbital motion of 175 real asteroids with q <
1.6 AU (in the inner part of the Solar system). He found that the Lyapunov times can
be as small as 10 years, due to encounters with the terrestrial planets. The range of
values of TL is 10–20000 years. 34 of these 175 objects are so chaotic, that the errors in
determination of their orbits double in less than 70 years.

To our present knowledge, no known asteroid or comet violates the bound (5.6). In this
respect, the diagram “Lyapunov time – semimajor axis”, constructed by Whipple (1995)
(see Fig. 2 in his paper), is of particular interest: one can see that all the considered
objects have TL � 10 years, and, since they all have the semimajor axis a < 3.5 AU,
bound (5.6) is in no way violated.

Tancredi (1995), Tancredi (1999) considered the orbital evolution of 145 Jupiter family
comets and 307 NEAs (inactive objects with aphelia Q > 1 AU and perihelia q <
1.5 AU). He found TL values in the range 30–200 years for the first group of objects, and
10–300 years, mostly 50–150 years, for the second one. The minimum observed value was
≈10 years.

Thus the planet-encountering asteroids and comets are among the most chaotic objects
of the Solar system; their Lyapunov times can be as low as several years. This is in accord
with the simple estimate (5.6).

6. Conclusions
In this report, we have addressed the problem of predictability of the chaotic asteroidal

motion. Up to the present moment, large numerical material on the Lyapunov times of the
chaotic asteroidal motion has been accumulated in literature. In overwhelming majority,
these estimates were obtained by means of numerical integration. In view of necessity of
theoretical explanation of these data, we have presented a method of analytical estimation
of the maximum Lyapunov exponents of the orbital motion of asteroids. It is based on
the separatrix map theory.

We have considered the chaotic asteroidal motion close to the ordinary and three-body
mean motion resonances with planets, and the motion in highly eccentric orbits subject to
moderately close encounters with planets. For the case of the mean motion resonances, we
have derived simple analytical formulas for the Lyapunov time in four basic resonance
type models: the fastly chaotic resonance triad, fastly chaotic resonance duad, slowly
chaotic resonance triad, slowly chaotic resonance duad. For the case of highly-eccentric
objects subject to moderate encounters with planets, we have derived simple analytical
formulas for the Lyapunov time and its lower bound.

The analytical estimates of the Lyapunov times for model and real asteroids have been
made and compared to many known numerical ones, i.e., to known estimates obtained
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by means of numerical integration of orbits, including estimates obtained for real objects
in the full problem of motion in the Solar system. In many cases a satisfactory agreement
have been observed, that testifies the quality of the corresponding theoretical models of
asteroidal motion. On the other hand, the cases of disagreement are even more interesting:
they may imply either an imperfectness of the adopted perturbed pendulum model as
applied to the considered resonance (as noted in Section 4.1 in relation to the 3/1 mean
motion resonance), or an incorrect identification of the guiding resonance. So, one can
conclude that the analytical estimation of the Lyapunov times may represent a promising
tool for discerning between possible models of chaos in the motion of real asteroids, and,
generally, celestial bodies.
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Nesvorný, D. & Morbidelli, A. 1999, Celest. Mech. Dyn. Astron. 71, 243
Petrosky, T. Y. 1986, Phys. Letters A 117, 328
Shevchenko, I. I. 1998a, Phys. Letters A 241, 53
Shevchenko, I. I. 1998b, Physica Scripta 57, 185
Shevchenko, I. I. 1999, Celest. Mech. Dyn. Astron. 73, 259
Shevchenko, I. I. 2000a, Izvestia GAO 214, 153 (In Russian)
Shevchenko, I. I. 2000b, J. Exp. Theor. Phys. 91, 615 [ZhETP 118, 707]
Shevchenko, I. I. 2002, Cosmic Res. 40, 296 [Kosmich. Issled. 40, 317]
Shevchenko, I. I. & Kouprianov, V. V. 2002, Astron. Astrophys. 394, 663
Shevchenko, I. I., Kouprianov, V. V. & Melnikov, A. V. 2003, Solar System Res. 37, 74 [Astro-

nomicheskii Vestnik 37, 80]

https://doi.org/10.1017/S174392130700302X Published online by Cambridge University Press

https://doi.org/10.1017/S174392130700302X


30 I. I. Shevchenko

Shevchenko, I. I. 2004a, in: G. Byrd et al. (eds.), Order and Chaos in Stellar and Planetary
Systems, ASP Conf. Series, vol. 316, p. 20

Shevchenko, I. I. 2004b, JETP Letters 79, 523 [Pis’ma Zh. Eksp. Teor. Fiz. 79, 651]
Tancredi, G. 1995, Astron. Astrophys. 299, 288
Tancredi, G. 1999, Celest. Mech. Dyn. Astron. 70, 181
Vecheslavov, V. V. & Chirikov, B. V. 1988, Sov. Astron. Letters 14, 151
von Bremen, H. F., Udwadia, F. E. & Proskurowski, W. 1997, Physica D 101, 1
Whipple, A. L. 1995, Icarus 115, 347
Wisdom, J. 1983, Icarus 56, 51

https://doi.org/10.1017/S174392130700302X Published online by Cambridge University Press

https://doi.org/10.1017/S174392130700302X

