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Continuity of Convolution and SIN Groups

Jan Pachl and Juris Steprans

Abstract. Let the measure algebra of a topological group G be equipped with the topology of uni-
form convergence on bounded right uniformly equicontinuous sets of functions. Convolution is
separately continuous on the measure algebra, and it is jointly continuous if and only if G has the
SIN property. On the larger space LUC(G)*, which includes the measure algebra, convolution is
also jointly continuous if and only if the group has the SIN property, but not separately continuous
for many non-SIN groups.

1 Introduction

Throughout the paper we assume that topological groups are Hausdorf, linear spaces
are over the field R of real numbers, and functions are real-valued. Our results hold
also when scalars are the complex numbers, with essentially the same proofs.

When G is a topological group, the set of all continuous right-invariant pseudo-
metrics on G induces the topology of G and its right uniformity [10, §3.2] [13, 74]. In
what follows, we denote by G not only G with its topology but also G with its right
uniformity. Since we do not consider other uniform structures on G, this convention
will not lead to any confusion.

A pseudometric on G is bi-invariant if and only if it is both left and right-invariant.
A topological group G isa SIN group, or has the SIN property, if and only if its topology
(equivalently, its right uniformity) is induced by the set of all continuous bi-invariant
pseudometrics [13, 712].

The space LUC(G) = Up(G) of bounded uniformly continuous functions on G
has a prominent role in abstract harmonic analysis. It is a Banach space with the
sup norm. Its dual LUC(G)* is a Banach algebra in which the multiplication is the
convolution operation x, defined as follows. When ¢ is an expression with several
parameters, \, ¢ denotes ¢ as a function of x. Define

nef(x):=n(N,f(xy)) forne LUC(G)", feLUC(G),x€G.
m x n(f) :=m(nef) form,ne LUC(G)*, feLUC(G).
Here (n, f) — nef is the canonical left action of LUC(G)* on LUC(G).
We identify every finite Radon measure g on G with the functional me LUC(G)*
for which m(f) = [ fdu, feLUC(G). That way the space M;(G) of finite Radon

(ak.a. tight) measures on G is identified with a subspace of LUC(G)*. With convo-
lution, this is the measure algebra of G, often denoted simply M(G).
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Along with the norm topology, another topology on LUC(G)* and M(G) com-
monly considered is the weak* topology w(LUC(G)*,LUC(G)). Questions about
separate weak™ continuity of convolution on LUC(G)* lead to the problem of char-
acterizing the weak™ topological centre of LUC(G)* and of the LUC compactifica-
tion of G (see [4,6,7] and [10, Chapter 9]). Joint weak™ continuity of convolution on
LUC(G)* was studied by Salmi [14], who showed that convolution need not be jointly
weak* continuous even on bounded subsets of M;(G).

Here we consider the UEB topology on the space LUC(G)*. This topology, finer
than the weak”™ topology, arises naturally in the study of continuity properties of con-
volution. When restricted to the space M(G), the UEB topology and the weak*
topology w(M(G),LUC(G)) are closely related. It follows from general results in
[10, Chapter 6] that these two topologies on M;(G) have the same dual LUC(G) and
the same compact sets (hence the same convergent sequences), and they coincide on
the positive cone of M (G).

The UEB topology can be defined independently of the group structure of G for a
general uniform space; for the details of the general theory we refer the reader to [10].
In our current setting of the right uniformity on a topological group G, the UEB topol-
ogy is defined as follows. As in [10], for a continuous right-invariant pseudometric A
on Gand meLUC(G)* let

BLips(A) := { £:G > [-L1] | |f(x) = f(»)| < A(x, y) forall x, ye G},
[mlls = sup{m(f) | f € BLips(A)}.

The UEB topology on LUC(G)* is the locally convex topology defined by the semi-
norms | - | a, where A runs through continuous right-invariant pseudometrics on G.
In [9] the UEB topology is defined as the topology of uniform convergence on
equi-LUC subsets of LUC(G). That definition is equivalent to the one given here,
since by [10, Lemma 3.3] for every equi-LUC set & € LUC(G), there are reR and a
continuous right-invariant pseudometric A on G such that F ¢ rBLip,(A).

When the group G is locally compact and M(G) is identified with the algebra
of right multipliers of L;(G), the UEB topology on M(G) coincides with the right
multiplier topology [9, Th. 3.3]. If G is discrete, then LUC(G) = € (G) and the UEB
topology on LUC(G)* is simply its norm topology. If G is compact then LUC(G)
is the space of continuous functions on G and the UEB topology is the topology of
uniform convergence on norm-compact subsets of LUC(G).

When the group G is metrizable by a right-invariant metric A, the seminorm | - ||
on LUC(G)* is a particular case of the Kantorovich-Rubinshtein norm, which has
many uses in topological measure theory and in the theory of optimal transport [2,
8.3] [15, 6.2]. In this case the topology of || - | o coincides with the UEB topology on
bounded subsets of LUC(G)* [10, §5.4] but typically not on the whole space LUC(G)*.
As we show in Section 3, when considered on the whole space LUC(G)* or even
M;(G), convolution behaves better in the UEB topology than in the || - | o topology.

Our results in this paper complement those in [9]. By [9, Corollary 4.6 and Theo-
rem 4.8], convolution is jointly UEB continuous on bounded subsets LUC(G)* when
G is a SIN group, and jointly UEB continuous on the whole space LUC(G)* when G
is alocally compact SIN group. Our main result (Theorem 3.2) states that convolution
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M;(G) if and only if G is a SIN group. In Section 4 we prove that convolution is sep-
arately UEB continuous on M (G) for every topological group G, but not separately
continuous on LUC(G)* for many non-SIN groups.

For locally compact groups, Lau and Pym [7] established the connection between
the SIN property and the weak™ continuity of multiplication in the LUC compactifica-
tion. Corollary 4.5 extends one of their results to a larger class of topological groups.

2 Preliminaries

In this section we establish several properties of SIN groups that are needed in the
proof of the main theorem in Section 3.

We specialize the notation of [10], where it is used for functions and measures on
general uniform spaces, to the case of a topological group G. For every x € G we denote
by 0(x) the point mass at x, the functional in LUC(G)* defined by o(x)(f) = f(x)
for f e LUC(G). Mol(G) < LUC(G)* is the space of molecular measures, that is, finite
linear combinations of point masses. Obviously, Mol(G) € M(G). For the molecular
measure of the special form m = d(x) — d(y), x, y € G, and for any continuous right-
invariant pseudometric A on G we have |[m|, = min(2, A(x, y)), by Lemma 5.12
in [10].

The UEB closure of Mol(G) in LUC(G)* is the space M, (G) 2 M(G) of uniform
measures on the uniform space G. In this paper we do not deal with the space M, (G);
we only point out where a result that we prove for M{(G) holds more generally for
M, (G). The reader is referred to [10] for the theory of uniform measures.

We start with a characterization of SIN groups, which is one part of [13, 2.17].

Lemma 2.1 A topological group G with identity element e is a SIN group if and
only if for every neighbourhood U of e there exists a neighbourhood V of e such that
xVxtcUforallxeG.

Lemma 2.2 Let G be a SIN group and A a bounded continuous right-invariant pseu-
dometric on G. Then there is a continuous bi-invariant pseudometric ® on G such that
02> A

Proof The proof mimics that of [10, Lemma 3.3]. It is enough to consider the case
A <1. As G is a SIN group, there are continuous bi-invariant pseudometrics @ ; for
j=0,1,..., such that

1
Vx,yeS[®j(x,y) <l= A(x,y) < sz].
Define © by
O(x,y) := . Emm(é)j(x,y),l).

~.
I

~ O

If x, ye X and j are such that @(x, y

< 1/2/, then ®;(x, y) < 1, whence A(x, y) <
1/27*1, Tt follows that © > A. [
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Corollary 2.3  Let G be a SIN group. Then the UEB topology on LUC(G)* is defined
by the seminorms | - | o where A runs through continuous bi-invariant pseudometrics
on G.

If A is a continuous or left or right-invariant pseudometric on G, then so is the
pseudometric /A defined by V/A(x, y) := VA(x, y) for x, y € G.

In the sequel we deal with functions of the form f//| f|, where f e LUC(G). To
simplify the notation, we adopt the convention that f/v/| f]| = f when f is identi-
cally 0.

Lemma 2.4 Let A be a pseudometric on a set G and let f € BLipp(A). Then
/1 €BLipy(2V/A).

Proof Take any x, y € G, and consider two cases:

(@) I £ < A(x, ), then | ) VTFTIL fODVIFI € /AGr, ), hence

HORSI] Py
VIR VA

(b) If|f]| > A(x,y) >0, then

R PR P — .
I VIS Gy VA

The following lemma is a key ingredient in the proof of Theorem 3.2.

X, ).

Lemma 2.5 Let G be a topological group, m,ne LUC(G)*, and let A be a continuous
bi-invariant pseudometric on G. Then

[mxnfa < V2w zlnl, s
Proof Take any feBLip,(A). As A is left-invariant, we have \, f(xz) € BLip,(A)

for every x € G, and |nef| < |n]a. Now BLipp(A) € BLipy(+/2A) < BLipp(2V/A),
because /2t > t for 0 < t < 2,and thus | - |5 < ||- | oz <1+, /z- It follows that

21 [nefl < lnfa < nl,yz-
For x, ye G we have g := 5 \, (f(xz) - f(yz)) € BLipy(A), hence
g/\V/ gl €BLips(2V/A)

by Lemma 2.4. Moreover, 2| g|| < A(x, y), because A is right-invariant, so that
(2.2) [nef (x) = nef ()] = 2n(g)| = 2/[¢] n(i”)
<V2/A(xy) 0l 5
Putting (2.1) and (2.2) together, we get ne f ¢ \/EHnHZ\/EBLipb(\/K). Hence,
[mx n(f)| = [m(nef)| < V2|m| szlnl, z- u
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3 Joint UEB Continuity

For any topological group G, the operation x is jointly UEB continuous on bounded
subsets of Mi(G) [9, 4.5], in fact, even on bounded subsets of M, (G) [10, Cor. 9.36].
However, as we shall see in this section, convolution need not be jointly UEB contin-
uous on the whole space My (G).

The UEB topology is defined by certain seminorms || - | . As a warm-up exercise,
consider the continuity with respect to a single such seminorm. Let G be a metrizable
topological group whose topology is defined by a right-invariant metric A. As we
pointed out in the introduction, the topology of the norm |- | o coincides with the
UEB topology on bounded subsets of LUC(G)*. Hence, « is jointly | - | o continuous
on bounded subsets of M;(G). However, * is not jointly | -||a continuous on the
whole space M¢(G) or even Mol(G) for G = R.

Example 3.1 Let G be the additive group R with the usual metric A defined by
A(x,y) = |x = y|. For j = 1,2,..., let m; := n; := j(9(1/j*) - 9(0)) and f;(x) :=
min(1, |x — (1/j%)|) for x € R. Then f; € BLip,(A) and

m;j+n; = j2(9(2/f*) - 20(1/1*) + 8(0)),
[mj > njlla>mj*n;(f;) =2
but lim]‘HijA = limj||nj|\A =0.
Note that although the sequence {m;}; converges in the norm |- |, it does not
converge in the UEB topology; in fact, [|m;| 5 =1forall j.

Next we shall see that the situation changes when we move from the topology de-
fined by a single seminorm | - | to the topology defined by all such seminorms, i.e.,
the UEB topology.

Theorem 3.2  The following properties of a topological group G are equivalent:

(i)  Convolution is jointly UEB continuous on LUC(G)*.
(ii) Convolution is jointly UEB continuous on M¢(G).
(iii) Convolution is jointly UEB continuous on Mol(G).
(iv) G isa SIN group.

Proof Obviously, (i)=(ii)=>(iii).

To prove (iii)=>(iv), assume that convolution is jointly UEB continuous on Mol (G).
Take any neighbourhood U of the identity element e. There is a continuous right-
invariant pseudometric ® such that {z€G | ©(z,e) < 1} ¢ U. By the UEB con-
tinuity there are a continuous right-invariant pseudometric A and & > 0 such that
if m,neMol(G), |m|a, [n|a < & then |m x n|le < 1. To conclude that G is a SIN
group, in view of Lemma 2.1, it is enough to show that x Vx™' ¢ U for all x € G, where
V:={veG|A(v,e) < e?}. To that end, take any x € G and v € V and define

m:=¢d(x), n:=(d(v)-09(e))/e
Then |m|a = e and |n||s = min(2, A(v,e))/e < & hence

min(2, ©(xv, x)) = [9(xv) - d(x)]e = [m x nfe <1,
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and therefore ®(xvx~', e) = ®(xv,x) < 1and xvx ' e U. That completes the proof
of (iii)=(iv).

To prove (iv)=(i), assume that G is a SIN group. Take any continuous bi-
invariant pseudometric A on G. By Lemma 2.5, if m, mg,n, 19 € LUC(G)* are such
that [m —mg | 7 <eand [n -, 7 <& then

[ x 1 — g * iola < (m — mg) * nla + Jmo * (1~ o)
< \/EsunHz\/g + ﬂllmolmf
<V2e( e+ noll,yz + Imoll z)

which along with Corollary 2.3 proves that * is jointly UEB continuous at (mg, ng).
|

4 Separate UEB Continuity

By Theorem 3.2, convolution is jointly UEB continuous on LUC(G)*, and therefore
also separately UEB continuous whenever G is a SIN group. On the other hand, as we
explain at the end of this section, there are topological groups G for which convolu-
tion is not separately UEB continuous on LUC(G)*. Nevertheless, we now prove that
convolution is separately UEB continuous on M;(G) for every topological group G.
The same proof can be used to show that convolution is separately UEB continuous
even on M, (G).

Lemma 4.1 Let G be a topological group, me My (G), and let A be a continuous
right-invariant pseudometric on G. Then there exists a continuous right-invariant pseu-
dometric An such that ~ ym(~, f(xy)) € [m|BLipy(Aw ) for every f € BLipy(A).

Proof Evidently, |\ ,m(~\xf(xy))| < [|m| forevery f € BLip,(A). To prove that the
function \ ym(~ f(xy)) is Lipschitz for a suitable Ay, first note thatif m = 3, c;m;,
m; e LUC(G)*, is a finite linear combination such that

|mj (e f (xp) = mi(Nef (x2))] < Aj(,2)
for every jand y,z€G, then
|m(\ef (xy) - m(~ef(x2))] < A'(y,2),

where A" = 37, |cj|A;. Thus, it is enough to prove the lemma assuming that m > 0.
We may also assume that A < 2, as replacing A by min(A, 2) does not change
BLipp(A). Form > 0, m # 0, and A < 2, define A, by

Aw(y,2) = m(\cA(xy, x2)) [|m] for y,z€G.

Clearly, Ay, is a right-invariant pseudometric. To see that it is continuous, first apply
the estimate

|A(xy,x) - A(Wy,w)| <A(xy,wy) + A(x, w) =2A(x, w),

which shows that N\, A(xy, x) € 2BLipp(A) for every y € G. Since m is a Radon mea-
sure, it is continuous on 2BLip,(A) in the compact-open topology. However, that
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topology on 2BLip, (A) coincides with the topology of pointwise convergence. It fol-
lows that Ay, (y, ), where e is the unit element of G, is a continuous function of y on
G.

For any f € BLipp(A), we have

[m(sef(x9) = m(af (x2))] <m( sl f (xp) - f(x2)])

<m(\yA(xy,x2)) = [m]Aw(y,2)

IA

for y,z€G. ]

Theorem 4.2  For every topological group G, convolution is separately UEB continu-
ous on M(G).

Proof For every ne LUC(G)* the mapping m — m * n is UEB continuous; this is a
special case of [10, Cor. 9.21].

For me M;(G) and ne LUC(G)*, we can reverse the order of applying m and n in
the definition of convolution:

mxn(f) =n(\,m(\cf(xy))) for feLUC(G).

This is a consequence of a variant of Fubini’s theorem; see [10, §9.4] for a proof and

discussion.
The UEB continuity of the mapping n — m * n for every me M;(G) now follows
from Lemma 4.1. u

In analogy with the commonly studied weak™ topological centre of LUC(G)*, we
can also consider its UEB topological centre Aygp, the set of those me LUC(G)*
for which the mapping n — m * n is UEB continuous on LUC(G)*. Then Aygp =
LUC(G)* for every SIN group G by Theorem 3.2. Example 4.7 in [9] (which is also
[10, Example 9.39]) shows that Aygg # LUC(G)* when G is the group of homeomor-
phisms of the interval [0,1] onto itself with the topology of uniform convergence.
Next we will show that in fact Aygg # LUC(G)* for every topological group G that
contains a non-SIN subgroup that is locally compact or metrizable.

For any topological group G denote by RUC(G) the space of those bounded con-
tinuous functions f on G for which the mapping x — \, f(yx) is continuous from
G to the space € (G) with the sup norm. In other words, RUC(G) is the space of
bounded left uniformly continuous functions on G.

Note that ge LUC(G) if and only if \,g(x™')eRUC(G). Thus, LUC(G) =
RUC(G) if and only if LUC(G) < RUC(G). It is a long-standing open problem [3]
whether every topological group G such that LUC(G) = RUC(G) is a SIN group.
The following partial answer was proved by Itzkowitz et al [5] and Milnes [8] for lo-
cally compact groups, and by Protasov [12] for almost metrizable (in particular locally
compact or metrizable) groups.

Lemma 4.3 Let G be a topological group that is locally compact or metrizable and
such that LUC(G) € RUC(G). Then G is a SIN group.
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Asin [10, §6.5], when each element x of a topological group G is identified with the
point mass d(x) € LUC(G)* and LUC(G)* is equipped with its weak* topology, we
obtain topological embeddings G ¢ G ¢ G*V¢ ¢ LUC(G)*. Here, G is the completion
of G (with its right uniformity) and G-V¢ = BG is its uniform compactification. The
embedding G ¢ G is not only topological but uniform as well. Both G and G-Y€ are
subsemigroups of LUC(G)* with the convolution operation.

The following theorem will be applied in two cases: When G is locally compact or
completely metrizable, we let S = G. When G is merely metrizable, we let S = G.

Theorem 4.4 Let G be a topological group that is locally compact or metrizable. Let
S be a subsemigroup of G-V such that the following hold:

i) Gc§s;

(i) the topology of S is locally compact or completely metrizable;

(iii) for every me G-VUC the mapping x — m x x from S to GtYC is continuous.

Then G is a SIN group.

The main argument in the following proof is used in the proof of [1, 4.4.5].

Proof Take any f €LUC(G). Define ¢: G-V x G - R by ¢(m, x) := m x x(f) for
meGHYC, xeG.

From the definition of «, for every ne LUC(G)* the mapping m — m * n is weak”
continuous on LUC(G)*. That along with (iii) implies that the convolution operation
is separately continuous on the product G-U¢ x 8, therefore jointly continuous on
GV x G by [1,1.4.2].

It follows that ¢ is jointly continuous on G*Y¢ x G. Then by [1, B.3] the mapping
x = \m@(m,x) is continuous from G to £o, (G-Y) with the sup norm. Hence, the
mapping x = \p@(m,x) | G is continuous from G to £, (G) with the sup norm. But
¢o(y,x) = f(yx) for x, y€ G, and we get f e RUC(G) by the definition of RUC(G).
That proves LUC(G) ¢ RUC(G). Using Lemma 4.3, we conclude that G is a SIN
group. u

For locally compact non-SIN groups the following corollary was proved by Lau
and Pym (7, 3.1].

Corollary 4.5 Let G be a non-SIN group whose topology is locally compact or com-
pletely metrizable. Then there exists m e G-VC for which the mapping x + m  x from
G to GtV is not continuous. |

Many infinite-dimensional groups of automorphisms, such as those discussed by
Pestov [11], are metrizable by a complete metric and not SIN. This includes the groups
of autohomeomorphisms of the interval [0, 1] and of the Cantor set 2 with the topol-
ogy of uniform convergence, groups of automorphisms of many Fraissé structures
with the topology of pointwise convergence, and the unitary group of an infinite-
dimensional Hilbert space.
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Corollary 4.6  Let G be a metrizable non-SIN group. Then there exists m € G-V for
which the mapping x — m * x from G to G-V is not continuous.

Proof Apply Theorem 4.4 with S = G, which of course is completely metrizable. W

By [10, Cor. 6.13] the UEB and weak* topologies coincide on G. That together with
the two corollaries shows that for any non-SIN group G that is locally compact or
metrizable there exists m € G-UC for which the mapping x ~— m * x from G to G*Y¢
is not UEB continuous, and thus convolution is not separately UEB continuous on
GLuc.

More generally, to exhibit such a discontinuity it is enough to show that one of the
two corollaries applies to a subgroup H of G. Indeed, if H is a topological subgroup
of G, then H is a uniform subspace of G when both are considered with their right
uniformities [13, 3.24]. Hence, H'YC is embedded in GV, both topologically and
algebraically (with the convolution operation). It follows that convolution is not sepa-
rately UEB continuous on G-V whenever G contains a locally compact or metrizable
subgroup that is not SIN.

Thus, Corollary 4.6 holds for a large class of not necessarily metrizable non-SIN
groups. We do not know whether it holds for every non-SIN group.
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