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Abstract In this paper, we investigate the twisted GGP conjecture for certain tempered representations
using the theta correspondence and establish some special cases, namely when the L-parameter of the
unitary group is the sum of conjugate-dual characters of the appropriate sign.

1. Problem, conjecture and results

In a recent paper [GGP23], a twisted version of the Gan–Gross–Prasad (GGP) conjecture
was formulated in the context of skew-Hermitian spaces and their associated unitary

groups over local and global fields. Some evidence was provided in [GGP23] for the

local twisted conjecture, such as in low rank situations and for unitary principal series
representations. The purpose of this paper is to provide further affirmative evidence by

establishing the local conjecture for a family of tempered L-packets of unitary groups

using the technique of theta correspondence. Let us recall the setup and conjecture of
[GGP23] in greater precision and formulate our main result.

1.1. Biquadratic extension

Let F be a non-Archimedean local field of characteristic 0 and E �= K two distinct

quadratic field extensions of F. Let L = E ⊗F K so that L is a biquadratic extension

of F. We thus have the picture:
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18 R. Chen and W. T. Gan

In particular, we have set:

Gal(E/F )�Gal(L/K)� 〈σ〉, and Gal(K/F )�Gal(L/E)� 〈τ〉.

We also fix a nontrivial additive character ψF of F and set ψK = ψF ◦TrK/F . In this

paper, when we talk about Weil representations or theta correspondence, we always use

the additive character ψF or ψK (see Section 2.1).

1.2. Skew-Hermitian spaces

Let V be an n-dimensional skew-Hermitian space over E. There are exactly two such

spaces, which are distinguished by their sign

ε(V ) = ωE/F (δ
−n ·discV ),

where discV = (−1)n(n−1)/2 ·detV , and δ is a fixed trace zero element in E×. As observed
in [GGP23, Lem. 8.1], the scalar extension VK = V ⊗F K is a distinguished split skew-

Hermitian space over L whose isomorphism class is independent of the choice of V. In
particular, if we continue to use the trace zero element δ ∈ L× to define the sign of VK ,

then we always have ε(VK) = +1.

1.3. Twisted GGP problem

We come now to the restriction problem to be studied. For the skew-Hermitian space V

over E, we have the Weil representation ωV ,μ, where μ is a conjugate-symplectic character

of E×. Then we are interested in determining

mV (π,μ) = dimHomU(V )(π,ωV ,μ) for π ∈ Irr(U(VK)) .

Here is the main local conjecture for the twisted GGP problem:

Conjecture 1.1.

(1) For each π ∈ Irr(U(VK)), mV (π,μ)≤ 1.

(2) Let M be a generic L-parameter of U(VK) with associated L-packet ΠM . Then∑
V

∑
π∈ΠM

mV (π,μ) = 1,

where the first sum runs over the two skew-Hermitian spaces over E of dimension

n, and the second runs over the L-packet ΠM .
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(3) The unique V0 which has nonzero contribution to the sum in (2) is characterized by

ε(V0) = ε

(
1

2
,As+L/E(M)⊗μ−1,ψE,δ

)
·ωK/F

(
δ2
)n(n−1)/2

,

where δ is the fixed trace zero element in E× (used in the definition of ε(V0)), and
ψE,δ = ψF (TrE/F (δ · )).

(4) The unique π ∈ ΠM which has nonzero contribution to the sum in (2) corresponds

via local Langlands correspondence (LLC) (with respect to the Whittaker datum
of U(VK) associated to ψK) to the character of local component group AM =∏

i∈I Z/2Z ·ai given by

η(ai) = ε

(
1

2
, IndEL (τMi⊗ (M/Mi)) ·μ−1,ψE,δ

)
= ε

(
1

2
,[As(Mi)+As(M)+As(M/Mi)] ·μ−1,ψE,δ

)
,

where Mi is the irreducible constituent of M corresponding to ai ∈AM .

We remark that [GGP23] also formulated a conjecture in the case E = K and
showed that, in this case, the conjecture can be reduced to the case of discrete series

representations of U(VK)�GL(V ). However, we do not deal with the case E =K in this

paper.
In [GGP23, Sect. 9 & 10], the three authors have proved that:

Theorem 1.2.

(1) Conjecture 1.1 holds if n≤ 2.

(2) Conjecture 1.1(1)–(3) hold for unitary principal series representations (induced

from the Borel subgroup), and (4) holds as well if the unitary principal series is

irreducible.

1.4. Main result

Our main result is the following theorem.

Theorem 1.3. Let M be a tempered L-parameter for U(VK) of the form

M =M1+ · · ·+Mn

with each Mi one-dimensional and conjugate self-dual of parity (−1)n−1. Then Conjec-

ture 1.1 holds for M.

The parity condition on each Mi is equivalent to requiring that the L-parameter M

is of good parity. Note that, though these tempered L-parameters M are maximally
reducible and hence not the most general in the p-adic case, they are the ones whose

L-packets are of maximal size. Hence, in some sense, they provide the most stringent test

for Conjecture 1.1.
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Recall that by properties of the LLC, tempered L-packets can be constructed using
irreducible parabolic induction from good parity L-packets. An immediate corollary of

our result (combining with [GGP23, Thm. 10.1]) is that we may complete Theorem 1.2(2)

above:

Corollary 1.4. Conjecture 1.1 holds for the tempered L-packets consisting of the

constituents of unitary principal series representations.

1.5. Idea of proof

The main tool for the proof of Theorem 1.3 is the theta correspondence. Using theta

correspondence, we shall effectively show that Theorem 1.3 for the case dimV = n+1 can

be reduced to the case for dimV = n. In this way, for the type of tempered L-parameters
M considered in Theorem 1.3, we may use theta correspondence to successively strip off

the irreducible summands Mi one at a time and reduce the conjecture for such M ’s to

the case when dimV = 1. In fact, since the conjecture has been shown for dimV ≤ 2, we
could have formulated a slightly more general main result. We content ourselves with just

the following corollary:

Corollary 1.5. Conjecture 1.1 holds for all endoscopic tempered L-packets of U(VK)

when dimV = 3.

This is because all endoscopic tempered L-packets of U3 can be constructed by theta
lifting from tempered L-packets of U2.

The rest of the paper is devoted to the proof of Theorem 1.3. In §2, we study a local

theta lift of a Weil representation of a unitary group to the edge of the stable range. The
main point here is to show that the resulting big theta lift is irreducible. Then in §3, we
show how the conjecture in dimension n+1 can be reduced to that in dimension n by

invoking two seesaw arguments. In the proofs, we have made use of the so-called Adams’
conjecture, which describes the theta correspondence in terms of (conjectural) A-packets.

But our result is not conditional on the construction of A-packets; we refer the readers

to Remark 2.2 for details.

2. Weil representations

In this section, we examine the Weil representation ωV ,μ and investigate its behavior

under the theta correspondence.

2.1. Local theta correspondence

We first recall the basic setup of the local theta correspondence. Let F ⊂E be a quadratic

extension of non-Archimedean local fields, V an skew-Hermitian space of dimension n and

W an Hermitian space of dimension m. We shall use the symbol H (resp. H′) to denote
the skew-Hermitian (resp. Hermitian) hyperbolic plane.

To consider the theta correspondence for the reductive dual pair U(V )×U(W ), one

requires some additional data:
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• a nontrivial additive character ψF of F ;
• a pair of characters χV and χW of E× such that

χV

∣∣
F× = ωdimV

E/F and χW

∣∣
F× = ωdimW

E/F .

To elaborate, the tensor product V ⊗W has a natural symplectic form, which induces a
natural map

U(V )×U(W )−→ Sp(V ⊗W ).

One has the metaplectic S1-cover Mp(V ⊗W ) of Sp(V ⊗W ), and the character ψF

determines a Weil representation ωψF
of Mp(V ⊗W ). The datum (ψF ,χV ,χW ) then

allows one to specify a splitting of the metaplectic cover over U(V )×U(W ) following

[Kud94]. Hence, we have a Weil representation ω = ωV ,W of U(V )×U(W ).
As explicated in [Kud94] and [HKS96], the splitting over U(V ) is determined by

(ψF ,χW ), whereas that of U(W ) by (ψF ,χV ). In particular, takingW such that dimW =1

and χW = μ a conjugate symplectic character of E×, one gets a splitting over U(V )
associated to (ψF ,μ), and thus a Weil representation ωV ,μ of U(V ), which is the one

appearing in the main conjecture.

Given an irreducible representation π of U(V ), the maximal π-isotypic quotient of ω is
of the form

Θ(π)�π

for some smooth representation Θ(π) of U(W ) of finite length. By the Howe duality
[Wal90] [GT16a] [GT16b], we have:

• The maximal semisimple quotient θ(π) of Θ(π) is irreducible if Θ(π) is nonzero;
• If π1 �� π2 are two nonisomorphic irreducible smooth representations of U(V ) such

that both θ(π1) and θ(π2) are nonzero, then θ(π1) �� θ(π2).

2.2. A refinement of Adams’ conjecture

Next, we give a description of the theta correspondence in terms of A-parameters. We fix

a nontrivial additive character ψF once and for all. Assume that

m= dimW ≥ n= dimV ≥ 1.

Fix a pair of splitting characters (χV ,χW ), and consider the theta correspondence between

U(V )×U(W ) with respect to it.
Let Ψ be a local A-parameter of U(V ). If we write it as a sum of irreducible

subrepresentations

Ψ =
∑
i

ρiSai
�Sbi,

we say that Ψ is of good parity if ρiSai
�Sbi is conjugate self-dual of parity (−1)n−1 for

all i. Here, we are following Atobe–Gan’s notation [AG17] on irreducible representations
of the Weil–Deligne group WDE =WE ×SL2(C); we omit the tensor symbol between ρi
and Sai

to distinguish finite-dimensional representations of the Weil–Deligne SL2(C) and

the Arthur SL2(C).
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Theorem 2.1.

(1) Assume that Ψ is of good parity and

m−n≥max
i

{
bi−ai+1

∣∣ ρi � χW

}
.

Let π be an irreducible unitary representation in the local A-packet ΠΨ(U(V )). Then
the theta lift θ(π) of π to U(W ) lies in the local A-packet Πθ(Ψ)(U(W )) if it is

nonzero, where

θ(Ψ) = Ψχ−1
W χV +χV �Sm−n.

(2) Moreover, if we further assume that

m−n >max
i

{
bi+ai−1

∣∣ ρi � χW

}
,

then θ(π) must be nonzero for any π ∈ΠΨ(U(V )).

Proof. This is [Mœg11, Thm. 5.2].

Remark 2.2.

(1) There is a caveat here: Mœglin’s result [Mœg11, Thm. 5.2] is for the symplectic-

orthogonal dual pair. If one assumes Mœglin’s explicit construction of A-packets
for unitary groups (both quasi-split and nonquasi-split), then Mœglin’s proof of

[Mœg11, Thm. 5.2] should also work for unitary dual pairs.

(2) In later proofs of our main result, we will only use A-packets of unitary groups
in some special cases; those A-packets are the Zelevinsky–Aubert dual of some

tempered L-packets. Since the LLC for unitary groups has been fully established

(see [Mok15, KMSW14, MR18, CZ21a]), all the properties of those A-packets that

we need can be easily checked using the properties of the LLC and the Zelevinsky–
Aubert duality. Hence, our main result in this paper is not conditional on the

construction of A-packets for unitary groups.

Recall that for each local A-parameter Ψ, the local A-packet ΠΨ(U(V )) is also equipped

with a map (depending on the choice of the additive character ψF )

J : ΠΨ(U(V ))−→ IrrAΨ,

where AΨ is the component group associated to Ψ. For example, if Ψ is a local A-

parameter of good parity as above, then

AΨ =
∑
j

Z/2Zaj

is a free Z/2Z-module with a canonical basis {aj}j , where j runs over a representative

set of inequivalent subrepresentations of Ψ.

Theorem 2.3. In the context of Theorem 2.1(1), let π ∈ΠΨ(U(V )) and η the character

of AΨ associated to π. If the theta lift θ(π) is nonzero, then it corresponds to the character

θ(η) of Aθ(Ψ), where θ(η) can be uniquely determined as follows:
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• if n and m are of different parity, then

θ(η)
∣∣∣
AΨ

= η;

• if n and m are of the same parity, then

θ(η)(aj)/η(aj) = ε

(
1

2
,Ψjχ

−1
W ,ψE,δ

)
,

where aj ∈ AΨ is the basis element corresponding to the irreducible summand Ψj

of Ψ.

Here, we regard AΨ as a subgroup of Aθ(Ψ) via the canonical injection AΨ ↪→Aθ(Ψ) sending

each basis element aj ∈ AΨ corresponding to Ψj ⊂ Ψ to the basis element a′j ∈ Aθ(Ψ)

corresponding to Ψjχ
−1
W χV ⊂ θ(Ψ).

Proof. This can be proved as in [Ato18, Sect. 7.4]. See also [CZ21b, Cor. 7.4].

2.3. A result of Atobe

The following lemma, which is essentially due to Atobe, is useful to us in the later proofs.

Let ν be the normalized absolute value of E×.

Lemma 2.4. Let G0 = U(V0) be the unitary group associated to some Hermitian (or

skew-Hermitian) space V0, and Ψ0 an A-parameter of G0. Suppose that Ψ0 is of good

parity, multiplicity free and trivial on the Weil–Deligne SL2(C). Let ρ be an irreducible
representation of WE and x ∈ 1

2Z positive such that

ρ�S2x−1 ⊂Ψ0 and ρ�S2x+1 �⊂Ψ0.

Then for any π0 ∈ΠΨ0
(G0), we have a nonsplit exact sequence:

0−→ π −→ ρν−x
�π0 −→ π′ −→ 0,

where π is the unique irreducible subrepresentation and π′ is the unique irreducible

quotient of ρν−x
� π0. In particular, the length of the induced representation ρν−x

�

π0 is 2.

Proof. Let φ0 = Ψ̂0 be the Aubert dual of ψ0, namely the L-parameter of G0 obtained

from Ψ0 by exchanging the Weil–Deligne SL2(C) and the Arthur SL2(C). By our assump-
tion, φ0 is a discrete L-parameter. Then apply [Ato20, Lem. 5.1] to π̂0 ∈Πφ0

(G0).

Remark 2.5. Although Atobe only considered split odd orthogonal groups and symplec-

tic groups in [Ato20], his Lemma 5.1 is true for unitary groups as well. Indeed the three

ingredients used in his proof of orthogonal/symplectic groups are: Mœglin’s construction
of tempered L-packets, Tadić’s formula and a lemma of Gan–Ichino [GI16, Lem. A.6].

Since all of these three ingredients are also valid for unitary groups, his proof also works

for unitary groups with very minor modifications.
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2.4. Some local A-packets

Now, we use the Adams’ conjecture to describe Weil representations. Let E1 be the

subgroup of E× consists of norm 1 elements. Let χ0 be a character of E1 and χ the

character of E× obtained from χ0 by base change; we may regard χ as the L-parameter

of the unitary group E1 corresponding to χ0. We denote by ωV ,μ[χ] the maximal
subrepresentation of ωV ,μ such that the center of U(V ) acts by χ0. When n = 1, the

representation ωV ,μ[χ] has been studied by [Moe87] and [Rog92]. So we shall concentrate

on the case n≥ 2.

Lemma 2.6.

(1) If n= 2 and χ= μ2, then the representation ωV ,μ[χ] is nonzero only when the space

V is of sign +1, in which case ωV ,μ[χ] is the generic member (with respect to the
generic datum defined by ψF ) in the L-packet Πφ(U(V )), where

φ= μ+μ.

(2) For any n= dimV ≥ 2, excluding the special case above, the representation ωV ,μ[χ]

is nonzero, irreducible and unitary. It lies in the A-packet ΠΨ(U(V )), where

Ψ= χ ·μ−n+1+μ�Sn−1.

The character η ∈ IrrAΨ associated to ωV ,μ[χ] is

η : (e1,en−1) −→

⎧⎪⎪⎨⎪⎪⎩
(1,ε(V )) if n is even,

(
ε
(
1
2,χμ

−n,ψE,δ

)
, ε(V )ε

(
1
2,χμ

−n,ψE,δ

))
if n is odd.

Here, e1 and en−1 are the basis elements of AΨ corresponding to χ ·μ−n+1 and

μ�Sn−1, respectively.

Proof. Let L1 be the one-dimensional Hermitian space associated to 1∈F×. Let χV be a

character of E× such that χV

∣∣
F× = ωn

E/F and ΩL1,V the Weil representation associated
to U(L1)×U(V ) with respect to the splitting character (μ,χV ). Then we have

ΩL1,V

∣∣∣
U(V )

= ωV ,μ.

Hence, ωV ,μ[χ] can be regarded as the theta lift of the character χμ−nχV . Thus, our first

assertion follows from Theorem 2.1, and the second follows from Theorem 2.3.

2.5. Irreducibility of big theta lifts

Finally, we investigate the irreducibility of the big theta lift of ωV ,μ[χ]. We shall work in

a slightly more general setting.

We retain the notations of Section 2.2. From now on, we assume that m is even and
m≥max{2n−2,n}. Let

Ψ = δ+μ�Sn−1
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be a local A-parameter of U(V ), where δ and μ are conjugate self-dual characters of parity

(−1)n−1 and −1, respectively. Our goal is to show the following.

Theorem 2.7. For any π ∈ ΠΨ(U(V )), the big theta lift Θ(π) to U(W ) is irreducible if

it is nonzero. Moreover, we have

ExtiU(V )(Ω,π)sm = 0

for all i > 0. Here, Ω is the Weil representation associated to U(V )×U(W ), and the

subscript ‘sm’ stands for taking the U(W )-smooth vectors.

Remark 2.8. Although in this theorem we do not assert the nonvanishing of Θ(π), in

the range we are considering (i.e., m ≥ 2n− 2 and n ≥ 2), we are almost always in the
situation of Theorem 2.1(2), except for the following low rank cases:

• n= 2 and m= 2 (this case will not be used in the proof of our main theorem);
• n= 3, m= 4 and δ = χW .

We shall prove this theorem by induction on the dimension of V. Let xn = −n/2+1.
According to Mœglin [Mœg06, Sect. 2.4], we know that:

Lemma 2.9. Assume that n≥ 3, and let π ∈ ΠΨ(U(V )). If π is not supercuspidal, then
there exists a unique π0 ∈ΠΨ0

(U(V0)) such that

π ↪→ μνxn �π0.

Here,

Ψ0 = δ+μ�Sn−3,

and V0 is a subspace of V such that V � V0⊕H.

Using this fact, we now do the induction step.

Proposition 2.10. In the context of Lemma 2.9, assume that

π ↪→ μνxn �π0.

Let W0 be a subspace of W such that W �W0⊕H′. Consider the theta correspondence of
U(V0)×U(W0) (with respect to the same splitting characters). Then if Theorem 2.7 holds

for π0, it also holds for π.

Remark 2.11. In the setting of Theorem 2.7, we have assumed that m ≥ 2n− 2. Note
that the dimensions of V0 and W0 also satisfy this inequality. Hence, it makes sense to

talk about Theorem 2.7 for π0.

Proof of Proposition 2.10. Let P be the standard parabolic subgroup of U(V ) with

Levi component GL1×U(V0). For i≥ 0, by the (derived version of) Frobenius reciprocity,

we have

ExtiU(V )(Ω,μν
xn �π0) = ExtiGL1×U(V0)(RPΩ,μν

xn �π0),
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where RP is the normalized Jacquet module along P. To compute the right-hand side of
above, one can appeal to the Kudla’s filtration. There is a two-step filtration on RPΩ:

RPΩ=R0 ⊃R1 ⊃R2 = 0,

whose successive quotient Ja =Ra/Ra+1 can be described as follows:

J0 = χW ν
m−n+1

2 �Ω0,

and

J1 = Ind
GL1×U(V0)×U(W )
GL1×U(V0)×Q

(
S(E×)�Ω00

)
.

Here:

• Ω0 is the Weil representation associated to U(V0)×U(W );
• Q is a maximal parabolic subgroup of U(W ) stabilizing an isotropic line of W ;

the Levi subgroup of Q is isomorphic to GL1×U(W0);
• S(E×) is the space of Schwartz functions on E×, equipped with the natural action

of two copies of GL1 (twisted by the splitting characters);
• Ω00 is the Weil representation associated to U(V0)×U(W0).

Applying the functor HomGL1×U(V0)(·,μνxn �π0) to the short exact sequence

0−→ J1 −→RPΩ−→ J0 −→ 0,

we get a long exact sequence

· · · −→ Exti(J0,μνxn �π0)sm −→ Exti(RPΩ,μνxn �π0)sm

−→ Exti(J1,μνxn �π0)sm −→ Exti+1(J0,μνxn �π0)sm −→ ·· ·

Here, for the exactness of taking U(W )-smooth vectors, one may refer to [APS17, Lem.

5.14, Lem. 7.4]. Since by our assumptions xn �= m−n+1
2 , we know that

Exti(J0,μνxn �π0) = 0

for all i≥ 0. This implies that

Exti(RPΩ,μν
xn �π0)sm �Exti(J1,μνxn �π0)sm

=(μ′)
c
νxn �Exti(Ω00,π0)sm,

where μ′ = μχ−1
W χV . Here, in the last equality, we have made use of (an Ext-version of)

[APS17, Lem. 2.6] and the Künneth formula [APS17, Lem. 3.3]. In particular, we get

HomU(V )(Ω,μν
xn �π0)sm � (μ′)

c
νxn �Θ(π0)

∨

and

ExtiU(V )(Ω,μν
xn �π0)sm = 0 for i > 0 (♠)

by our induction hypothesis. Similarly, we also have −xn �= m−n+1
2 . The same argument

gives that

ExtiU(V )(Ω,μν
−xn �π0)sm = 0 for i > 0. (♣)
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Now, note that Lemma 2.4 asserts that μνxn �π0 is of length 2. Let π′ be the unique

irreducible quotient of μνxn �π0, the sequence

0−→ π −→ μνxn �π0 −→ π′ −→ 0

is exact. Applying the functor HomU(V )(Ω,·) to this short exact sequence and taking

U(W )-smooth vectors, we get

0→Hom(Ω,π)sm →Hom(Ω,μνxn
�π0)sm →Hom(Ω,π′)sm → Ext1(Ω,π)sm →

·· · → Exti(Ω,μνxn
�π0)sm → Exti(Ω,π′)sm → Exti+1(Ω,π)sm → Exti+1(Ω,μνxn

�π0)sm → ·· ·
(♥)

It follows from Equation (♠) that

Exti(Ω,π′)sm � Exti+1(Ω,π)sm for i > 0.

Dually, apply both the contragredient and MVW-involution (see [MVW, Chap. 4.II.1])

to μνxn �π0, we get a dualized short exact sequence

0−→ π′ −→ μν−xn �π0 −→ π −→ 0.

Similar to the argument above, this short exact sequence leads to a long exact sequence

0→Hom(Ω,π′)sm →Hom(Ω,μν−xn �π0)sm →Hom(Ω,π)sm → Ext1(Ω,π′)sm →

·· · → Exti(Ω,μν−xn �π0)sm → Exti(Ω,π)sm → Exti+1(Ω,π′)sm → Exti+1(Ω,μν−xn �π0)sm → ·· ·
(♦)

which combining with Equation (♣) similarly implies that

Exti(Ω,π)sm � Exti+1(Ω,π′)sm for i > 0.

Playing ‘Ping-Pong’, one can see that Exti(Ω,π) is periodic:

Exti(Ω,π)sm � Exti+2(Ω,π)sm for i > 0.

Since the higher extensions vanish when the degree is sufficiently large [Ber92, Pg. 98,

Sect. 4.2], these groups Exti(Ω,π)sm must vanish for all i > 0 with no other choice. The
same reason also gives the vanishing of higher extensions of π′.
Suppose that Θ(π) �= 0. It remains to show that Θ(π) is irreducible. Thanks to the

vanishing of higher extensions, we deduce from the long exact sequence (♥) that

0−→Θ(π)∨ −→ (μ′)
c
νxn �Θ(π0)

∨ −→Θ(π′)∨ −→ 0

is exact. In particular, Θ(π0) must be nonzero, hence irreducible by our induction

hypothesis. It then follows from Theorem 2.1 that Θ(π0) lies in Πθ(Ψ0)(U(W0)), where

θ(Ψ0) = δχ−1
W χV +μχ−1

W χV �Sn−3+χV �Sm−n.

Now, we claim that the induced representation (μ′)c νxn �Θ(π0)
∨ is of length 2, and the

two subquotients are nonisomorphic. Indeed, if m−n = 1 and δ = χW , one can easily

check this by hand. Otherwise, note that:
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• θ(Ψ0) is of good parity, multiplicity free and trivial on the Weil–Deligne SL2(C);
• μ′�S−2xn−1 ⊂ θ(Ψ0) but μ

′�S−2xn+1 �⊂ θ(Ψ0).

In short, we are again in a situation such that we can appeal to Lemma 2.4, from

which our claim follows. Therefore, it suffices to check that Θ(π′) �= 0. We shall argue
by contradiction to show this. Suppose on the contrary that Θ(π′) = 0. Then on the one

hand, we have

Θ(π)∨ � (μ′)
c
νxn �Θ(π0)

∨,

which implies that (μ′)c νxn �Θ(π0)
∨ has socle θ(π)∨. On the other hand, we also deduce

from the long exact sequence (♦) that

0−→Θ(π′)∨ −→ (μ′)
c
ν−xn �Θ(π0)

∨ −→Θ(π)∨ −→ 0

is exact. Since we had assumed that Θ(π′) = 0, this exact sequence implies that

(μ′)
c
ν−xn �Θ(π0)

∨ �Θ(π)∨.

Applying both the contragredient and the MVW-involution, we get

Θ(π)MVW � (μ′)
c
νxn �Θ(π0)

∨,

which implies that (μ′)c νxn �Θ(π0)
∨ also has cosocle θ(π)∨. This contradicts our claim.

Thus, Θ(π′) �= 0 as desired.

Now, we can prove our goal.

Proof of Theorem 2.7. By using the previous proposition, we can reduce Theorem 2.7

to the case that π is supercuspidal or to the case that n= 0. In the supercuspidal case:

• it is well known that the big theta lift of a supercuspidal representation is
irreducible;

• all higher extensions vanish since supercuspidal representations of a unitary group
are compact.

In the case that n= 0, U(V ) is trivial and the Weil representation is simply a character

of U(W ). Hence, Theorem 2.7 holds.

3. Proof of the main result

In this section, we shall prove the main result: Theorem 1.3. We first note:

Lemma 3.1. Assume that Conjecture 1.1 holds for a tempered L-parameter M. Then

for any conjugate orthogonal character X of L×, Conjecture 1.1 also holds for the L-

parameter M ·X .

Proof. To see this, one simply notes that

mV (Π,μ) =mV

(
Π ·X0,μ

(
X

∣∣
E×

))
,

where X0 is the character of L1 whose base change to L× is X .
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Let n ≥ 2 be an integer, and V an (n+1)-dimensional skew-Hermitian space over E.

We shall start with an L-parameter of the form

M =M0+M1,

where M1 is a conjugate self-dual character of parity (−1)n.

3.1. Two seesaw diagrams: uniqueness

If there is an irreducible tempered representation Π in the L-packet ΠM corresponding

to η ∈ IrrAM such that

mV (Π,μ) �= 0,

we would like to lift Π to some unitary group of n-variables to obtain some information.

Let {ai}ri=1 be a canonical basis of AM , where each ai corresponds to some irreducible
subrepresentation Mi of M (so a1 corresponds to M1). We set ε= η(a1) and W the unique

n-dimensional Hermitian space over L of sign ε. Let (XV ,XW ) be a pair of characters of

L× such that

XV

∣∣
K× = ωn+1

L/K and XW =M1.

Then one can consider the theta correspondence between U(VK)×U(W ) with respect to
the splitting character (XV ,XW ). By [GI16, Sect. 4.6(P2)], one knows that there is an

irreducible tempered representation Σ of U(W ) such that

Π = Θ(Σ)

is the big theta lift of Σ. Indeed, one knows that Σ has the L-parameter

θ(M) =M0 ·X−1
W XV

and corresponds to the character θ(η) = η
∣∣
Aθ(M)

. Consider the following seesaw diagram:

(�.1)

where:

• RW is the restriction of scalar of W to E ;
• the theta correspondence between U(VK)×U(W ) is with respect to some splitting

characters (XV ,XW );
• the theta correspondence between U(V )×U(RW ) is with respect to some splitting

characters (χV ,χW );
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• to make use of this seesaw diagram, we choose these splitting characters so that:

XV = χV ◦NmL/E and χW = XW

∣∣
E× ;

• χ is the L-parameter of the central character of the restriction of Π to U(V ),
that is,

χ= det(M)
∣∣
E× .

Then by the seesaw identity, we get

mV (Π,μ) = dimHomU(W ) (Λ,Σ) . (�.1)

In particular, Λ is nonzero. By Lemma 2.6, Theorem 2.1 and Theorem 2.7, we know
that:

• ωV ,μ[χ] lies in the A-packet ΠΨM,μ
(U(V )), where

ΨM,μ = χ ·μ−n+μ�Sn;

• Λ is an irreducible unitary representation lies in the A-packet Πθ(ΨM,μ) (U(RW )),
where

θ (ΨM,μ) = ΨM,μ ·χ−1
W χV +χV �Sn−1

= χ ·μ−n ·χ−1
W χV +χV �Sn−1+μ ·χ−1

W χV �Sn.

To compute the right-hand side of equality (�.1), we shall use another seesaw diagram:

(�.2)

where:

• V � is an n-dimensional skew-Hermitian space over E which will be suitably chosen
later, and V �

K is its scalar extension to L;
• the theta correspondence between U(V �)× U(RW ) is with respect to some

splitting characters (χV �,χ′
W );

• the theta correspondence between U(V �
K)×U(W ) is with respect to some splitting

characters (XV �,X ′
W );

• to make use of this seesaw diagram, we choose these splitting characters so that:

XV � = χV � ◦NmL/E and χ′
W = X ′

W

∣∣
E× ;

• ω is some irreducible unitary representation of U(V �) which will also be suitably
chosen later.
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We would like to choose these data appropriately such that ω is the theta lift of certain
character of U1, and Λ =Θ(ω). To make this possible, we need to pick up these splitting

characters very carefully. Let

χV � = μ ·χ−1
W χV and X ′

W =M−1
1 ·Υ,

where Υ is a conjugate orthogonal character of L× so that

Υ
∣∣∣
E×

= μ2.

It is not hard to see that such Υ exists. Then again by Theorem 2.1 one can see that ω
(if exists) lies in the A-packet ΠΨ�(U(V �)), where

Ψ� = χ� ·μ−n+1+μ�Sn−1, with χ� = det(M/M1)
∣∣
E× .

Indeed, we have:

Proposition 3.2. Let V � be the n-dimensional skew-Hermitian space of sign

ε
(
V �

)
=

{
+1 if n= 2 and χ� = μ2,

ε(V ) · ε(RW ) · ε
(

1
2,As

+
L/E(M1) ·μ−1,ψE,δ

)
·ωE/F (−1)n otherwise,

(†)

and

ω = ωV �,μ[χ
�].

Then Λ is the (big) theta lift of ω to U(RW ), that is, Λ =Θ(ω).

Proof. We first check the special case that n= 2 and χ� = μ2. So

θ (ΨM,μ) = χV +μ ·χ−1
W χV �S2+(χc

V )
∨

and

Λ⊂ χV � (χ0 ◦det),

where χ0 is the character of E1 whose base change to E× is μ ·χ−1
W χV . By the induction

principle, one knows that the theta correspondence between U(V �)×U(RW ) defines a

bijection

θ : Πφ(U(V �))−→Πθ(ΨM,μ)(U(RW )),

where φ = μ+μ is an L-parameter of U(V �). Hence, Λ is the (big) theta lift of some

ω ∈ Πφ(U(V �)). To check that ω = ωV �,μ[χ
�], one can compute the character η� ∈ IrrAφ

associated to ω. Recall that Λ is also the theta lift of ωV ,μ[χ]. If we denote by η ∈ IrrAΨM,μ

and θ(η) ∈ IrrAθ(ΨM,μ) the character associated to ωV ,μ[χ] and Λ, respectively, then by

Lemma 2.6 and Theorem 2.3, we have

θ(η)(a) = η(a) = ε

(
1

2
,χWμ−1,ψE,δ

)
.
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Here, a∈Aθ(ΨM,μ) is the basis element corresponding to χV , and we regard Aφ and AΨM,μ

as subgroups of Aθ(ΨM,μ). Apply Theorem 2.3 again, we get

η�(a) = θ(η)(a) · ε
(
1

2
,χV ·χ−1

V � ,ψE,δ

)
= 1.

This implies that ω = ωV �,μ[χ
�].

Now, excluding the special case above, we prove the general case. It would be convenient
to consider the cases of odd and even n separately. In the following, we check the case of

odd n in full details.

Let e1, en−1 and en be the basis elements of Aθ(ΨM,μ) corresponding to χ ·μ−n ·χ−1
W χV ,

χV �Sn−1 and μ ·χ−1
W χV �Sn, respectively. Then:

• AΨM,μ
can be regarded as the subgroup of Aθ(ΨM,μ) generated by e1 and en;

• AΨ� can be regarded as the subgroup of Aθ(ΨM,μ) generated by e1 and en−1.

Recall that ωV ,μ[χ] ∈ ΠΨM,μ
(U(V )) corresponds to the character νn+1 of AΨM,μ

such

that

νn+1 : (e1,en) −→ (1,ε(V )) .

Then by Theorem 2.3, Λ = Θ(ωV ,μ[χ]) corresponds to the character ν of Aθ(ΨM,μ) such

that

ν : (e1,en) −→
(
ε

(
1

2
,χ ·μ−n ·χ−1

W ,ψE,δ

)
, ε(V ) · ε

(
1

2
,μ ·χ−1

W �Sn,ψE,δ

))
.

The evaluation of ν at en−1 can be determined by its evaluation at (e1,en) and the sign
of RW . To be more precise, ν takes en−1 to

ε(V ) · ε(RW ) · ε
(
1

2
,χ ·μ−n ·χ−1

W ,ψE,δ

)
· ε
(
1

2
,μ ·χ−1

W �Sn,ψE,δ

)
= ε(V ) · ε(RW ) · ε

(
1

2
,χ� ·μ−n,ψE,δ

)
· ε
(
1

2
,As+L/E(M1) ·μ−1,ψE,δ

)
·ωE/F (−1).

Hence, if we let V � be the n-dimensional skew-Hermitian space as in Equation (†), then
again by Theorem 2.3, one can check that:

• ωV �,μ[χ
�] ∈ΠΨ�(U(V �)) corresponding to the character νn of AΨ� such that

νn : (e1,en−1) −→
(
ε

(
1

2
,χ� ·μ−n,ψE,δ

)
, ε
(
V �

)
· ε
(
1

2
,χ� ·μ−n,ψE,δ

))
;

• the theta lift of ωV �,μ[χ
�] to U(RW ) is nonzero and exactly equal to Λ.

These complete the proof of the case when n is odd.

Similarly, when n is even, ωV ,μ[χ] ∈ΠΨM,μ
(U(V )) corresponds to

νn+1 : (e1,en) −→
(
ε

(
1

2
,χμ−n−1,ψE,δ

)
,ε(V )ε

(
1

2
,χμ−n−1,ψE,δ

))
.
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By Theorem 2.3, Λ corresponds to ν ∈ IrrAθ(ΨM,μ) such that ν
∣∣
AΨM,μ

= νn+1, so

ν(en−1) = ε(V ) · ε(RW ) .

Then again one can appeal to Theorem 2.3 to show that the theta lift of ωV �,μ[χ
�] is

exactly Λ.

With this proposition in hand, we get

mV (Π,μ) = dimHomU(W )(Λ,Σ) =mV �(Π�,μ) (�.2)

is nonzero. In particular, Π� is nonzero. By [GI16, Sect. 4.4(P1)], we know that:

• The sign of the Hermitian space W is given by

ε(W ) = ε

(
1

2
,M0 · τM1 ·μ−1 ◦NmL/E , ψL,δ

)
,

where ψL,δ = ψF

(
TrL/F (δ · )

)
.

• Π� is an irreducible tempered representation has L-parameter M � = M ′
0 and

corresponds to η�, where

M ′
0 =M0 · τM1 ·M−1

1 ·Υ ·μ−1 ◦NmL/E ,

and

η�(ai)/η(ai) = ε

(
1

2
,Mi · τM1 ·μ−1 ◦NmL/E , ψL,δ

)
for all i≥ 2.

Also note that

ε(RW ) = ε(W ) ·ωK/F

(
δ2
)n ·ωE/F (−1)n.

Substitute these into Equation (†), we get

ε
(
V �

)
= ε(V ) · ε

(
1

2
, IndEL (τM1⊗ (M/M1)) ·μ−1,ψE,δ

)
· ε
(
1

2
,As+L/E(M1) ·μ−1,ψE,δ

)
·ωK/F

(
δ2
)n

. (††)

Now, if we assume that Conjecture 1.1 holds for the L-parameter M �, then it follows

that:

(1) The multiplicity mV (Π,μ) = 1.

(2) V is the unique (n+ 1)-dimensional Hermitian space over E predicted by the

formula in Conjecture 1.1(3). Indeed, note that for any semisimple representation

N and any character X of WDL, we have

As+(N ·X ) = As+(N) ·
(
X

∣∣∣
E×

)
.
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Combining this with Conjecture 1.1(3) for M �, we know that

ε
(
V �

)
= ε

(
1

2
,As+L/E

(
M �

)
⊗μ−1,ψE,δ

)
·ωK/F

(
δ2
)n(n−1)/2

= ε

(
1

2
,As+L/E (M0)⊗μ−1,ψE,δ

)
·ωK/F

(
δ2
)n(n−1)/2

.

Then applying the equality (††), we get

ε(V ) = ε
(
V �

)
· ε
(
1

2
, IndEL (τM1⊗ (M/M1)) ·μ−1,ψE,δ

)
· ε
(
1

2
,As+L/E(M1) ·μ−1,ψE,δ

)
·ωK/F

(
δ2
)n

= ε

(
1

2
,As+L/E(M)⊗μ−1,ψE,δ

)
·ωK/F

(
δ2
)n(n+1)/2

.

(3) Π is the unique member in ΠM predicted by the formula in Conjecture 1.1(4).

Similar to (2), it follows from Conjecture 1.1(4) that

η�(ai) = ε

(
1

2
, IndEL (τMi⊗ (M0/Mi)) ·μ−1,ψE,δ

)
= ε

(
1

2
,τMi⊗ (M0/Mi) ·μ−1 ◦NmL/E ,ψL,δ

)
for all i≥ 2. Hence,

η(ai) = η�(ai) · ε
(
1

2
,Mi · τM1 ·μ−1 ◦NmL/E , ψL,δ

)
= ε

(
1

2
,τMi⊗ (M/Mi) ·μ−1 ◦NmL/E , ψL,δ

)
= ε

(
1

2
, IndEL (τMi⊗ (M/Mi)) ·μ−1,ψE,δ

)
for all i≥ 2. On the other hand, recall that η(a1) = ε(W ). This implies the desired

equality

η(a1) = ε

(
1

2
,M0 · τM1 ·μ−1 ◦NmL/E , ψL,δ

)
= ε

(
1

2
, IndEL (τM1⊗ (M/M1)) ·μ−1,ψE,δ

)
.

The computation above shows that there is at most one Π in the L-packet ΠM such

that mV (Π,μ) �= 0.
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3.2. Reversing two seesaw diagrams: existence

Conversely, still under the assumption that Conjecture 1.1 holds for the L-parameter M �,

we can produce an irreducible tempered representation Π′ ∈ΠM such that

mV ′(Π′,μ) �= 0

for some (n+ 1)-dimensional skew-Hermitian space V ′, from the unique irreducible
tempered representation Π� ∈ΠM� such that

mV �(Π�,μ) �= 0.

We do it by applying the two seesaw diagrams reversely as follows. First, consider an

analog of the seesaw diagram (�.2) (using the same splitting characters):

where W ′ is the unique n-dimensional Hermitian space over L chosen by the theta

dichotomy [GI16, Sect. 4.4(P1)]; that is, the theta lift Σ′ of Π� to U(W ′) is nonzero.

Symmetrically, Π� =Θ(Σ′) is the big theta lift of Σ′. By the seesaw identity, we have

mV �

(
Π�,μ

)
= dimHomU(W ′) (Λ

′,Σ′) . (�.3)

In particular, Λ′ is nonzero. It then follows from Theorem 2.1 and Theorem 2.3 that Λ′

is an irreducible unitary representation lies in the A-packet Πθ(ΨM,μ) (U(RW ′)), where

θ (ΨM,μ) = χ ·μ−n ·χ−1
W χV +χV �Sn−1+μ ·χ−1

W χV �Sn.

Next, we shall use an analog of the seesaw diagram (�.1). The following is an analog of
the key Proposition 3.2.

Proposition 3.3. Let V ′ be the (n+1)-dimensional skew-Hermitian space of sign

ε(V ′) = ε
(
V �

)
· ε(RW ′) · ε

(
1

2
,As+L/E(M1) ·μ−1,ψE,δ

)
·ωE/F (−1)n (‡)

and

ω′ = ωV ′,μ[χ].

Then Λ′ is the (big) theta lift of ω′ to U(RW ′), that is, Λ′ = Θ(ω′). Here, we are using

the same splitting characters as described in Equation (�.1).
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Proof. We first check the special case that n= 2 and χ� = μ2. So

ΨM,μ = χW +μ�S2

and

θ (ΨM,μ) = χV +μ ·χ−1
W χV �S2+(χc

V )
∨
.

Let V ′′ and RW ′′ be the companion spaces of V ′ and RW ′ respectively. Consider the
following map given by the theta correspondence:

θ4 : IrrU(V
′)� IrrU(V ′′)−→ IrrU(RW ′)� IrrU(RW ′′),

where

π →
{
θRW ′(π) ∈ Irr(U(RW ′)) if θRW ′(π) �= 0;

θRW ′′(π) ∈ Irr(U(RW ′′)) otherwise.

This map is well defined by the theta dichotomy. Using Theorem 2.1, One can easily

check by hand that this map restricts to a bijection

θ4 : ΠΨM,μ
(U(V ′))�ΠΨM,μ

(U(V ′′))−→Πθ(ΨM,μ)(U(RW ′))�Πθ(ΨM,μ)(U(RW ′′)).

Hence, Λ′ is the (big) theta lift of some

ω′ ∈ΠΨM,μ
(U(V ′))�ΠΨM,μ

(U(V ′′)).

To check that ω′ = ωV ′,μ[χ], one can use Theorem 2.3 and Lemma 2.6 to compute the

character η′ ∈ IrrAΨM,μ
associated to ω′. We omit the details.

Excluding the special case above, the theta correspondence between U(V ′)×U(RW ′)
is in the situation of Theorem 2.1(2). It follows that the theta lift Θ(ωV ′,μ[χ]) to U(RW ′)
is nonvanishing. So the proof of the general case comes down to a computation of

the labellings similar to the proof of Proposition 3.2. We shall not repeat the tedious

computation here.

Now, we can consider the following seesaw diagram, with respect to the same splitting
characters as described in Equation (�.1):

Again by the seesaw identity, we have

mV ′(Π′,μ) = dimHomU(W )(Λ
′,Σ′) =mV �(Π�,μ) (�.4)

is nonzero. In particular, Π′ is nonzero. By [GI16, Sect. 4.6(P2)], we know that Π′ is an
irreducible tempered representation of U(V ′

K) lies in the L-packet ΠM . The construction

above shows the existence of Π′ ∈ΠM such that mV ′(Π′,μ) �= 0.
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3.3. Conclusion

In summary, we have shown that:

Proposition 3.4. Let V0 be an n-dimensional Hermitian space over E and M ′
0 a tempered

L-parameter for the unitary group U(V0,K). Assume that Conjecture 1.1 holds for the L-

parameter M ′
0. Then it also holds for the L-parameter of the form

M =M ′
0 ·X +M1,

where X is any conjugate symplectic character of L×, and M1 is any conjugate self-dual

character of L× of parity (−1)n.

Proof. As we have explicated above, given such an L-parameter M, one can construct an
L-parameter M � of U(V0,K). As long as Conjecture 1.1 holds for the L-parameter M �, it

also holds for M. On the other hand, from the construction of M �, one can see that

M � =M ′
0 ·Y

for some conjugate orthogonal character Y of L×. Thus, by Lemma 3.1, Conjecture 1.1

holds for M �.

Now, we can prove the main result of this paper.

Proof of Theorem 1.3. Simply note that if M is a summation of conjugate self-dual

characters as described in Theorem 1.3, then so is M �.

The reader may notice the similarity of our setup with the paper [Xue23] of Hang Xue,

in which he showed the Bessel case of the local GGP conjecture for unitary groups over

R. There, he worked also with L-parameters M of the same form as those in Theorem 1.3.
Indeed, we are partly inspired by his results to consider these M ’s. However, the inductive

argument in our proof is different from that in [Xue23] (not to mention that the setting

of our result is different).
We end up this paper with a remark on the global conjecture [GGP23, Conj. 11.1]. One

can expect to prove the global conjecture for the near equivalence class

M =M1+ · · ·+Mn

with each Mi conjugate self-dual automorphic character of GL1 of parity (−1)n−1 by

using the same argument. Instead of the Adams’ conjecture used in this paper, one will

need to show an analog of the Siegel–Weil formula in the global case so that one can
compare the theta integrals of ωV ,μ and ωV �,μ. More precisely, let ΩV and ΩV � be the

Weil representation associated to U(V )×U(RW ) and U(V �)×U(RW ), respectively, one
needs to compare∫

[U(V )]

θϕ(g,h)f(g)dg for ϕ ∈ ΩV , f ∈ ωV ,μ, g ∈U(V ), h ∈U(RW )
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and ∫
[U(V �)]

θϕ′(g′,h)f ′(g′)dg′ for ϕ′ ∈ ΩV �, f ′ ∈ ωV �,μ, g
′ ∈U(V �), h ∈U(RW ).

Unfortunately, these theta integrals diverge in general. So one has to properly regularize

these theta integrals first. Once a global analog of Proposition 3.2 has been established,
the remaining parts should go over smoothly.
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