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A b s t r a c t . In this communication, we use Chebyshev series for integrating orbital 
motions. The nice properties that Chebyshev polynomials have, such as giving 
good approximations of functions in the Chebyshev norm, easy handling of their 
algebra with algebraic manipulators, allowing very big step sizes for integration 
and giving the solution in the form of polynomials, make these polynomials very 
attractive in orbit computations. 

1. Introduct ion 

Let us consider the following initial value problem (IVP) 

^ = / (»(*) ;*) ; v{T0) = vo, a ) 

where y e R s and / : Rs x[T0,2>] — • R s is a function of class C1. We 
plan to solve this problem by means of a collocation scheme; tha t is, we will 
approximate the function / by an adequate interpolation polynomial and 
afterwards, integrating this polynomial, we will have an approximation of 
the solution (Clenshaw and Norton, 1963). One of the main advantages of 
this scheme consists in having the solution and its derivative in the form of 
a polynomial (that is, a dense output) at very low computational cost. 

The next decision to be made is what type of polynomial basis to use. 
Our choice is the Chebyshev polynomials for several reasons; for instance, 
their orthogonality, their superior convergence rate properties and their 
near minimax error nature in the interval of interpolation. 

Carpenter (1966) was a pioneer in integrating planetary equations by 
Chebyshev series. Following Clenshaw's method, Carpenter develops a least 
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squares approximation of the right hand members of the planetary equa­
tions, and then, integrates formally the resulting Chebyshev series in an 
iterative way. More recently, Chebyshev series have been used in artificial 
satellite theory, see e.g. (Belikov, 1993; Agnese et al, 1995; Trubitsina, 1996; 
Barrio, 1996). 

In the work here presented we use an implicit method; the one that 
Broucke (Broucke, 1969) named after Dziobek-Brouwer. Essentially, it con­
sists in a modification of the Encke formalism. With this method, we per­
form several integrations for different artificial satellites, taking as integra­
tion step size the orbital period. 

2. W h y C h e b y s h e v Po lynomia l s ? 

One of the reasons for using Chebyshev polynomials is tha t they provide a 
'near best ' uniform approximation of a function. We say that a polynomial 
Pn G Vn is the best approximation of a function / G C[—l, 1] in the l^ 
norm, if || / - pi U ^ U / - pn U^, Vpn G Vn. 

Figure 1. \\ L^ ||oo for severed ultraspherical polynomials C£ and for different degrees 
n. 

Let us suppose we have an approximation of a function; the following 
theorem gives us an estimation of the goodness of this approximation with 
respect to the best approximation above defined. 

Theorem: Let p* G Vn[~ 1,1] be the best approximation to f G C[—1,1] 
in the norm l^. Then, for all projections Ln : C[— 1,1] —> P n [ - 1 , 1 ] there 
holds that 

| | / - I n / | | o o < ( l + | | M o o ) I I Z - K l l o o . 
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Figure 2. Graphic at the top: order of the polynomials to reach precision of 10(o) and 
14(*) digits. Graphic at the bottom: order of the polynomials necessary to approximate 
l(o),8(+) and 16(*) periods. 

In Figure 1 we plotted || L* ||oo for several expansions in ultraspherical 
polynomials C^ and for different degrees n. We see that for A = 0, tha t is, 
for Chebyshev projection we obtain the minimum values of the norm. 

Once we decided to use Chebyshev polynomials, how do we fix the 
degree of the polynomials to use? We find a hint in Carpenter 's work (1966). 
Since our perturbation forces are periodic or mixed functions, we need to 
know the behavior of the trigonometric cosine and sine. For instance, for the 
cosine function (analogously for the sine), its Chebyshev series expansion 
is 

oo 

cos(pa!) = 5 ] , C 2 r ( p ) r 2 r ( a ? ) > with dip) = (-l)i/22 Ji(p), 
r=0 

where J;(p) is the Bessel function of the first kind. Thus, for a fixed argu­
ment p, we need to know how big is i to reach a certain precision required. 
By considering a time interval At (the step size) and a term cos 2nt/T with 
period T, this term will be a linear combination of trigonometric functi­
ons whose argument is px, with p = nAt/T. We made several numerical 
examples tha t appear on Figure 2. 
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3 . Integrat ion M e t h o d and Equat ions of M o t i o n 

The method we use is based on the work outlined by Clenshaw (Clenshaw 
and Norton, 1963). It consists of approximating the right-hand member of 
the differential system (1) f(y(t);t) by a truncated series of Chebyshev 
polynomials of the first kind at each step of integration [£,-, £,+i]: 

m 

f(y(t);t)&J2cnTn(u), -1<U<1, (2) 

71=0 

where the change of variable u = [2t — (t{+i + **)]/(**+i — *»') *s needed to 
transform the interval [£j,£»+i] into the normal interval [—1,1]. The coef­
ficients Cn are computed by the Chebyshev-Gauss-Lobatto formula [see 
e.g. Fox and Parker (1968)] 

C r - & I > - < f c r / m ) ) . . £ , with ^ = { \ X l < k ( « 

where the double prime on the summation symbol indicates that both, the 
coefficients of order zero and order m have to be halved. 

Let us recall tha t since we take only m terms in both sums, in the 
truncated series and in the evaluation of the coefficients, the polynomial 
(2) is just the Lagrange interpolation polynomial at the considered points. 

Once the approximation polynomial is obtained, we integrate it, and 
the result is another Chebyshev series 

2 / o + J ± V - i / E c « r « ( a ; ) d a ; = E 6 " r » ( u ) ' (4) 
J~1n=o n=o 

which coefficients are 

_ tj+i — tj Cm _ £1+1 — tj CTO_i 
ro+1" 2 2(m + l ) ' m~ 2 2m ' 

br = tj±^Yr{Cr-1 ~ C r + l ) ' l ~ r < m ' 

b0 = 6i - b2 + b3 - + ( - l ) m f c m + 1 + y 0 . 

However, the value of y(t) at the chosen points is not known and we must 
iterate the process, tha t is to say, for a given initial value of y(t) we com­
pute an approximation of f(y, t); we integrate and we obtain a new appro­
ximation of y(t), and so on. Several improvements may be applied to this 
iterative method (such as Newton methods for instance), although when 
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the function f(y, t) is very intricate, the iterations involve a big amount of 
operations for computing the Jacobian. The iterative process is repeated 
until the desired convergence is reached. 

This iterative procedure requires the solving of a set of implicit equa­
tions; therefore, it would be good to formulate the problem in such a way 
that it is easy to derive a 'good' first step in the iterations. 

Let us consider a perturbed Keplerian problem 

d2r r _ . , 
« * = - " ? + * • W 

Let us define M and s as M = ^Jacobian ( r^ / r^ ) and s = r — r^, where 
r*fc stands for a Keplerian orbit of reference. Adding the quantity Ms to 
both sides of (5), we have 

% + > { $ - * ^ ) ~ - > { $ - % ) + t l ' + p = Q{,)- ( 6 ) 

Using the classical method of the variation of parameters, the general so­
lution of (6) can be written in the form 

where {a; 11 < i < 6} is some set of six independent parameters which 
defines the orbit. Recall tha t drk/dai (1 < i < 6) are six independent 
solutions of the homogeneous part of (6). Now the difficulty consists in 
computing the coefficients Kf, it is overcome by solving the differential 
system K{ = V^.fca,- • Q (in a similar way to the classical Gauss equations). 
Consequently, the solution is obtained through 

The functions drk/dcn, V^, a, are evaluated at the reference orbit r^; thus, 
we may expect a small variation in each variable. With this model, the 
initial values for the first iteration are those of the reference orbit. 

As an illustration, we show here the application of this method to an 
artificial satellite (24 x 24 harmonics from the GEM9-10 model). The in­
itial conditions of the simulated orbit are a = 42000 km, e = 0.0001, i = 5°. 
We use the orbital period as integration step and take 30 terms in the se­
ries. This solution has been compared with an orbit generated by a RK 
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Figure 3. Error in position (along-track, across-track and across-plane components) 
and velocity (norm). 

(DOPRI8) of order eight with an integration step of 100 seconds. The com­
parison between the two integrations appears in Figure 3. The number of 
function evaluations are 11232 for the RK and 270 for the method described 
here. 
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