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LINEAR DIFFERENTIAL EQUATIONS 
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Introduction. In §1 of this paper we consider the complex differential 
equation 

(1) u"(z)+q(z)u(z) = 0, \z\ < 1, 

where q(z) is a regular function in the open unit circle. We shall give a lower 
bound for the non-Euclidean distance of any pair of zeros of any non-trivial 
(i.e., not identically zero) solution u(z) of (1). This theorem (Theorem 1) is a 
generalization of a recent theorem of Nehari (7, Theorem I) quoted below. 
The first part of our proof will use a complex technique already used elsewhere 
(1, Theorem 2.1). However, for the final step in the proof of this theorem 
we need a result on the (real) zeros of the (real) solutions of the real differential 
equation 

(2) y"(r) + M(r) y(r) = 0, - 1 < r < 1, 

under certain restrictive assumptions on the function M(r). This result 
(Lemma 1), whose proof we shall delay to the very end of our paper, is a 
consequence of a theorem of §2 giving a lower bound for the least positive 
eigenvalue of the real differential system 

(3) y"(x) + \p(x) y(x) = 0, y(x0) = y ( -*o) = 0 , 0 < x0 < » , 

where p(x) is a real function, continuous in — x0 < x < x0, and changing sign 
only a finite number of times in this interval (Theorem 2). We shall, however, 
also obtain an upper bound for A in the simpler, and more often considered, 
case where p(x) is a continuous function which is non-negative in the whole 
interval — x0 < x < x0. 

1. Non-Euclidean distance. In his first paper on this subject (6), 
Nehari made use of a fundamental relationship between the theory of the 
differential equation (1) and the behaviour of analytic functions/(z). If we 
denote the Schwarzian derivative of f(z) by {/(s), z] and if we set q(z) = 
|{/(z)» z\ then the univalence oif(z) in |s| < 1 is equivalent to the fact that 
no non-trivial solution u{z) of (1) has two zeros in \z\ < 1. Bearing this in 
mind, we now restate the above-mentioned theorem of Nehari for differential 
equations (instead of stating it—as in the original— as a criterion of uni
valence) . 
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THEOREM I (7). Let q(z) be regular in \z\ < 1 and suppose there exists a 
function M(r) satisfying 

(4) hz(*)| < M(\z\), \z\ < 1, 

and having the following properties: (a) M(r) is positive and continuous for 
— 1 < r < 1; (b) M( — r) = M(r); (c) (1— r2)2 M(r) is non-increasing as r 
varies from 0 to 1; (d) the differential equation 

(2) y"(r) + M(r) yir) = 0, - 1 < r < 1, 

has a {real) solution y(r) which does not vanish for — 1 < r < 1. Then no non-
trivial (complex) solution u (z) of the differential equation 

(1) *"(*) + q(z)u(z) = 0, \z\ < 1, 

has two zeros in \z\ < 1. The right-hand side of (4) cannot be replaced by an 
expression of the form CM(\z\) for any constant C > 1. 

We shall keep conditions (a)-(c), but drop condition (d). For the statement 
of our theorem let us agree to denote the non-Euclidean1 segment between 
two points Z\ and z2 inside the unit circle by [JSIZ2], and to denote the non-
Euclidean distance between these two points by | [^is2]|. We have then 

where the integration is along [ziz2]. We now state 

THEOREM 1. Let q(z) be regular in\z\ < 1, and suppose there exists a function 
M{r) satisfying (4) and having properties (a)-(c) of Theorem I (7). Moreover, 
assume (d'): there exists a {necessarily even) solution y(r) of (2) for which 

yip) = y(-a) =o, o < a < l, 
y(r) T̂  0 —a < r < a. 

Let u(z) be any (non-trivial) solution of the differential equation (1), and assume 
that u(zi) = u(z2) = 0, |si| < 1, \z2\ < 1, z\ ?£ z2. Then 

(5) | [ Z l s 2 ] |> logY3f = \[-a,a]\. 

We remark that the existence of an (essentially unique) even solution of 
(2) follows from condition (b) and that, in view of the Sturm separation 
theorem, conditions (d) and (d') are mutually exclusive. 

The first part of the proof of this theorem follows closely the proof of 
Theorem I (7). That is, we assume that a non-trivial solution u(z) of (1) vanishes 
at the points Zi, z2 inside the unit circle, and consider the circle which passes 
through these two points and is orthogonal to \z\ = 1 ; let us denote its whole 

xThe non-Euclidean distance refers to the Klein-Poincaré hyperbolic geometry. 
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arc inside the unit circle by C. C is, therefore, the non-Euclidean straight line 
containing [ziz2]. Without loss of generality we may assume that C lies in the 
upper half-plane and is symmetric with respect to the imaginary axis. Indeed, 
this position can always be achieved by a rotation f = as, |a| = 1, which 
transforms (1) into 

*i"(r) + <*~2<z(fA*) «iGO = 0 , 

where #i(f) = u(z). But clearly a~2q(z/a) is, together with q(z)1 majorized by 
M(\z\). We assume therefore that C is already in this symmetrical position, and 
denote the imaginary point of C (which may or may not lie in [ziz2] by i /3, 
0 < j8 < 1. The linear transformation 

z-ifi 
w = 

1 + i:p z 
of \z\ < 1 onto \w\ < 1 carries C onto the line segment —1 < w < 1, and 
[ziz2] onto a segment rx < w < r2, —1 < ri < r2 < 1. Now, setting 

^ ) = (i-^w ) M(ff^) 
we see that £7(w) satisfies the differential equation 

(6) U"W + ( f e ^ <A r̂¥^J W = o, 
and, moreover, U(ri) = î/(r2) = 0. We have, for real w, 

(1 - ifiwy l + /? V ' 
w + i$ 1 = / w2 + ft2 V 
1 - ip w I \1 + j8V/ ' 

Using (4), it follows that for real w the factor of U(w) in (6) is majorized by 

Now, writing r instead of the real w, we compare (6) for — 1 < r < 1 with 
its real majorant 

(7) y" (r) + ( - ^ ) 2 ^ ( £ j ± £ ) ' ) y(r) = 0, - 1 < r < 1. 

We now use the fact (7; 11, Theorem 4.1; 1, Corollary 1.2) that if a real 
solution y(r) of the majorant equation (7) is non-vanishing on an interval 
r3 < r < r4, — 1 < r3 < r4 < 1, then no (complex) solution U(w) of the 
majorized equation (6) can have two zeros inside this interval. 

For fixed 0, 0 < £ < 1, let us now denote any pair of consecutive zeros of 
any solution of (7) by a\{0) and a2(0), — 1 < #i(/3) < a2(/3) < 1, and set 

J»aj(0) 7 

ai(0) 1 — f 
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where the g.l.b. is taken over all such pairs ai(0), a2(l3). At this stage, without 
having yet used assumption (c), we have proved that 

|[*i*2]| = ItfirJI > g.l.b. d(/J). 
0</3<l 

However, as noted in (1, (2.3) and (2.4) for 0O = 1), assumption (c) is 
equivalent to the inequality 

(^M£^)V«. 0 < / 3 < 1, - 1 <r < 1. 

As equation (7) is therefore majorized by equation (2), it follows that a lower 
bound for |[ziZ2]| is given by 

g.l.b. f " dr 

Jai 1 - r 2 

where the g.l.b. is taken over all pairs #i, a2, — 1 < #i < a2 < 1, of consecutive 
zeros of all non-trivial solutions y(r) of equation (2). We now use 

LEMMA 1. Let M(r) fulfil conditions (a) to (d') of Theorem 1. Let ah a2, 
— l<ai<a,2<l,be any pair of consecutive zeros of any non-trivial solution 
y{r) of (2). Then 

(8) Jai r = 7 * > l o g r ^ ' 
wAere a w defined by condition (d')« //*, i# addition, (1 — r2)2 ikf(r) w strictly 
decreasing for 0 < r < a, //zew ?#£ &az/e s/ric2 inequality in (8) except for the 
case a\ — — a, a2 = #. 

The proof of Lemma 1 which, as stated, will be given in §2 completes the 
proof of Theorem 1. 

We remark that for a function M(r) fulfilling conditions (a)-(c), condition 
(d') will be implied by 

lim (1 - r2)2M(r) > 1. 
r-*l 

This will follow from the proof of Lemma 1, and may also be seen by using the 
Sturm comparison theorem for (2) and the differential equation 

having the solutions 

(9) (1 - r2)* s in{ 7 log (j~) - c | , - » < C < » , 

which are oscillatory for — 1 < r < 1. On the other hand, if 

lim (1 - r2)2 M{r) < 1 

then conditions (a)-(c) are compatible either with (d) or (d'). Indeed, for 
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M(r) = 1/(1 — r2)2 and M(r) = 7r2/4, equation (2) has solutions which do 
not vanish on — 1 < r < 1 (cf. Nehari (6, Theorems I and II )), while examples 
(ii) and (iii) below, with 

lim (1 — r2)2 M(r) = 1 and 0 respectively, 
r->l 

illustrate Theorem 1, i.e., correspond to (d')« 
With respect to the sharpness of Theorem 1, we remark that if q (z) is an 

even function, real on the real segment —1 < z < 1, which attains its maxi
mum on the real axis for each \z\ = C, 0 < C < 1, and if in addition (1 —r2)2 

q(r) is non-increasing for 0 < r < 1, then—taking q{r) as the M(r) of Theorem 
1—there exists a solution u(z) of (1) and zeros zi, Zi of u(z) such that we have 
equality in (5). Indeed, —a and a (defined by (d')) are zeros of any even 
solution of (1). It follows that the inequality (5) is the best possible of its kind. 

The following examples deal with functions M (r) for which such corres
ponding functions q(z) are readily found. 

(i) J l f ( r ) = - ^ ^ , 7 > 0 . 

In this case we have, for any pair #i, a2 of consecutive zeros of any real solution 
y(r)—given by (9)—of equation (2), |[aia2]| = ir/2y. Sharpness is shown by 
q(z) — (1 + 4y2) / ( l — s2)2. This case was considered earlier (10, Theorem 3); 
however, the bound given there was not sharp. It is of interest to note that in 
this case, equations (2) and (7) are identical so that the result would follow 
without an application of Lemma 1. 

00 M(r) = (1 _ ry + \ _ / , 

where v is an even positive integer. The even solution of (2) is, in this case, 
(1 — r2Y Pp(r), where Pv(r) is the Legendre polynomial of degree v. Denoting 
its least positive zero by avy we obtain the bound log [(1 + a„)/( l — «„)]. 
Sharpness is shown by q(z) = [1/(1 — z2)2] + v{y + 1)/(1 — z2). 

(-) Jf<r)=*iji, 

where v is an odd positive integer larger than 1. In this case the even solution 
of (2) is (1 — r2) P / ( r ) , where Pv(r) is again the *>th Legendre polynomial. 
Denoting the least positive zero of Pv'{r) by f$v, we obtain the bound log 
[(1 + 0,) / ( l - 0,)]; <Z(«) ^ given by v{v + 1)/(1 - z2). 

For examples (ii) and (iii) it was shown earlier (1, Corollary 2.1 and Corollary 
4.1) that no solution of (1) has two zeros in the circle \z\ < av or \z\ < f3v 

respectively, a fact that now follows from Theorem 1. 

2. Bounds for the least positive eigenvalue. The statement of Theorem 
2 uses notions which are defined in the books of Hardy, Littlewood and Pôlya 
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(3, chap. X) , and of Polya and Szegô (9, chap. VII). Moreover, its proof 
relies on a theorem of these books (3, Theorem 378, and 9, p. 153). For 
completeness we shall restate this material (cf. 9, pp. 151-153), but only for 
the case needed here, i.e., for real functions defined and continuous on the 
closed segment (— xo, x0), 0 < Xo < °°. 

Let / (x) and g(x) be two such functions. They are called similarly ordered 
if for each pair of points Xi, x2 of the above integral we have 

Ufa) -/(*«)]-fe(*i) -gfa)] >0; 
/ and g are called oppositely ordered if / and — g are similarly ordered. Consider 
now, for each real u, the set of points x in (—Xo, x0) for which/(x) > u and 
denote its measure by M(u). Let N(u) be related to g as M{u) is t o / . If, for 
each real u, we have M(u) = N(u) then we say t h a t / and g are equimeasurable. 
We now quote the special case of the above-mentioned theorem as 

LEMMA 2. If f, f\, f2, g, gu and & are real continuous functions defined on 
( — Xo, Xo), 0 < Xo < oo, / i and g\ are similarly ordered, f2 and g2 oppositely 
ordered, f, f i andf2 are equimeasurable, and also g, gi and g2 are equimeasurable, 
then 

X
XQ S*XO nxo 

f2g2dx< I fgdx< I figidx. 
Let / (x) be defined as above. Le t / (x ) , / + (x ) and/~(x) be equimeasurable, 

and in addition let /+(x) and x2 be similarly ordered, and /~(x) and x2 be 
oppositely ordered. The uniquely defined and continuous functions /+ (x) and 
/~(x) are called the rearrangement of f{x) in symmetrically increasing respectively 
decreasing order. f~(x) is an even function decreasing (i.e., non-increasing) for 
0 < x < Xo. The connection between /+(x) and /~(x) is given by /+(x) = 
/ _ (x 0 — x) for 0 < x < Xo, and /+(x) =F / + ( — x) for — x0 < x < 0. 

We may now state 

THEOREM 2. Let p (x) be continuous and not identically zero2 for — x0 < X <Xo, 
0 < xo < oo, and let p+(x)and p~(x) be the rearrangement of p(x) in sym
metrically increasing resp. decreasing order. Consider the three differential 
systems 
(10) y ( x ) + \p(x) y(x) = 0, y(±x0) = 0; 
(10+) u"(x) + \+p+(x) u(x) = 0, u(±xo) = 0; 
(10-) v"(x) + \-p~(x) v(x) = 0, v(±Xo) = 0; 

denote their least positive eigenvalues also by X, À+ and \~ respectively. Then 
\~ < X even if p(x) changes sign finitely often, while X < X+ holds if p(x) > 0. 

Proof. We shall use, in addition to Lemma 2, the minimum property of 
the least positive eigenvalue. Since the first half of this theorem deals with 

*If p(x) < 0 throughout the interval, then the differential systërns (10)'hâvie no î)ôâitîve 
eigenvalues; p(x) is therisfore assumed to be positive somewhere iif thé1 rrïtërvâl. 
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the polar case—where p (x) may change sign—we shall give an explicit state
ment of this property (5, pp. 214-215). Consider all functions3 y(x) of class 
D' on — Xo < x < Xo such that y(zkx0) = 0, and such that 

r py dx > 0. 

Then the least positive eigenvalue of the system (10) is given by 

J xo 

y,2dx 
A = mm —-^ 

I 
xo 

py dx 

where the minimum is taken over the above class. This minimum is obtained 
for a solution of the system (10), and we shall denote this eigenfunction 
corresponding to the least positive eigenvalue by y(x). We also use the fact 
(see Ince (4, p. 237) or Bôcher (2, p. 176)) that this first eigenf unction does 
not vanish for — x0 < x < x0. 

I t follows that y(x) may be assumed to be positive for — x0 < x < x0; 
the same therefore holds true for y~"(x), the rearrangement oly(x) in symmetri
cally decreasing order. yr(x) vanishes, together with y(x), at ±x 0 . Moreover, 
it is easily seen that y~{x) is continuous and that its derivative may have 
discontinuities only for those values of the ordinate y~ for which y had extrema. 
Since by hypothesis p(x) changes sign only finitely often, y(x) has only a 
finite number of inflection points and of extrema, and it follows that y~(x) 
is in Dr. We then have 

X = 

an 

J XQ S*XQ 

y"dx (y~y 
-Xr\ w • / — Xn 

' w dx 

nxo /*xo 

I py2dx I p~(y~)2dx 

f*XQ 

S *"• 
> min - î ^ 5 = X" 

,2dx 

I 
xo 

p~v dx 
xo 

To justify the first inequality sign we remark that {y~(x) }2 is, together with 
y~(x), symmetrically decreasing; p~(x) and {y~(x)}2 are therefore similarly 
ordered, and it follows from Lemma 2, that 

1*XQ pxo 

py*dx< p-(y-)'dx. 

3Kamke (5) states the minimum property only for comparison functions of class C \ however 
an elementary argument extends the validity of the result to this wider class of functions. 
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That 

y'*dx > (y~y2dx, y ( ± x0) = 0, 
J— x0 J—xo 

i.e., that under symmetrization the one-dimensional Dirichlet integral de
creases, follows (analogous to the two-dimensional case; see (9, Note A.3)) 
from the well-known fact that the arc length decreases under symmetrization. 
The minimum in the fourth term of (11") is taken over all functions v(x) of 
class D' such that v(zLx0) = 0 and such that 

x 
so 

p~v2dx > 0. 
-x0 

To prove that X < X+ under the hypothesis p(x) > 0 (but p(x) ^ 0), let 
u(x) be a fixed first eigenfunction of (10+). Since (10+) is a symmetric different
ial system, u{x) is an even function of class C", which we may assume to be 
positive for —x0 < x < xo. It follows, moreover, from (10+) that u(x) is 
concave from below and therefore symmetrically decreasing. Here we use the 
fact that p+(x) is, together with p(x)y non-negative for — Xo < x < x0. We 
have now 

J xo nxo 

u,2dx I u,2dx 
U l ' J A = — ^ > - ^ = ^ 

nxo s*x0 

I p+u2dx I pudx 
*J-xo J-xo f 

J" 

y'2dx 
> min ^^^ = X, 

py2dx 

the first inequality sign in (11+) now following from the fact that {u(x)}2 is, 
together with u(x), symmetrically decreasing so that p+(x) and {u(x)\2 are 
oppositely ordered. 

Theorem 2 includes a result announced by Pokornyi (8), and proved 
elsewhere (1, Lemma 5.2): 

Let p(x) be continuous and non-negative on the interval —Xo < x < x0, 
p(x) = p{—x), and let p(x) be non-increasing for 0 < x < x0. Suppose 
y"(x) + p(x) y(x) = 0 has a solution which does not vanish on — x0 < x < x0. 
Set 

* M _ fp&o """* *)> ° < x < x°> 
P { } Ipi(-x), -x0<x< 0; 

then the equation yi"{x) + pi(x) yi(x) = 0 has a solution with the same property. 

In our notation this result is equivalent to the inequality X+ > X~ and follows 
therefore—for non-negative p(x)—from Theorem 2. 
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We finally remark that Theorem 2 can be generalized to two dimensions, 
i.e., to the equation 

Au(x, y) + \p(x, y) u(x, y) = 0. 

We intend to deal with this and related material in another paper. 
For the proof of Lemma 1 we need an intermediate step which is a con

sequence of the first half of Theorem 2. For completeness, however, we shall 
also state and prove the analogous consequence of the second half of Theorem 
2. 

LEMMA 3. Let p(x) have the following properties: 
(a) p (x) is continuous for — oo < % < oo ; 
(b) p(-x) =p(x); 
(c) p (x) is non-increasing for 0 < x < o° ; 
(d') the even solution y{ — x) — y(x) of the differential equation 

(12) y"(x) + p(x) y(x) = 0, - <*> < * < oo, 

vanishes for finite x, with its least positive zero at x = a. 
Let «i, a2, — °° < m < a2 < <» be any pair of consecutive zeros of any 

non-trivial solution of (12). Then 

(13) «2 — oil > 2a. 

If, in addition, p(x) is strictly decreasing for 0 < x < a then we have strict 
inequality in (13) except for the case a\ = — a, a2 = «• 

Moreover, if we keep conditions (b) and (d') but replace (a) and (c) by (ar) : 
p (x) is non-negative and continuous for — oo < % < œ, and (c') : p (x) is 
non-decreasing for 0 < x < «>, then we have 

(13') «2 - «i < 2a. 

i>z //m case s/ric/ inequality holds in (130 {except for ai = — a, a2 = a) z/" £(x) 
is strictly increasing for 0 < x < a. 

We begin the proof of the first half of the lemma with the remark that the 
properties of p(x) imply p(0) > 0. Now take any fixed real c 7e 0, and consider 
the function q(x) = p(x + c) for the interval —a < x < a only, where a is 
defined by (d0- We now compare the three differential systems 

(14) y"(x) + \q(x)y(x) = 0, ?(=*=«) = 0, 
(14-) v"-.{x) +\-q-{x)v(x) = 0 , •••iKia) = 0, 
and 
(14°) Y"(x) + X°p(x) Y(x) = 0, Y(±a) = 0, 

and denote their least positive eigenvalues also by X, X- and X° respectively. 
These eigenvalues will all exist since—at least for all constants c which we need 
to consider—each of the. three functions q(x), q~(x) and p(x) is,somewhere 
positive in — a < x < a. This is true of p{x) by our first remark; as far as 
q(x) is concerned (and hence also q~(x)) we need only consider constants c 
which are such that q(x) = p{x + c) is somewhere positive in —a < x < a. 
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For, if p(x) < 0 for —a + c^x<^a + c no solution of (12) can have two 
zeros in this interval, i.e., a\ and a2 are not defined in this case. 

In (14"") q~(x) is the rearrangement of q(x) (considered only for —a < x < a) 
in symmetrically decreasing order. It follows from (b) and (c) that 

(15) Q~(x) < p(x), —a < x < a. 

If, in addition, p{x) is strictly decreasing for 0 < x < a, then we have strict 
inequality in (15) for some subintervals of — a < x < a. By using the minimum 
property for (14") and (14°) it follows from (15) that X~ > X° with strict 
inequality if p (x) is strictly decreasing. By Theorem 2 it follows that X > X~, 
hence we have X > X° with strict inequality if p (x) is strictly decreasing. 

We now show that condition (d') implies X° = 1. Let Y(x) be an even solu
tion of (12). We have F ( ± a ) = 0 and Y(x) F^ 0 for — a < x < a. Since 

f pY2dx = f Y'2dx>0 
•J—a J—a 

it follows from the minimum property of the least positive eigenvalue that 
X° < 1. On the other hand, if w(x) is any function of class D' on — a < x < a 
such that w(±a) = 0, then Y(x) 5^0 for— a < x < a implies (cf. 1, Lemma 
i . i ) 

(16) I vf2dx > pw2dx, 
g| «/ —a *J —a 

so that X° > 1. 
It remains to show that X > 1 implies (13), and that X > 1 implies strict 

inequality in (13). First, if X = 1, then the corresponding eigenfunction of 
the system (14) has consecutive zeros at x = db a, and the corresponding 
solution of (12) has a2 — « I = (a + c) — { — a + c) = 2a so that (13) is 
satisfied. Now, suppose that X > 1 and that a2 — ai > 2a is not satisfied. 
Then for an appropriate c ^ 0 the solution of the equation 

y"(x) + q(x) y(x) = 0, q(x) = p{x + c), 

which vanishes at x = —a would vanish again at x', where —a < x! < a. 
Now define yi(x) by 

\ U, x <. x < 
^ X y 

<a. 

We now have 

y[2dx = I qyl dx. 
-a */— a 

By the preceding inequality (and since X > 1) it follows that 

J> dx 
0 < ^ ^ < X. 

I qyidx 
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But this contradicts the minimum property of the least positive eigenvalue X of 
the system (14), and thus proves the first half of our lemma. The proof of the 
second half is analogous but somewhat simpler since p{x) is non-negative. 
The properties of p(x) now imply that p(x) is not identically zero. We now 
compare (14) with 
(14+) u"(x) + \+q+(x) u(x) = 0, u(±a) = 0, 

and (14°), using now q+(x) > p(x)y — a < x < a, and the other half of 
Theorem 2. In this case, p(x) > 0 and (d') imply X° = 1 by a direct application 
of the Sturm comparison theorem; moreover X+ > 1 (X+ > 1) implies (13') 
(with strict inequality if p (x) is strictly increasing) also follows from the Sturm 
comparison theorem. This completes the proof of Lemma 3. 

Suppose now that M(r) has the properties (a)-(d') of Lemma 1. Set g(r) = 
(1 — r2)2 M(r); by (c) g(r) is non-increasing for 0 < r < a. Let y(r) be any 
solution of the differential equation 

(2) y"(r) + Mir) y(r) = 0 , - 1 < r < 1. 
Set 

i i 1 + r 
x = ilogyzTr ' - 1 < r < 1, 

and define 

(17) Y(x) = (ex + e~x) y(j^^) • 

Y(x) is then a solution of the differential equation 

(12) F"(*) + p(x) Y(x) = 0 , - oo < x < oo , 

where 

P(x) = « ( 7 ^ = 5 ) - I-

p{x) has the properties (a)-(d') of Lemma 3. The even solutions y{r) of (2) 
transform into the even solutions Y(x) of (12). The numbers a and a defined 
by conditions (dr) are connected by 

1 1 1 + a 
- = ^ o g r r ^ , 

and g(r) strictly decreasing implies p(x) is also strictly decreasing. If a\ 
and a2 are any pair of consecutive zeros of a solution y(r) of (2), then, setting 

«* = h log- - - , i = 1,2, 
1 — di 

«i and «2 will be the corresponding consecutive zeros of the corresponding 
solution Y{x) of (12). We have now 

«2 — Oil 
fa\ CatdxJ r 2 dr 

• / a i « / a i iir « / a i ± T 
\[aia2}\. 
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By this equality it follows that (13) implies (8). We have thus proved Lemma 
1 and with it the proof of Theorem 1 is complete. 
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