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We consider distance colourings in graphs of maximum degree at most d and how excluding one
fixed cycle of length � affects the number of colours required as d → ∞. For vertex-colouring and
t �1, if any two distinct vertices connected by a path of at most t edges are required to be coloured
differently, then a reduction by a logarithmic (in d) factor against the trivial bound O(dt) can be
obtained by excluding an odd cycle length � � 3t if t is odd or by excluding an even cycle length
� � 2t + 2. For edge-colouring and t � 2, if any two distinct edges connected by a path of fewer
than t edges are required to be coloured differently, then excluding an even cycle length � � 2t is
sufficient for a logarithmic factor reduction. For t �2, neither of the above statements are possible
for other parity combinations of � and t. These results can be considered extensions of results due
to Johansson (1996) and Mahdian (2000), and are related to open problems of Alon and Mohar
(2002) and Kaiser and Kang (2014).
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1. Introduction

For a positive integer t, the tth power Gt of a (simple) graph G = (V,E) is the graph with vertex
set V in which two distinct elements of V are adjacent in Gt if there is a path in G of length at
most t between them. The line graph L(G) of a graph G = (V,E) is the graph with vertex set
E in which two distinct elements are adjacent in L(G) if the corresponding edges of G have a
common endpoint. The distance-t chromatic number χt(G), respectively, distance-t chromatic
index χ ′

t (G), of G is the chromatic number of Gt , respectively, of (L(G))t . (So χ1(G) is the
chromatic number χ(G) of G, χ ′

1(G) the chromatic index χ ′(G) of G, and χ ′
2(G) the strong

chromatic index χ ′
s(G) of G.)
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The goal of this work is to address the following basic question. What is the largest possible
value of χt(G) or of χ ′

t (G) among all graphs G with maximum degree at most d that do not
contain the cycle C� of length � as a subgraph? For both parameters, we are interested in finding
those choices of � (depending on t) for which there is an upper bound that is o(dt) as d → ∞.
(Trivially χt(G) and χ ′

t (G) are O(dt) since the maximum degrees Δ(Gt) and Δ((L(G))t) are
O(dt) as d → ∞. Moreover, by probabilistic constructions [2, 9], these upper bounds must be
Ω(dt/ logd) as d → ∞ regardless of the choice of �.) We first discuss some previous work.

For t = 1 and � = 3, the question for χt was essentially a long-standing problem of Vizing [14],
one that provoked much work on the chromatic number of triangle-free graphs, and was even-
tually settled asymptotically by Johansson [8]. He used nibble methods to show that the largest
chromatic number over all triangle-free graphs of maximum degree at most d is Θ(d/ logd) as
d → ∞. It was observed in [10] that this last statement with C�-free, � > 3, rather than triangle-
free also holds, thus completely settling this question asymptotically for χ1 = χ . It should be
mentioned here that, since the submission of our original manuscript, Molloy [12] and, later,
Bernshteyn [3] have given elegant proofs of significantly stronger forms of Johansson’s result.

Regarding the question for χ ′
t , first notice that since the chromatic index of a graph of max-

imum degree d is either d or d +1, there is little else to say asymptotically if t = 1.
For t = 2 and � = 4, the question for χ ′

t was considered by Mahdian [11] who showed that the
largest strong chromatic chromatic index over all C4-free graphs of maximum degree at most d is
Θ(d2/ logd) as d → ∞. Vu [15] extended this to hold for any fixed bipartite graph instead of C4,
which in particular implies the statement for any C�, � even. Since the complete bipartite graph
Kd,d satisfies χ ′

2(Kd,d) = d2, the statement does not hold for C�, � odd. This completely settles the
second question asymptotically for χ ′

2 = χ ′
s.

In this paper, we advance a systematic treatment of our basic question. Our main results are
as follows, which may be considered as extensions of the results of Johansson [8] and Mahdian
[11] to distance-t vertex- and edge-colouring, respectively, for all t.

Theorem 1.1. Let t be a positive integer and � an even positive integer.

(i) For � � 2t + 2, the supremum of the distance-t chromatic number over C�-free graphs of
maximum degree at most d is Θ(dt/ logd) as d → ∞.

(ii) For t � 2 and � � 2t, the supremum of the distance-t chromatic index over C�-free graphs of
maximum degree at most d is Θ(dt/ logd) as d → ∞.

Theorem 1.2. Let t and � be odd positive integers such that � � 3t. The supremum of the
distance-t chromatic number over C�-free graphs of maximum degree at most d is Θ(dt/ logd)
as d → ∞.

This study was initiated by a conjecture of ours in [10], that the largest distance-t chromatic
number over all C2t+2-free graphs of maximum degree at most d is Θ(dt/ logd) as d → ∞.
Theorem 1.1(i) confirms our conjecture.

In Section 2, we exhibit constructions to certify the following, so improved upper bounds are
impossible for the parity combinations of t and � other than those in Theorems 1.1 and 1.2.
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Proposition 1.3. Let t and � be positive integers.

(i) For t even and � odd, the supremum of the distance-t chromatic number over C�-free graphs
of maximum degree at most d is Θ(dt) as d → ∞.

(ii) For t � 2 and � odd, the supremum of the distance-t chromatic index over C�-free graphs of
maximum degree at most d is Θ(dt) as d → ∞.

We have reason to suspect that the values 2t +2 and 2t, respectively, may not be improved to
lower values in Theorem 1.1, but we do not go so far yet as to conjecture this. We also wonder
whether the value 3t in Theorem 1.2 is optimal – it might well only be a coincidence for t = 1 –
but we know that in general it may not be lower than t, as we show in Section 2.

Our basic question in fact constitutes refined versions of problems of Alon and Mohar [2] and
of Kaiser and the first author [9], which instead asked about the asymptotically extremal distance-
t chromatic number and index, respectively, over graphs of maximum degree d and girth at least
g as d → ∞. Our upper bounds imply bounds given earlier in [2, 9, 10], and the lower bound
constructions given there are naturally relevant here (as we shall see in Section 2).

It is worth pointing out that the basic question unrestricted – i.e. asking for the extremal value
of the distance-t chromatic number or index over graphs of maximum degree d as d → ∞ – is
likely to be very difficult if we ask for the precise (asymptotic) multiplicative constant. This is
because the question for χt then amounts to a slightly weaker version of a well-known conjecture
of Bollobás on the degree–diameter problem [4], while the question for χ ′

t then includes the
notorious strong edge-colouring conjecture of Erdős and Nešetřil (see [6]) as a special case.

Our proofs of Theorems 1.1 and 1.2 rely on direct applications of the following result of Alon,
Krivelevich and Sudakov [1], which bounds the chromatic number of a graph with bounded
neighbourhood density.

Lemma 1.4 ([1]). For all graphs G = (V,E) with maximum degree at most Δ such that for each
v ∈V there are at most Δ2/ f edges spanning N(v), it holds that χ(G) = O(Δ/ log f ) as Δ → ∞.

The proof of this result in [1] invoked Johansson’s result for triangle-free graphs; using nibble
methods directly instead, Vu [15] extended it to hold for list colouring. So Theorems 1.1 and 1.2
also hold with list versions of χt and χ ′

t .
Section 3 is devoted to showing the requisite density properties for Lemma 1.4. In order to do

so with respect to Theorem 1.1, we in part use some intermediary results that were employed in
a recent improvement [13] upon the classic result of Bondy and Simonovits [5] that the Turán
number ex(n,C2k) of the even cycle C2k, that is, the maximum number of edges in a graph on n
vertices not containing C2k as a subgraph, satisfies ex(n,C2k) = O(n1+1/k) as n → ∞. It is natural
that techniques used to show sparsity of C2k-free graphs are helpful for Theorem 1.1, since the
application of Lemma 1.4 demands the verification of a local sparsity condition.

We made little effort to optimize the multiplicative constants implicit in Theorems 1.1 and 1.2
and in Proposition 1.3, since we partly relied on a constant from Lemma 1.4 that – as far as we
know – has yet to be optimized. More importantly, the constants we obtained depend on � or t,
and it is left to future work to determine the correct dependencies. To be precise, in Theorems 1.1
and 1.2 the asymptotic (first letting d → ∞) multiplicative gaps between the best upper and lower
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bounds we know can be Ω(t) as t → ∞, while for Proposition 1.3 the gaps are often as large as
2t+o(t).

2. Constructions

In this section, we describe some constructions that certify the conclusions of Theorems 1.1
and 1.2 are not possible with other parity combinations of t and �, in particular showing Propos-
ition 1.3.

First we review constructions we used in previous work [10]. In combination with the trivial
bound χt(G) = O(dt) if Δ(G) � d, the following two propositions imply Proposition 1.3(i). The
next result also shows that the value 3t in Theorem 1.2 may not be reduced below t.

Proposition 2.1. Fix t � 3. For every even d � 2, there exists a d-regular graph G with χt(G) �
dt/2t and χ ′

t+1(G) � dt+1/2t . Moreover, G is bipartite if t is even, and G does not contain any
odd cycle of length less than t if t is odd.

Proof. We define G = (V,E) as follows. The vertex set is V = ∪t−1
i=0U (i) where each U (i) is

a copy of [d/2]t , the set of ordered t-tuples of symbols from [d/2] = {1, . . . ,d/2}. For all
i ∈ {0, . . . , t − 1}, we join elements (x(i)

0
, . . . ,x(i)

t−1
) of U (i) and (x(i+1 mod t)

0
, . . . ,x(i+1 mod t)

t−1
) of

U (i+1 mod t), respectively, by an edge if the t-tuples agree on all symbols except possibly at
coordinate i, that is, if x(i+1 mod t)

j
= x(i)

j
for all j ∈ {0, . . . , t − 1} \ {i} (and x(i)

i
, x(i+1 mod t)

i
are

arbitrary from [d/2]).
It is easy to see that for any i ∈ [t], U (i) is a clique in Gt , and the set of edges incident to U (i) is

a clique in (L(G))t+1. This gives χt(G) � |U (0)| = (d/2)t and χ ′
t+1(G) � d · |U (0)| = 2(d/2)t+1.

(In fact here it is easy to find a colouring achieving equality in both cases.)
Since G is composed only of bipartite graphs arranged in sequence around a cycle of length t,

every odd cycle in G is of length at least t, and G is bipartite if t is even.

As observed in [2] and [9], certain finite geometries yield bipartite graphs of prescribed girth
giving better bounds than in Proposition 2.1 for a few cases.

Proposition 2.2. Let d be one more than a prime power.

• There exists a bipartite, girth 6, d-regular graph Pd−1 with χ2(Pd−1) = d2 − d + 1 and
χ ′

3(Pd−1) = d3 −d2 +d.
• There exists a bipartite, girth 8, d-regular graph Qd−1 with χ ′

4(Qd−1) = d4 −2d3 +2d2.
• There exists a bipartite, girth 12, d-regular graph Hd−1 with χ ′

6(Hd−1) = d6 − 4d5 + 7d4 −
6d3 +3d2.

• If d is one more than a power of 2, then there exists a d-regular graph Q̃d−1 with χ3(Q̃d−1) =
d3 −2d2 +2d.

• If d is one more than a power of 3, then there exists a d-regular graph H̃d−1 with χ5(H̃d−1) =
d5 −4d4 +7d3 −6d2 +3d.

Proof. We let Pd−1 be the point–line incidence graph of the projective plane PG(2,d − 1),
Qd−1 be that of a symplectic quadrangle with parameters (d − 1,d − 1), and Hd−1 be that of a
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Figure 1. An illustration of the balanced bipartite product.

split Cayley hexagon with parameters (d −1,d −1). Recall our definition of self-duality in [10]
and let Q̃d−1 (resp. H̃d−1) be formed from a self-dual point–line incidence graph of a self-dual
symplectic quadrangle (resp. split Cayley hexagon) with parameters (d−1,d−1), the existence
of which is guaranteed when d is one more than a power of 2 (resp. 3), by identifying those pairs
of vertices which are in self-dual bijection. It is straightforward to check that these graphs satisfy
the promised properties.

In [10], we somehow combined Propositions 2.1 and 2.2 for other lower bound constructions
having prescribed girth. This approach is built upon generalized n-gons, structures which are
known not to exist for n > 8 [7]. We refer the reader to [10] for further details.

Our second objective in this section is to introduce a different graph product applicable only
to two balanced bipartite graphs. We use it to produce two bipartite constructions for χ ′

t , both of
which settle the case of t even left open in Proposition 2.1, and the second of which also treats
what could be interpreted as an edge version of the degree–diameter problem.

Let H1 = (V1 = A1 ∪B1,E1) and H2 = (V2 = A2 ∪B2,E2) be two balanced bipartite graphs
with given vertex orderings, that is, A1 = (a1

1, . . . ,a
1
n1

), B1 = (b1
1, . . . ,b

1
n1

), A2 = (a2
1, . . . ,a

2
n2

),
B2 = (b2

1, . . . ,b
2
n2

) for some positive integers n1, n2. We define the balanced bipartite product
H1 �� H2 of H1 and H2 as the graph with vertex and edge sets defined as follows:

VH1��H2
:= (A1 ×A2)∪ (B1 ×B2) and

EH1��H2
:= {(a1

i ,a
2)(b1

i ,b
2)|i ∈ {1, . . . ,n1},a2b2 ∈ E2}∪

{(a1,a2
j)(b

1,b2
j)|a1b1 ∈ E1, j ∈ {1, . . . ,n2}}.

See Figure 1 for an example of this product.
Usually the given vertex orderings will be of either of the following types. We say that a

labelling A = (a1, . . . ,an), B = (b1, . . . ,bn) of H = (V = A∪B,E) is a matching ordering of H if
aibi ∈ E for all i ∈ {1, . . . ,n}. We say it is a comatching ordering if aibi /∈ E for all i ∈ {1, . . . ,n}.
Note by Hall’s theorem that every non-empty regular balanced bipartite graph admits a matching
ordering, while every non-complete one admits a comatching ordering.

Let us now give some properties of this product relevant to our problem, especially concern-
ing its degree and distance properties. The first of these propositions follows easily from the
definition.
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Proposition 2.3. Let H1 and H2 be two balanced bipartite graphs that have part sizes n1 and
n2, respectively, and are regular of degrees d1 and d2, respectively, for some positive integers
n1,n2,d1,d2. Suppose H1, H2 are given in either matching or comatching ordering. Then H1 �� H2

is a regular balanced bipartite graph with parts AH1��H2
= A1 ×A2 and BH1��H2

= B1 ×B2, each
of size n1n2. If both are in matching ordering, then H1 �� H2 has degree d1 +d2 −1, otherwise it
has degree d1 +d2.

Proposition 2.4. Let H1 = (V1 = A1 ∪ B1,E1) and H2 = (V2 = A2 ∪ B2,E2) be two regular
balanced bipartite graphs.

(i) Suppose that for every a1,a′1 ∈ X1 ⊆ A1 there is a t1-path between a1 and a′1 in H1 (for
some t1 even). Suppose that for every a2,a′2 ∈ X2 ⊆ A2 there is a t2-path between a2 and
a′2 in H2 (for some t2 even). Then for every (a1,a2),(a′1,a′2) ∈ X1 ×X2 ⊆ AH1��H2

, there is a

(t1 + t2)-path between (a1,a2) and (a′1,a′2) in H1 �� H2.
(ii) Suppose that for every a1,a′1 ∈ X1 ⊆ A1 there is a t1-path between a1 and a′1 in H1 (for

some t1 even). Suppose that for every a2 ∈ X2 ⊆ A2 and b2 ∈ Y2 ⊆ B2 there is a t2-path
between a2 and b2 in H2 (for some t2 odd). Then for every (a1,a2) ∈ X1 × X2 ⊆ AH1��H2

and (b1,b2) ∈ Y1 ×Y2 ⊆ BH1��H2
where Y1 = {b1

i | a1
i ∈ X1}, there is a (t1 + t2)-path between

(a1,a2) and (b1,b2) in H1 �� H2.

Proof. We only show part (ii), as the other part is established in the same manner. Let (a1,a2) ∈
X1 ×X2 and (b1,b2) ∈ Y1 ×Y2. Using the distance assumption on H1, let a1

i0
,b1

i1
,a1

i2
, · · · ,b1

it1−1
,a1

it1

be a t1-path in H1 between a1 = a1
i0

and a1
it1

, where it1 is such that b1 = b1
it1

. Using the distance

assumption on H2, let a2
j0

b2
j1

a2
j2
· · ·a2

jt2−1
b2

jt2
be a t2-path in H2 between a2 = a2

j0
and b2 = b2

jt2
.

The following (t1 + t2)-path between (a1,a2) and (b1,b2) in H1 �� H2 traverses using one of the
coordinates, then the other:

(a1,a2) = (a1
i0
,a2

j0
)(b1

i1
,b2

j0
)(a1

i2
,a2

j0
) · · ·(b1

it1−1
,b2

j0
)(a1

it1
,a2

j0
)

(b1
it1

,b2
j1
)(a1

it1
,a2

j2
) · · ·(a1

it1
,b2

jt2−1
)(b1

it1
,b2

jt2
) = (b1,b2).

We use this product to show that no version of Theorem 1.2 may hold for χ ′
t . In combination

with the trivial bound χ ′
t (G) = O(dt) if Δ(G) � d, we deduce Proposition 1.3(ii) from Proposi-

tion 2.1, the following result and the fact that χ ′
2(Kd,d) = d2.

Proposition 2.5. Fix t � 4 even. For every d � 2 with d ≡ 0 (mod 2(t − 2)), there exists a
d-regular bipartite graph G with χ ′

t (G) � dt/(et2t−1).

Proof. Let t1 = t − 2 and d1 = (t1 − 1)d/t1. Let G1 = (V1,E1) be the construction promised
by Proposition 2.1 for d1 and t1. Since G1 is bipartite, we can write V1 = A1 ∪B1 where A1 =
∪{U (i) | i ∈ {0, . . . , t1 −1} even} and B1 = ∪{U (i) | i ∈ {0, . . . , t1 −1} odd}. This is a d1-regular
balanced bipartite graph, and for every a1,a

′
1 ∈ U (0) ⊆ A1 there exists a t1-path between a1 and

a′1. Moreover, it is possible to label A1 and B1 so that the first |U (0)| vertices of A1 are the ones
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of U (0), and the first |U (1)| of B1 are those of U (1). We may also ensure that this labelling is in
comatching ordering.

Let t2 = 1 and d2 = d − d1 = d/t1. Let G2 = (V2 = A2 ∪B2,E2) = Kd2,d2
. This is a d2-regular

balanced bipartite graph, and for every a2 ∈ A2,b2 ∈ B2, there exists a t2-path between a2 and b2.
Trivially any labelling of A2 and B2 gives rise to a matching ordering.

Let G = G1 �� G2, X = U (0) ×A2 and Y = U (1) ×B2. Now G is a d-regular bipartite graph
by Proposition 2.3, and by Proposition 2.4 for every (a1,a2) ∈ X and (b1,b2) ∈ Y , there exists a
(t − 1)-path between (a1,a2) and (b1,b2). Thus the edges of G that span X ×Y induce a clique
in (L(G))t . The number of such edges is (since t > 3) at least

(
d1

2

)t1
d2

(
d1

2
+d2

)
=

(
1− 1

t −2

)t−2 (t −1)dt

(t −3)22t−1
� dt

et2t−1
.

Alternatively, Proposition 1.3(ii) follows from the following result, albeit at the expense of a
worse dependency on t in the multiplicative factor. For t � 2, we can take a (t−1)th power of the
product operation on the complete bipartite graph to produce a bipartite graph G of maximum
degree d with Ω(dt) edges such that (L(G))t is a clique.

Proposition 2.6. Fix t � 2. For every d � 2 with d ≡ 1 (mod t − 1), there exists a d-regular
bipartite graph G = (V,E) with

|E| = d ·
(

d −1
t −1

+1

)t−1

and χ ′
t (G) = |E|.

Proof. Let d′ = (d −1)/(t −1)+1 and G =��t−1 Kd′,d′ , the (t −1)th power of Kd′,d′ under the
product ��, where the factors are always taken in matching ordering. By Proposition 2.3, G is a
d-regular bipartite graph and has d · d′t−1 edges. By Proposition 2.4, there is a path of length at
most t −1 between every pair of vertices in the same part if t −1 is even, or in different parts if
t −1 is odd. It follows that (L(G))t is a clique.

3. Proofs of Theorems 1.1 and 1.2

In this section we prove the main theorems. Before proceeding, let us set notation and make some
preliminary remarks.

Let G = (V,E) be a graph. We will often need to specify the vertices at some fixed distance
from a vertex or an edge of G. Let i be a non-negative integer. If x ∈ V , we write Ai = Ai(x) for
the set of vertices at distance exactly i from x. If e ∈ E, we write Ai = Ai(e) for the set of vertices
at distance exactly i from an endpoint of e. We shall often abuse this notation by writing A� j for
∪i� jAi and so forth. We will write Gi = G[Ai,Ai+1] to be the bipartite subgraph induced by the
sets Ai and Ai+1

In proving the distance-t chromatic number upper bounds in Theorems 1.1 and 1.2 using
Lemma 1.4, given x ∈V , we need to consider the number of pairs of distinct vertices in A�t that
are connected by a path of length at most t. It will suffice to prove that this number is O(d2t−ε)
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as d → ∞ for some fixed ε > 0. In fact, in our enumeration we may restrict our attention to paths
of length exactly t whose endpoints are in At and whose vertices do not intersect A<t . This is
because |A�i| � di for all i and the number of paths of length exactly j containing some fixed
vertex is at most ( j +1)d j for all j.

Similarly, in proving the distance-t chromatic index upper bound in Theorem 1.1 using Lemma
1.4, given e ∈ E, we need to consider the number of pairs of distinct edges that each have at least
one endpoint in A<t and that are connected by a path of length at most t − 1. It will suffice to
prove that this number is O(d2t−ε) as d → ∞ for some fixed ε > 0. Similarly as above, in our
enumeration we may restrict our attention to paths of length exactly t −1 whose endpoint edges
both intersect At−1 and whose vertices do not intersect A<t−1.

As mentioned in the Introduction, for Theorem 1.1 we are going to use two intermediate results
of [13] concerning the presence of a Θ-subgraph, defined to be any subgraph that is a cycle of
length at least 2k with a chord.

Lemma 3.1 ([13]). Let k � 3. Any bipartite graph of minimum degree at least k contains a
Θ-subgraph.

Lemma 3.2 ([13]). If G = (V,E) is C2k-free, then for i ∈ {0, . . . ,k − 1} and x ∈ V , neither
G[Ai,Ai+1] nor G[Ai] contains a bipartite Θ-subgraph, where Ai is defined based on G as above.

Proof of Theorem 1.1(i). By the probabilistic construction described in [2], it suffices to
prove only the upper bound in the statement. We may also assume that t � 2, since it was already
observed in [10] that for any � � 3 the chromatic number of any C�-free graph of maximum
degree d is O(d/ logd).

Let � = 2k for some k � t + 1, let G = (V,E) be a graph of maximum degree at most d such
that G contains no C� as a subgraph, and let x ∈ V . Let T denote the number of pairs of distinct
vertices in At that are connected by a path of length exactly t that does not intersect A<t . As
discussed at the beginning of the section, it suffices for the proof to show that T � Cd2t−1, where
C is a constant independent of d, by Lemma 1.4.

We define A′ to be At+1 if |At+1| � |At |, or At otherwise, and EH to be the set of edges in
At ×At+1 whose endpoint in A′ is of degree at least � in Gt = G[At ,At+1]. If EH is non-empty,
then it induces some bipartite graph H = (XH ∪YH ,EH) of average degree d(H), such that XH ⊆A′

and YH ⊆ (At ∪At+1)\A′. It must hold that d(H) < �, or else from H it would be possible to extract
a bipartite graph H ′ of minimum degree d(H)/2 � �/2 = k, which by Lemma 3.1 would contain
a Θ-subgraph. This contradicts Lemma 3.2 which says Gt contains no bipartite Θ-subgraph.
Therefore,

� >
2|EH |

|XH |+ |YH |
� 2|EH |

|EH |/�+ |YH |
and so |EH | < �|YH | � �dt , where the last inequality follows from the definition of A′.

Moreover, the graph G[At ] is of average degree d(G[At ]) < 2�, for otherwise it would be
possible to extract from G[At ] a bipartite graph H ′ of average degree at least �. From H ′ it would
then be possible to extract a bipartite graph of minimum degree at least �/2 = k, which contains
a Θ-subgraph by Lemma 3.1. This contradicts Lemma 3.2 which says G[At ] contains no bipartite
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Θ-subgraph. If we denote by E[At ] the set of edges of G[At ], it means that

|E[At ]| <
2�|At |

2
� �dt .

Let us count the possibilities for a path x0 . . .xt of length t between two distinct vertices x0,xt ∈
At that does not intersect A<t . We discriminate based on the first edge e0 = x0x1 of this path, which
can fall into three different cases.

(i) e0 ∈ EH . We count the paths by first drawing e0 from the at most �dt possible choices in EH ,
then drawing the remaining t − 1 vertices of the path one at a time, for which there are at
most d choices each. So the number of paths in this case is at most �d2t−1.

(ii) e0 ∈ (At ×At+1)\EH . It means that x0 (resp. x1) is of degree less than � in At+1 (resp. At) if
|At+1| < |At | (resp. if |At+1| � |At |). We count the paths by first drawing x0 (resp. xt) from
the at most dt possible choices in At , then drawing the other t vertices one at a time with d
choices each, except for x1 (resp. x0) for which there are fewer than � possible choices. The
number of paths in this case is therefore at most �d2t−1.

(iii) e0 ∈ E[At ]. We count the paths by first drawing e0 from the at most �dt possible choices in
E[At ], then drawing the remaining t−1 vertices of the path one at a time, for which there are
at most d choices each. So the number of paths in this case is at most �d2t−1.

Summing over the above cases, the overall number of choices for the path x0 . . .xt is at most
3�d2t−1, giving the required bound on T .

Proof of Theorem 1.1(ii). By the probabilistic construction described in [9], it suffices to
prove only the upper bound in the statement. To that end, let � � 2t be even, let G = (V,E) be a
graph of maximum degree at most d such that G contains no C� as a subgraph, and let e = xy ∈ E.
It is straightforward to check that Lemma 3.2 is still valid with the sets Ai defined according to a
root at the edge e rather than a root vertex, by combining the corresponding statements when the
Ai are rooted instead at x or at y. Let T denote the number of pairs of distinct edges in G[At−1]
or Gt−1 = G[At−1,At ] that are connected by a path of length t − 1 that does not intersect A<t−1.
As discussed at the beginning of the section, it suffices to show that T � Cd2t−1, where C is a
constant independent of d, by Lemma 1.4.

We define A′ to be At if |At |� |At−1|, or At−1 otherwise, and EH to be the set of edges in At−1×
At whose endpoint in A′ is of degree at least � in Gt−1. Exactly as in the proof of Theorem 1.1(i), it
follows from Lemmas 3.1 and 3.2 that |EH |< �dt−1 and |E[At−1]|< �dt−1, where E[At−1] denotes
the set of edges of G[At−1].

Let us count the possibilities for a path x0 . . .xt+1, where x1 . . .xt is a path of length t − 1
between two distinct edges x0x1 and xtxt+1 of G[At−1] or Gt−1 that does not intersect A<t−1. We
discriminate based on the first edge e0 = x0x1 of this path, which can fall into three different
cases.

(i) e0 ∈ EH . We count the paths by first drawing e0 from the at most �dt−1 possible choices in
EH , then drawing the remaining t edges of the path one at a time, for which there are at most
d choices each. So the number of paths in this case is at most �d2t−1.

(ii) e0 = ab where a ∈ At−1,b ∈ At , and e0 /∈ EH . It means that a (resp. b) is of degree less than �

in At (resp. At−1) if |At |< |At−1| (resp. if |At |� |At−1|). There are now three different possible
subcases.
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(a) b = x1. We count the paths by first drawing x0 (resp. xt if it is in At−1 or xt−1 ∈ At−1

otherwise) from the at most dt−1 possible choices in At−1, then drawing the other t + 1
vertices one at a time with d choices each, except for x1 (resp. x0) for which there are
fewer than � possible choices. The number of paths in this subcase is therefore at most
�d2t−1 (resp. 2�d2t−1).

(b) a = x1 and x2 ∈ At−1. We count the paths by first drawing e1 = x1x2 from the at most
�dt−1 possible choices in E[At−1], then drawing the other t edges one at a time with d
choices each. The number of paths in this subcase is therefore at most �d2t−1.

(c) a = x1 and x2 ∈ At . We count the paths by first drawing xt if it is in At−1 or xt−1 ∈ At−1

otherwise (resp. x0) from the at most dt−1 possible choices in At−1, then drawing the
other t +1 vertices one at a time with d choices each, except for x0 (resp. x1) for which
there are fewer than 2� possible choices. The number of paths in this subcase is therefore
at most 2�d2t−1 (resp. �d2t−1).

(iii) e0 ∈ E[At−1]. We count the paths by first drawing e0 from the at most �dt−1 possible choices
in E[At−1], then drawing the remaining t edges of the path one at a time, for which there are
at most d choices each. So the number of paths in this case is at most �d2t−1.

Summing over the above cases, the overall number of choices for the path x0 . . .xt is at most
6�d2t−1, giving the required bound on T .

In the proof of Theorem 1.2 we use the following lemma, which bounds the number of vertices
at distance at most t from some fixed vertex when we impose intersection conditions on certain
paths. The proof of this lemma illustrates the two main methods we use to bound the local density
as needed for Lemma 1.4.

Lemma 3.3. Let G = (V,E) be a graph of maximum degree at most d and let x0 ∈V .

(i) Let S be a set of vertices at distance exactly t from x0 such that any two paths of length t
from x0 to distinct elements of S must intersect in at least one vertex other than x0. Then
|S| � dt−1.

(ii) Let P be a path of length k > 0 starting at x0. Let S be a set of vertices at distance at most t
from x0 such that for every s ∈ S there is a path of length at most t from x0 to s that intersects
with P in at least one vertex other than x0. Then |S| � kdt−1.

Proof of Lemma 3.3(i). Suppose V is given with some ordering. As before, for each i > 0 let
Ai = Ai(x0) denote the set of vertices at distance exactly i from x0 in G. We inductively construct
a breadth-first search tree T = Tt as follows.

• T0 consists only of the root x0.
• If i > 0, then for every y ∈ Ai let ay be the vertex in N(y)∩Ai−1 whose path from x0 in Ti−1 is

least in lexicographical order. Then Ti is obtained from Ti−1 by adding each edge yay, y ∈ Ai.

By assumption S ⊆At . Let xt be the vertex in S whose path in T from x0 is least in lexicographical
order, and let Px = x0 . . .xt be that path.

Let yt ∈ S be distinct from xt and moreover suppose for a contradiction that the lowest common
ancestor of xt and yt in T is x0. Then yt is at distance at least t from x1, or else it would have had
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x1 as an ancestor by the definition of T and the choice of Px. Letting Py = y0 . . .yt (where y0 = x0)
be the path from x0 to yt in T , by assumption Px and Py must have a common vertex other than x0.
So there are i, j > 0 such that xi = y j. It must be that j < i, for otherwise x1 . . .xiy j+1 . . .yt would
be a path of length i− 1 + t − j � t − 1 between x1 and yt , a contradiction. This means though
that xi ∈ Ai is at distance at most j < i from x0, also a contradiction. We have shown that S is
contained in the subtree of T rooted at x1, which then implies that |S| � dt−1.

Proof of Lemma 3.3(ii). To each vertex in S, there is a path of length at most t −1 from some
vertex of P other than x0. There are at most dt−1 vertices within distance t − 1 of a fixed vertex
of P, so summing over all possible choices of such a vertex, this gives |S| � kdt−1.

Proof of Theorem 1.2. By the probabilistic construction described in [2], it suffices to prove
only the upper bound in the statement. Moreover, we may assume t � 3 due to Johansson’s result
[8] and our observation in [10].

Let � � 3t be odd, let G = (V,E) be a graph of maximum degree at most d such that G
contains no C� as a subgraph, and let x ∈ V . For convenience, let us call any path contained in
A�t peripheral. Let T denote the number of pairs of distinct vertices in At that are connected by
a peripheral path of length t and are not connected by any path of length less than t. As discussed
at the beginning of the section, it suffices for the proof to show that T � Cd2t−1 where C is a
constant independent of d, by Lemma 1.4.

We specify a unique breadth-first search tree BFS = BFS(x) of G, rooted at x. Having fixed an
ordering of V , BFS is a graph on V whose edges are defined as follows. For every v ∈ Ai, i > 0,
we include the edge to the neighbour of v in Ai−1 that is least in the vertex ordering.

Since � and t are odd, we know that � = 3t + 2k for some non-negative integer k. For j ∈
{0,1, . . . ,2k}, let us call a vertex v∈ At j-implantable if it is the endpoint of some peripheral path
of length j, the other endpoint of which is in At . In particular, any vertex of At is 0-implantable.

We first show that the number of pairs of vertices connected by a peripheral path of length
t which has a 2k-implantable endpoint is O(d2t−1). Fix v to be a 2k-implantable vertex and
P = v0v1 . . .v2k a path certifying its implantability, so that v0 = v and (if k > 0) v2k ∈ At \{v}. By
Lemma 3.3(ii) applied to G[A�t ] and P, the number of vertices connected by a peripheral path of
length t starting at v which intersects P at another vertex is at most 2kdt−1. Now consider the set
Y ⊆ At \{v} such that there is a peripheral path of length t between v and y that does not intersect
P except at v for all y ∈ Y . If aY is the ancestor of v2k in BFS at layer A1, then Y is contained
in the subtree rooted at aY . Otherwise, there would be some y1 ∈ Y such that its lowest common
ancestor with v2k in BFS is x, which gives rise to a cycle of length 3t +2k that contains x, v2k, v,
y1, in that order, a contradiction. Thus |Y | � dt−1, the number of pairs with v that are counted by
T is at most (1+2k)dt−1, and the number of pairs with a 2k-implantable vertex that are counted
by T is at most (1+2k)d2t−1.

Observe that we are already done if k = 0 since every vertex in At is 0-implantable by defini-
tion, so assume from here on that k > 0. It remains for us to (crudely) count the number of pairs
(z0,zt) ∈ A2

t of non-2k-implantable vertices that are connected by a peripheral path z0 . . .zt of
length t and are not connected by any shorter path.

First suppose k � t. Trivially the number of choices for z0 is at most dt and the number
of choices for the subpath z0 . . .zt−k is dt−k. Given zt−k, the choice for the remainder subpath
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zt−k . . .zt is restricted by the fact that zt is not 2k-implantable; in particular, all such subpaths
must intersect at a vertex other than zt−k. By Lemma 3.3(i) applied to G[A�t ] and zt−k, for a fixed
choice of zt−k, the number of possibilities for zt is at most dk−1, and so the number of pairs (z0,zt)
in this case is at most dt ·dt−k ·dk−1 = d2t−1.

Next suppose k > t. We discriminate based on the smallest possible value j ≡ 2k (mod t) such
that z0, zt are both not j-implantable. Note that since we are in the case where z0, zt are not
2k-implantable, j � 2k. More formally, we let κ0 = t if k mod t = 0, or κ0 = k mod t otherwise.
Let

j = min{2κ0 + it | 0 � i � 2(k−κ0)/t and z0, zt are not j-implantable}.

If j = 2κ0 � 2t, then we can treat this just like the previous case, which means there are at most
d2t−1 choices for the pair (z0,zt).

So suppose that 2κ0 < j � 2k. By the definition of j, without loss of generality z0 is ( j− t)-
implantable, and z0, zt are not j-implantable. We fix z0 and let P be a path of length j−t certifying
its ( j− t)-implantability. First note that Lemma 3.3(ii) applied to G[A�t ] and P states that there
are at most ( j− t)dt−1 choices for those zt such that there is a peripheral path of length t between
z0 and zt that intersects P in some vertex other than z0. So consider the set Y ⊆ At \{z0} such that
y is connected to z0 by a peripheral path Py of length t that intersects P only in z0 for all y ∈ Y .
Then every vertex y ∈ Y is j-implantable as certified by the path P concatenated with Py. This
means that no choice for zt in Y is possible, and so the number of pairs (z0,zt) in this setting is at
most ( j− t)d2t−1.

Summing over all possible j, the number of choices for (z0,zt) is at most

(
1+

2(k−κ0)/t

∑
i=1

(2κ0 + it − t)
)

d2t−1 = (2(k2 −κ2
0 )/t)d2t−1

if k > t.
It therefore follows that

T � (1+2k +2(k2 −κ2
0 )/t)d2t−1,

as required.

Our impression is that it might be possible to improve upon the value 3t in Theorem 1.2;
however, in order to do so, it seems one would have to take a different approach. This is because
of a simple construction of a d-regular graph G with no odd cycle of length less than 3t such
that Gt does not satisfy the density conditions demanded by Lemma 1.4. Roughly, we take the
main example of Proposition 2.1 but around a cycle of length 3t rather than of length t. More
precisely, the vertex set is ∪3t−1

i=0 U (i) where each U (i) is a copy of [d/2]t . For all i ∈ {0, . . . ,3t −
1}, we join an element (x(i)

0
, . . . ,x(i)

t−1
) of U (i) and an element (x(i+1 mod 3t)

0
, . . . ,x(i+1 mod 3t)

t−1
) of

U (i+1 mod 3t) by an edge if the t-tuples agree on all symbols except possibly at coordinate i mod t.
It is straightforward to check that Gt is a graph in which all vertices have degree Θ(dt) and
every neighbourhood is spanned by Θ(d2t) edges, meaning that Lemma 1.4 is ineffective here.
But neither is G an example to certify sharpness of the value 3t in Theorem 1.2, since it is also
straightforward to check that χt(G) = o(dt).
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4. Concluding remarks and open problems

Our goal was to address the question, what is the asymptotically largest value of χt(G) or of
χ ′

t (G) among graphs G with maximum degree at most d containing no cycle of length �, where
d → ∞? The case t = 1 for both parameters and the case t = 2 for χ ′

t followed from earlier
work, but we showed more generally that for each fixed t this question for both parameters
can be settled apart from a finite number of cases of �. These exceptional cases are a source of
mystery. We would be very interested to learn if the cycle length constraints 2t, 2t +2 and 3t in
Theorems 1.1 and 1.2 could be weakened (or not).

More specifically, writing

χt(d, �) = sup{χt(G) | Δ(G) � d,G � C�}

and

χ ′
t (d, �) = sup{χ ′

t (G) | Δ(G) � d,G � C�},

the following questions are natural, even if there is no manifest monotonicity in �.

(i) For each t � 1, is there a critical even �e
t such that for any even �, if � < �e

t then χt(d, �) =
Θ(dt), while if � � �e

t then χt(d, �) = Θ(dt/ logd)?
(ii) For each t � 2, is there a critical even �′t such that for any even �, if � < �′t then χ ′

t (d, �) =
Θ(dt), while if � � �′t then χ ′

t (d, �) = Θ(dt/ logd)?
(iii) For each t � 1 odd, is there a critical odd �o

t such that for any odd �, if � < �o
t then χt(d, �) =

Θ(dt), while if � � �o
t then χt(d, �) = Θ(dt/ logd)?

We knew from before that �e
1 = 4, �o

1 = 3, �e
2 = 6, �′2 = 4, �′3 = 6, �′4 = 8, and �′6 = 12. In this

paper, we showed that there are linear in t upper bounds on all these critical values, provided the
values are well-defined.

The above three questions are natural analogues to open questions of Alon and Mohar [2]
and of Kaiser and the first author [9] that ask for a critical girth gt (resp. g′t) for which there is
an analogous decrease in the asymptotic extremal behaviour of the distance-t chromatic number
(resp. index). If these critical values all exist, it would be natural to think that gt = min{�e

t , �
o
t }

and g′t = �′t , and moreover, if t is odd, that |�o
t − �e

t | = 1. But there is limited evidence for the
existence questions, let alone this stronger set of assertions. We have already established other
lower bounds for these hypothetical critical values in [10], but for none of these critical values is
there any general construction known to certify a lower bound that is unbounded as t → ∞ .

As mentioned in the Introduction, Vu [15] proved that the exclusion of any fixed bipartite graph
is sufficient for a O(d2/ logd) upper bound on the strong chromatic index of graphs of maximum
degree d. One might wonder, similarly, for each t � 2, is there a natural wider class of graphs
than sufficiently large cycles (of appropriate parity) whose exclusion leads to asymptotically
non-trivial upper bounds on the distance-t chromatic number or index?
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