Canad. Math. Bull. Vol. 17 (5), 1975

A NOTE ON TORSION FREE GROUPS GENERATED BY PAIRS OF MATRICES

BY A. CHARNOW

Let $A = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$ and let G_m be the group generated by A and the transpose of A. The problem of determining complex numbers m such that G_m is a free group had been studied by several authors [1, 2, 3]. In this note we characterize those rational values of m for which G_m is torsion free.

We shall need the fact that every element of G_m is of the form:

$$\begin{bmatrix} 1 + m^2 f_1(m) & m f_2(m) \\ m f_3(m) & 1 + m^2 f_4(m) \end{bmatrix},$$

where the f_i are polynomials with integral coefficients. This is easily proved by induction on the length of a word in G_m .

THEOREM. Let m be rational. Then G_m has an element of finite order (other than the identity) if and only if m is the reciprocal of an integer.

Proof. Suppose m=1/n, where n is an integer. Let B= the transpose of A and let

$$C = \begin{bmatrix} -2 & -3m \\ 1/m & 1 \end{bmatrix}.$$

Then $A^{-3}B^{n^2} = \begin{bmatrix} 1 & -3m \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & n^2m & 1 \end{bmatrix} = C$, hence C is in G_m . We have $C^3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and hence C has order 3. Conversely, assume that G_m has some element (other than the identity) of finite order. Then clearly G_m will have an element of prime order. Hence there exists C in G_m with

$$C^{p} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad C \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and p prime.

Then the minimal polynomial of C must divide $x^{p}-1$ and hence has no multiple roots. Thus C is diagonalizable over the complex field. Hence

$$QCQ^{-1} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

for some Q. Since every element of G has determinant 1, we must have $\lambda_2 = 1/\lambda_1$. Since

$$C^{\mathfrak{p}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

747

it follows that $\lambda_1^p = 1$. Since C is not the identity, $\lambda_1 \neq 1$. Thus λ_1 is a primitive pth root of 1. Thus the degree of λ_1 over the rationals is p-1. But λ_1 is a root of a quadratic with rational coefficients, namely the characteristic polynomial of C. Hence $p-1 \leq 2$. Thus either $\lambda_1 = -1$ or λ_1 is a primitive cube root of 1. Let m = a/b, a > 0, a, b integers with (a, b) = 1. We have

$$C = \begin{bmatrix} 1 + m^2 f_1(m) & m f_2(m) \\ m f_3(m) & 1 + m^2 f_4(m) \end{bmatrix},$$

where the f_i are polynomials with integral coefficients.

Case 1. $\lambda_1 = -1$. Then

$$C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

and $1+m^2f_1(m)=-1$. Thus there exists integers a_i such that $a_im^t+\cdots+a_2m^2+2=0$. It follows that $a \mid 2$. If a=2 then $a_i2^t+a_{i-1}2^{t-1}b+\cdots+a_22^2b^{t-2}+2b^t=0$ and this implies $2 \mid b$, a contradiction. Thus a=1 and m=1/b.

Case 2. λ_1 is a primitive cube root of 1. Then trace $C = \lambda_1 + (1/\lambda_1) = -1$. Hence $2+m^2[f_1(m)+f_2(m)] = -1$. Hence there exist integers a_i with $a_im^t + \cdots + a_2m^2 + 3=0$. It follows that $a \mid 3$. If a=3 then $a_i3^i + a_{i-1}3^{i-1}b + \cdots + a_23^2b^{i-2} + 3b^i = 0$ and this implies $3 \mid b$, a contradiction. Thus a=1, m=1/b.

References

1. J. L. Brenner, Quelques groupes libres de matrices, C.R. Acad. Sci. Paris 241 (1955), 1689-1691.

2. B. Chang, S. A. Jennings, and R. Ree, On certain matrices which generate free groups, Can. J. Math. 10 (1958), 279-284.

3. R. C. Lyndon and J. L. Ullman, Groups generated by two parabolic linear fractional transformations, Can. J. Math. 21 (1969), 1388–1403.

DEPARTMENT OF MATHEMATICS

CALIFORNIA STATE UNIVERSITY

HAYWARD, CALIFORNIA 94542