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STRUCTURED COALESCENT WITH
NONCONSERVATIVE MIGRATION

KOFFI Y. SAMPSON,∗ Florida State University

Abstract

We study the ancestral process of a sample from a subdivided population with
stochastically varying subpopulation sizes. The sizes of the subpopulations change
very rapidly (almost every generation) with respect to the coalescent time scale. For
haploid populations of size N , one coalescence time unit corresponds to N generations.
Coalescence and migration events occur on the same time scale. We show that, when
the total population size tends to infinity, the structured coalescent is obtained, thus
confirming the robustness of the coalescent. Many population structure models have
been shown to converge to the structured coalescent (see Herbots (1997), Hudson (1998),
Nordborg (2001), Nordborg and Krone (2002), and Notohara (1990)).
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1. Introduction

The n-coalescent or simply the coalescent, also called Kingman’s coalescent, is a continuous-
time Markov process (see Kingman (1982a), (1982b), (1982c), Tajima (1983), Hudson (1990),
and Tavaré (1984)) that describes the ancestry of a sample of n individuals or genes in a
large population when time is counted backward from the present into the past. It has been
extended to include such biological phenomena as mutation (see Donnelly and Tavaré (1995)),
recombination (see Griffiths and Marjoram (1996), Hudson and Kaplan (1988), and Hey
and Wakeley (1997)), selection (see Kaplan et al. (1988) and Neuhauser and Krone (1997)),
populations with a mixture of self-fertilization and random mating (see Fu (1997), Nordborg
and Donnelly (1997), and Möhle (1998a)), models with variable population size (see Donnelly
and Tavaré (1995), Tajima (1989), Griffiths and Tavaré (1994), Möhle (2002), and Sano et al.
(2004)), and diploid and two-sex population models, relaxing Kingman’s assumption that the
population must be haploid (see Möhle (1998b) and Möhle and Sagitov (2003)).

The n-coalescent has also been expanded to subdivided population models and geograph-
ically structured models which require an approximation by the structured coalescent, a gen-
eralization of Kingman’s coalescent (see Notohara (1990), Takahata (1991), Herbots (1994),
Wilkinson-Herbots (1998), Hudson (1998), Bahlo and Griffiths (2000), Beerli and Felsenstein
(2001), Wakeley (2000), and Nordborg (2001)). The structured coalescent can be applied
to other biological situations, for example populations with several forms of selection (see
Nordborg (1997)) and populations with partial selfing and balancing selection (see Nordborg
(1999)).
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The seed bank model is another example of the structured coalescent (see Kaj et al. (2001)).
Here the population is formed in each generation from the ancestors belonging to the previous
m generations (m is fixed).

A generalized population structure model (see Nordborg and Krone (2002)) has been de-
veloped where some migrations occur on a time scale that is much shorter than the coalescent
time scale, leading to a separation of time scales.

We are proposing in this paper an island model with stochastically varying population size
and nonconservative migration. Nonconservative migration means that the number of lineages
migrating out of a subpopulation is not equal all the time to the number of lineages migrating
into that subpopulation. Our model is different from the existing models. Although it can be
viewed as a generalized population structure model (see Nordborg and Krone (2002)), where
some migrations occur much faster than the coalescence events, the subpopulation sizes are
not constant over time as proposed in Nordborg and Krone’s model. Any model with fixed
subpopulation sizes that is equivalent to our model would have the following characteristics.
Firstly, the individual lineages would not always ‘migrate’ backward independently of one
another; rather, some groups of lineages would ‘migrate’ together at the same time to the same
subpopulations. Also, subpopulation sizes would be alternating between zero and their actual
sizes (a contradiction); in fact, all subpopulation sizes but two would be zero in any given
generation. In addition, the pairwise coalescence rates for our model are different from the
ones obtained by Nordborg and Krone (2002).

The coalescent is a continuous-time Markov process that plays an important role in popula-
tion genetics. It is used to explore the genealogy of a sample of n individuals from a sufficiently
large population, starting from a particular time (called time 0) and going backward in time
until the first common ancestor (most recent common ancestor) of the sample is reached. It
serves as a continuous-time approximation for the ancestral structure of a variety of discrete-
time population models. A discrete-time ancestral process is a population model that counts
the number of ancestral lineages of the original sample in each generation in the past. The
basic idea is that the population size is fixed at N . Then, when time is measured in units of
N generations, the discrete-time process converges to the coalescent as N tends to infinity. This
idea is generalized to structured populations.

Our model is a discrete-time Markov chain. It is based on the Wright–Fisher type of
reproduction with some added population structure.

The Wright–Fisher model considers a haploid population (meaning that each individual of
the population in any given generation has exactly one parent in the previous generation) of
fixed size N for all generations. The population evolves in discrete nonoverlapping generations
and the reproduction is neutral (i.e. there is no selection). An equivalent description of the
Wright–Fisher model is that, when we look at the process backward in time, individuals are
assigned parents in the previous generation randomly and independently of each other and these
choices are independent from generation to generation.

The rest of this paper is organized as follows: we introduce the structured coalescent and
then describe our model; this is followed by the main result, Theorem 3.1, where we consider
a population subdivided in M ≥ 1 subpopulations; finally, a formal proof of Theorem 3.1 is
given.

2. Structured coalescent

Consider a haploid population subdivided into M subpopulations of fixed sizes Nk = akN ,
k = 1, . . . , M . Let bk� be the backward migration probability that a lineage currently in
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subpopulation k was produced in subpopulation � in the previous generation, and suppose that
βk� := limN→∞ 2Nbk�, k, � = 1, . . . , M . Define αk := 1/ak , k = 1, . . . , M . Consider a
sample of size n and let YN(τ) denote the ancestral process that counts the number of ancestral
lineges of the sample that are in each subpopulation in generation τ in the past, with τ = 0
corresponding to the current generation (the subscript N in YN(τ) refers to the magnitude of
the subpopulations). The process (YN(τ))τ∈N has state space

E =
{
r := (r1, . . . , rM) ∈ N

M : 1 ≤
M∑
i=1

ri ≤ n

}
, (2.1)

where N = {0, 1, 2, . . .} and rk is the number of lineages in subpopulation k. Note that

|E| =
(

n + M

M

)
− 1.

Let ek , k = 1, 2, . . . , M , be the unit vector in N
M whose kth component is equal to 1,

let [·] denote the integer-part function, and let DE[0, ∞) denote the space of right-continuous
functions f from [0, ∞) to E with left limits (that is, lims→t+ f (s) = f (t) for all t ≥ 0
and lims→t− f (s) exists for all t > 0). Under reasonable assumptions (see Herbots (1997)
and Nordborg (2001)), as N → ∞ the time-scaled ancestral process YN := (YN([Nt]))t≥0
converges weakly in DE[0, ∞) to a structured coalescent, Y := (Y (t))t≥0, in which each pair
of lineages in subpopulation k coalesces independently at rate αk and each lineage in k migrates
(backward in time) independently to � at rate βk�/2. More precisely, Y is a continuous-time
Markov chain with state space E and infinitesimal generator Q = (qr,r ′)r,r ′∈E , where

qr,r ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
M∑

k=1

(
αk

(
rk

2

)
+ rk

M∑
�=1
��=k

βk�

2

)
if r ′ = r,

rkβk�

2
if r ′ = r − ek + e�, k �= �,

αk

(
rk

2

)
if r ′ = r − ek,

0 otherwise.

(2.2)

Remark 2.1. Equation (2.2) is valid for some diploid populations (for example monoecious
diploid populations), but we need to set Nk = 2akN and βk� := limN→∞ 4Nbk� and replace
(YN([Nt]))t≥0 by (YN([2Nt]))t≥0 in the paragraph above.

In the next section, we present our model, which is an extension of the model described by
Nordborg (2001).

3. Structured coalescent with nonconservative migration

In many population genetics processes, population sizes actually vary in time. But in most
models, the population sizes are assumed to be fixed or evolving deterministically (see Möhle
(2002), Griffiths and Tavaré (1994), and Donnelly (1986)). The case where the population size
varies stochastically has been studied only for unstructured populations (see Sano et al. (2004),
Kaj and Krone (2003), and Jagers and Sagitov (2004)). Here we present a structured coalescent
model that takes into account this stochastic variation of population sizes.
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Subpopulation 2

Subpopulation 1 Subpopulation 1 Subpopulation 1 Subpopulation 1

Subpopulation 2Subpopulation 2Subpopulation 2

Backward in time

Reproduction Migration Binomial sampling

N1(τ) (τ −1)N1

N2(τ) (τ −1)N2

·∞N1(τ)

·∞N2(τ)

m11 ·∞N1(τ)

m21 ·∞N2(τ)

m12 ·∞N1(τ)

m22 ·∞N2(τ)

Figure 1: Pictorial description of our model for M = 2.

3.1. Description of the model

3.1.1. Forward dynamics. Consider a haploid population of variable size divided into M ≥ 1
subpopulations. The subpopulation sizes change stochastically according to an irreducible,
aperiodic Markov chain with state space

SN := {aiN := (ai1N, . . . , aiMN) : i ∈ {1, . . . , s}}, (3.1)

where s and aik are given positive integer constants, aikN is the (variable) size of subpopulation
k, and ai = (ai1, . . . , aiM). The integer N controls the subpopulation sizes, and so all subpop-
ulation sizes become large if and only if N becomes large. The population evolves in discrete,
nonoverlapping generations. In each generation, every member of the population produces
an effectively infinite number of propagules. These propagules then migrate between the M

subpopulations independently of one another. After the migration step, the next generation of
adults in subpopulation k (k = 1, . . . , M) is formed by selecting randomly and uniformly the
appropriate number of propagules from the post-migration propagules in subpopulation k.

Next, for k, � ∈ {1, 2, . . . , M}, let mk� be the probability that a propagule produced in
subpopulation k moves to subpopulation � in the next generation, and assume that the limits

µk� := lim
N→∞ Nmk�, k �= �, (3.2)

exist, i.e. mk� = µk�/N + o(N−1) for k �= �. So migration of an individual propagule is rare.
Of course,

∑M
�=1 mk� = 1, k = 1, . . . , M .

Figure 1 gives a pictorial illustration of the model for M = 2, where Nk(τ), k = 1, 2,
represents the number of adults in subpopulation k in generation τ in the past, the current
generation corresponding to τ = 0.

In the following section, we consider the backward dynamics of the size process.
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Subpopulation 2Subpopulation 1

Time

(1, 1)T

(2, 1)T

(3, 1)T

(2, 3)T

(3, 3)T

Figure 2: Coalescent with migration.

3.1.2. Backward dynamics. Let N(τ ) := (N1(τ ), . . . , NM(τ)), where Nk(τ) is the size of
subpopulation k, τ generations into the past. Assume that the backward size process (N(τ ))τ∈N

is a Markov chain with state space SN defined in (3.1), one-step transition probability matrix
T = (tij )i,j=1,...,s , and (unique) stationary distribution γ := (γ1, . . . , γs), that is,

tij = P(N(τ + 1) = ajN | N(τ ) = aiN),

γT = γ .

This will be the case if, for example, the forward size process (Ñ(z))z∈N is a stationary process
with state space SN , meaning that, for all nonnegative integers z, P(Ñ(z) = ajN) = γj .

For the remainder of this paper, the Greek letter ‘τ ’, whenever used, refers to the number of
generations in the past, the present generation being 0.

We take a random sample of fixed size n from the current generation, τ = 0, and we are
interested in tracing the ancestry of the sample back to its most recent common ancestor.

Figure 2 is a simulation of our model for M = 2 and a sample of size 6 having three
lineages in each subpopulation. Time is measured backward in units of N generations. A
migration event is indicated by a thin solid line from one subpopulation to another. Whenever
two ancestors merge into one, we have a coalescence event, depicted by two thick solid line-
segments converging to a point. The quantities T (3, 3), T (2, 3), T (3, 1), T (2, 1), and T (1, 1)

are the coalescence times. For example, T (2, 3) is the time required for a coalescence event to
occur when there are two ancestors remaining in subpopulation 1 and three ancestors remaining
in subpopulation 2.

https://doi.org/10.1239/jap/1152413727 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413727


356 K. Y. SAMPSON

Let YN,k(τ ) denote the number of ancestors of the sample in the kth subpopulation τ genera-
tions backward in time. Note that the ancestral process (YN(τ))τ∈N, YN(τ) := (YN,1(τ ), . . . ,

YN,M(τ)), is a process with state space E defined by (2.1). We are now able to state our main
convergence result. By ‘

w−→’ we denote weak convergence.

Theorem 3.1. Assume that YN(0)
w−→ ω. Then, as N → ∞, the time-scaled ancestral process

(YN([Nt]))t≥0 converges weakly in DE[0, ∞) to a structured coalescent Y = (Y (t))t≥0 with
initial distribution ω and infinitesimal generator Q = (qr,r ′)r,r ′∈E with entries (2.2), where
now αk := ∑s

i=1 γi/aik and βk� := 2µ�k

∑s
i=1 γiai�/aik , k, � ∈ {1, . . . , M}, k �= �.

Remark 3.1. Note that Y (·) describes a structured coalescent for which αk is the average
pairwise coalescence rate in subpopulation k. The quantity βk� is the average rate at which a
lineage in subpopulation k migrates (backward) to subpopulation �. The averages mentioned
above are with respect to the subpopulation sizes.

Remark 3.2. For M = 1 we have −qr,r = qr,r−1 = α1r(r − 1)/2. The rescaled limiting
process (Y (t/α1))t≥0 coincides with the standard Kingman coalescent. Assume now that
M = 2. If the total population size is constant, i.e. if there exists a positive integer ν such that
a11 + a12 = ν = a21 + a22, then the two parameters β12 and β21 reduce to

βk� = 2µ�k

s∑
i=1

γi

ν − aik

aik

= 2µ�k(ναk − 1).

Define XN(τ) := (N(τ ), YN(τ)) and denote the transition matrix of the process
(XN(τ))τ≥0 by �N , with entries

π(i,r),(j,r ′) := P(XN(τ + 1) = (ajN, r ′) | XN(τ) = (aiN, r)).

The process (XN(τ))τ∈N has the state space EN := SN × E (see (3.1) and (2.1)). Order the
elements of E by level, from level 1 to level n. Within a level the ordering is arbitrary. The
level of an element r = (r1, . . . , rM) of E is defined as |r| = r1 + · · · + rM , as is customary.
We obtain the ordering in EN by extending the ordering in E, by replacing each element r in
E by (a1N, r), . . . , (asN, r) in this order. We have the following lemma.

Lemma 3.1. We obtain �N = A+B/N + o(N−1), where the matrices A and B have entries

a(i,r),(j,r ′) = tij δrr ′ , where δ is the Kronecker delta function,

b(i,r),(j,r ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−tij

M∑
k=1

((
rk

2

)
1

ajk

+ rk

M∑
�=1
��=k

µ�k

aj�

ajk

)
if r ′ = r,

tij rkµ�kaj�

ajk

if r ′ = r − ek + e�, k �= �,

tij

(
rk

2

)
1

ajk

if r ′ = r − ek,

0 otherwise,

with (i, r), (j, r ′) ∈ {1, . . . , s}×E. By o(N−1) we denote the matrix of appropriate dimension
whose entries are o(N−1).
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Remark 3.3. The matrix �N satisfies the conditions of Möhle’s lemma (Möhle (1998a)) with
cN = 1/N and BN = B + o(1), where o(1) is the matrix of appropriate dimension whose
entries tend to zero as N → ∞.

For the proof of Lemma 3.1, let fk� | j be the probability that a randomly chosen lineage
currently in subpopulation k migrates to subpopulation � in the previous generation, given that
the population size in the previous generation is ajN . We have

fk� | j = m�kaj�N∑M
z=1 mzkajzN

= aj�m�k∑M
z=1 ajzmzk

.

For k �= �, we have, using (3.2),

fk� | j = aj�µ�kN
−1 + o(N−1)∑

z �=k ajzµzkN−1 + ajk(1 − ∑
z �=k µkzN−1) + o(N−1)

= µ�k

(
aj�

ajk

)
N−1 + o(N−1).

So

fkk | j = 1 − N−1
∑
��=k

µ�k

(
aj�

ajk

)
+ o(N−1).

Now we proceed to the proof of Lemma 3.1. We start with two cases: r ′ = r − ek (binary
coalescence) and r ′ = r − ek + e�, k �= � (one migration). The other cases will follow.

Proof of Lemma 3.1. We have

π(i,r),(j,r−ek) = tij

( M∏
�=1

f
r�
�� | j

)(
rk

2

)
1

ajkN

(rk−1∏
�=1

(
1 − � − 1

ajkN

))
,

M∏
�=1

f
r�
�� | j =

M∏
�=1

(
1 − N−1

∑
z �=�

µz�

(
ajz

aj�

)
+ o(N−1)

)r�

= 1 − N−1
M∑

�=1

∑
z �=�

r�µz�

(
ajz

aj�

)
+ o(N−1),

rk−1∏
�=1

(
1 − � − 1

ajkN

)
= 1 −

(
rk − 1

2

)
1

ajkN
+ o(N−1).

It follows that

π(i,r),(j,r−ek) = tij

(
rk

2

)
1

ajkN
+ o(N−1). (3.3)

Next, for k �= �, we have

π(i,r),(j,r−ek+e�) = tij

(∏
z �=k

f
rz
zz | j

)
rkf

rk−1
kk | j fk� | j

= tij rkµ�k

(
aj�

ajk

)
N−1 + o(N−1).

(3.4)
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Each coalescence event occurs with probability O(N−1) and each migration event happens
with probability O(N−1) (see (3.3) and (3.4)). This implies that, for |r ′| ≤ |r|, r ′ �= r ,
r ′ �= r − ek , and r ′ �= r − ek + e�, k �= �,

π(i,r),(j,r ′) = o(N−1). (3.5)

Obviously, for |r ′| > |r|,
π(i,r),(j,r ′) = 0. (3.6)

Equations (3.3)–(3.6) together with
∑

r ′∈E π(i,r),(j,r ′) = tij imply that

π(i,r),(j,r) = tij

[
1 − N−1

M∑
k=1

((
rk

2

)
1

ajk

+ rk
∑
��=k

µ�kaj�

ajk

)]
+ o(N−1).

This concludes the proof of Lemma 3.1.

4. Proof of Theorem 3.1

First, we compute limN→∞ �
[Nt]
N , using Möhle’s lemma (Möhle (1998a)). Then we proceed

to the proof of Theorem 3.1 to show the weak convergence of the process (YN(t))t≥0 to the
limiting process (Y (t))t≥0.

We have, by Möhle’s lemma (Möhle (1998a)),

lim
N→∞ �

[Nt]
N = P − I + etG,

where P = limm→∞ Am and G = PBP , with A and B as in Lemma 3.1. From

a(i,r),(j,r ′) = tij δrr ′ ,

it follows that p(i,r),(j,r ′) = γj δrr ′ . The entries of G are easily computed to be

g(i,r),(j,r ′) =
s∑

i′,j ′=1

p(i,r),(i′,r)b(i′,r),(j ′,r ′)p(j ′,r ′),(j,r ′) = γj

s∑
i′=1

γi′
s∑

j ′=1

b(i′,r),(j ′,r ′).

Now, substituting the entries b(i′,r),(j ′,r ′) of B and using γT = γ yields

g(i,r),(j,r ′) = γjqr,r ′ .

We use Ethier and Kurtz’s theorem and some of their notation (see Ethier and Kurtz (1986))
to prove Theorem 3.1. Define ηN : EN → E by ηN(aiN, r) := r . Then ηN is measurable.
For f ∈ B(EN) and x ∈ EN , define

TNf (x) :=
∑

y∈EN

f (y)πx,y .

Here, B(EN) is the Banach space of bounded functions on EN with norm

‖f ‖ := sup
x∈EN

|f (x)|;
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B(E) is defined similarly with EN replaced with E. Thus, for each f ∈ B(E) and each
(aiN, r) ∈ EN , we obtain

TN(f ◦ ηN)(aiN, r) =
∑

(aj N,r ′)∈EN

f ◦ ηN(ajN, r ′)(�[Nt])(i,r),(j,r ′)

=
∑
r ′∈E

s∑
j=1

f (r ′)(�[Nt])(i,r),(j,r ′)

and, for each r ∈ E and f ∈ B(E), define

T (t)f (r) :=
∑
r ′∈E

f (r ′)(etQ)r,r ′ .

The quantity (�[Nt])(i,r),(j,r ′) is the probability that the process (XN(τ))τ∈N jumps from
state (aiN, r) to state (ajN, r ′) in [Nτ ] generations, and (etQ)t≥0 is the Feller semigroup for
the limiting process (Y (t))t≥0. Now we proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. We use a technique borrowed from Kaj et al. (2001). To show that
YN(·) converges weakly to Y (·), it is sufficient to show that, for each function f : E → R and
each state (aiN, r) ∈ EN ,

|T [Nt]
N (f ◦ ηN)(aiN, r) − T (t)f (r)| → 0 as N → ∞.

We have

|T [Nt]
N (f ◦ ηN)(aiN, r) − T (t)f (r)| =

∣∣∣∣
∑
r ′∈E

f (r ′)
{ s∑

j=1

(�
[Nt]
N )(i,r),(j,r ′) − (etQ)r,r ′

}∣∣∣∣.

Since E is finite and f : E → R is a function, it is enough to show that, for each r and r ′ in E

and i ∈ {1, . . . , s},
∣∣∣∣

s∑
j=1

(�
[Nt]
N )(i,r),(j,r ′) − (etQ)r,r ′

∣∣∣∣ → 0 as N → ∞.

Recall that limN→∞ �
[Nt]
N = P − I + etG. This implies that

lim
N→∞

s∑
j=1

(�
[Nt]
N )(i,r),(j,r ′) =

s∑
j=1

(etG)(i,r),(j,r ′).

So it is enough to show that, for each i ∈ {1, . . . , s} and r and r ′ in E,

s∑
j=1

(etG)(i,r),(j,r ′) = (etQ)r,r ′ .

We only need to verify by induction that

s∑
j=1

(Gτ )(i,r),(j,r ′) = (Qτ )r,r ′ . (4.1)
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Equality (4.1) obviously holds for τ ∈ {0, 1}. For τ = 0, both sides are equal to δr,r ′ . For
τ = 1, (4.1) is equivalent to

∑
j g(i,r),(j,r ′) = qr,r ′ , which is obviously satisfied. Suppose, as

the induction hypothesis, that

s∑
j=1

(Gτ−1)(i,r),(j,r ′) = (Qτ−1)r,r ′ .

Then we obtain

s∑
j=1

(Gτ )(i,r),(j,r ′) =
s∑

j=1

∑
(i′,r ′′)∈EN

g(i,r),(i′,r ′′)(G
τ−1)(i′,r ′′),(j,r ′)

=
∑

(i′,r ′′)∈EN

g(i,r),(i′,r ′′)

s∑
j=1

(Gτ−1)(i′,r ′′),(j,r ′)

=
∑

(i′,r ′′)∈EN

γi′qr,r ′′(Qτ−1)r ′′,r ′

=
s∑

i′=1

γi′
∑
r ′′∈E

qr,r ′′(Qτ−1)r ′′,r ′

=
s∑

i′=1

γi′(Q
τ )r,r ′

= (Qτ )r,r ′ .

Thus, for τ = 0, 1, 2, . . . , (4.1) holds. We conclude that YN(·) converges weakly to Y (·). The
proof is complete.

5. Summary

The coalescent is an important tool for modeling the ancestral dynamics of many biological
populations. It allows us to trace back in time the ancestry of a sample of genes or individuals
chosen from a large population (that may have a complex structure) from the present time until
the sample reaches its most recent common ancestor.

For many population models the suitably scaled ancestral process converges to the standard
or the structured coalescent, or their time-changed versions. This is referred to as the robustness
of the coalescent.

In our model, we consider a subdivided population with stochastically varying subpopulation
sizes and slow migration between subpopulations. We point out that our model, although similar
to some of the existing models, is different from them, and that, on the coalescent time scale, it
converges to a time-changed version of the structured coalescent, thus confirming the robustness
of the coalescent.
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