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GROWTH OF INTEGRAL TRANSFORMS
AND EXTINCTION IN CRITICAL
GALTON–WATSON PROCESSES

DANIEL TOKAREV,∗ The University of Melbourne

Abstract

The mean time to extinction of a critical Galton–Watson process with initial population
size k is shown to be asymptotically equivalent to two integral transforms: one involving
the kth iterate of the probability generating function and one involving the generating
function itself. Relating the growth of these transforms to the regular variation of
their arguments, immediately connects statements involving the regular variation of the
probability generating function, its iterates at 0, the quasistationary measures, their partial
sums, and the limiting distribution of the time to extinction. In the critical case of finite
variance we also give the growth of the mean time to extinction, conditioned on extinction
occurring by time n.
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1. Background

Critical Galton–Watson processes with regularly varying probability generating functions
(PGFs) were originally studied in [13], [14], and [15], where the authors considered a critical
process with PGF f (s) satisfying

f (s) = s + (1− s)1+ρL(1− s), (1)

where ρ ∈ (0, 1] and L is a slowly varying function at 0, i.e. for any t > 0, lims→∞ L(st)/L(s)

= 1. (Hereafter, all the functions mentioned are assumed to be Baire, i.e. belonging to the
smallest class of functions that includes continuous functions on R and is closed under pointwise
limits—see, e.g. [6, pp. 104–106]. Unless specified otherwise, L is assumed to be slowly varying
at 0.) These works have been extensively cited and the process with condition (1) has been
explored in numerous papers in the field (see, e.g. [4], [5], [7], and [10]).

Let {Z(n)}∞n=0 denote a Galton–Watson process, Z := Z(1), and let us assume that Z(0) = 1
unless specified otherwise. For noncritical processes, the condition E Z log Z < ∞ separates
a range of qualitatively different behaviour, whereas for critical processes, the appropriate
criterion is σ 2 = E Z2 − 1 < ∞ (which is equivalent to f ′′(1) < ∞) and condition (1) is a
natural extension of it since it controls the rate at which f ′′(s) grows at 1. This growth and that
of the PGF itself can be expected to be related to the growth of the functional iterates f(n)(s)
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Integral transforms and Galton–Watson processes 473

of the PGF, which are the PGFs of the process at time n as well as their appropriate transforms
that describe the various conditioned processes (see, e.g. [4]).

The following lemma shows what condition (1) means in terms of moments.

Lemma 1. If {Z}∞i=0 is a critical process satisfying (1) then the following statements hold.

(a) ρ ∈ [0, 1].
(b) If σ 2 <∞ then ρ = 1 and L(0) = f ′′(1)/2.

(c) E Z1+1/ε <∞ if ε > 1/ρ and E Z1+1/ε = ∞ if ε < 1/ρ.

In particular, if ρ = 0 then E Z1+1/ε = ∞ for any ε > 0.

Proof. Using Lamperti’s rule (see, e.g. [14]), f ′(s)− 1 and f ′′(s) can be easily seen to be
regularly varying at 1, i.e. f ′(s) − 1 ∼ (1 + ρ)(1 − s)ρL(1 − s) and f ′′(s) = ρ(1 + ρ)(1 −
s)ρ−1L(1 − s). Since f ′(1) = 1 < ∞ and (b) is equivalent to 0 < f ′′(1) < ∞, (a) and (b)
must follow.

In [15] it was shown that the distribution of Z is in the domain of the stable law of index ρ

and, therefore, E Z1+ε <∞ if ε > 1/ρ and is infinite if ε > 1/ρ (see, e.g. [6, p. 448]).

The case in which ρ = 0 has been recently examined in [10].
We write f (s) ∼ g(s) as s → s0 to mean that

lim
s→s0

f (s)

g(s)
= 1.

Let f(i) denote the ith functional iterate of f , let Pij := P(Z(1) = j | Z(0) = i), and let {ηi}
be the quasistationary measure, i.e.

ηj =
∞∑
i=1

ηiPij .

It was shown in [13] and [14] that (1) implies that

n∑
i=1

ηi ∼ 1

ρ�(1+ ρ)

nρ

L(1/n)
as n→∞, (2)

1− f(n)(0) ∼ n−1/ρL∗
(

1

n

)
, (3)

where L and L∗ are regularly varying at 0. It was also shown by a number of authors (see [2,
p. 38]) that, for subcritical Galton–Watson processes with mean µ := E Z, the following two
conditions are equivalent:

E Z log Z <∞, (4)

1− f(n)(0) ∼ cµn, c ∈ (0, 1]. (5)

While in [9] (or [2, p. 89]) it was shown that, for subcritical processes, (5) implies that

n∑
i=1

ηi ∼ log n

log(1/µ)
. (6)
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In [1] the growth of the mean time to extinction of subcritical process was given, i.e. if T n :=
inf{i : Z(i) = 0 | Z(0) = n}, (5) implies that

E T n ∼ log n

log(1/µ)
. (7)

The purpose of the present paper is to derive these and other properties as easy corollaries
of a general result relating the growth of a function to that of two Mellin-type transforms.
In particular, the equivalence of (1), (2), and (3), as well as (for subcritical case) of (4), (5),
(6), and (7) are all easily established from our main theorem. We also show the appropriate
relationships for subcritical processes when E Z log Z = ∞, give the limiting distribution of
the time to extinction of a process started with k particles as k→∞, and give the growth of the
mean time to extinction of a critical process with finite variance, when extinction had occurred
by time n. Some related questions, specifically the distribution of extinction time and the paths
to extinction, have recently been explored in the subcritical Markov branching case by Jagers
et al. [8].

2. Main results

The results of this paper rely on the following fact that relates the regular growth of a function
at 1 to that of its integral transform of the Mellin type. We defer the proof until the next section.

Theorem 1. Let g, h : [0, 1)→ R
+, let L be a slowly varying function at 0, and let ρ ∈ (0, 1)

((a), below, remains valid for ρ = 0). Define

I (k) :=
∫ 1

0
skg(s) ds,

J (k) :=
∫ 1

0
(1− sk)h(s) ds.

Then, as x → 1 and k→∞,

(a) g(x) ∼ (1− x)−ρL(1− x) is equivalent to I (k) ∼ �(1− ρ)kρ−1L(1/k);

(b) h(x) ∼ (1− x)−ρ−1L(1− x) is equivalent to J (k) ∼ (�(1− ρ)/ρ)kρL(1/k).

Before we apply the above to Galton–Watson processes, we derive an immediate corollary
relating the regular variation of the distribution function to that of the expectation of maxima.
The Abelian direction (from distribution function to expectation) follows from a modern
treatment of the celebrated theorem of Gnedenko (see, e.g. [3, p. 409]). But we derive both
directions as immediate consequences of Theorem 1(a).

Corollary 1. Let T1, T2, . . . , Tn be nonnegative, independent, identically distributed (i.i.d.)
random variables with distribution function F , let F←(s) := inf{x : F(x) > s}, let ρ ∈ [0, 1),
and let L be regularly varying at 0. Then the following statements are equivalent:

(a) F←(s) ∼ (1− s)−ρL(1− s) as s → 1;

(b) E max{T1, . . . , Tn} ∼ �(1− ρ)nρL(1/n) as n→∞;

(c) if ρ �= 0, let bn = F←(1− 1/n), then, for x ≥ 0,

lim
n→∞P

(
1

bn

max{T1, . . . , Tn} < x

)
= exp(−x−1/ρ).
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If we also assume that

F←(s) =
∞∑
i=0

ais
i (8)

with ai ≥ 0 then the above statements are also equivalent to

(d)
∑n

i=0 ai ∼ (nρ/�(1+ ρ))L(1/n) as n→∞.

Furthermore, if we suppose that {ai}∞i=k is monotone for some fixed k and ρ > 0, then the
above statements are also equivalent to

(e) an ∼ ρnρ−1L(1/n) as n→∞.

Proof. Recall that if F is the distribution function of a nonnegative random variable T with
distribution function F , then T is distributed as F←(R) and R is distributed as uniform[0, 1].
Also, if T1, . . . , Tk are k i.i.d. copies of T then P(max{T1, . . . , Tk} < t) = P(T < t)k , and so,
for the corresponding expectation,

E max{T1, . . . , Tk} =
∫ 1

0
F←(s1/k) ds.

Substituting u = x1/k , we obtain k
∫ 1

0 xk−1F←(x) dx, which is in the form of I (k), and the
equivalence of statements (a) and (b) follows. The equivalence of statements (a) and (c) follows
from Gnedenko’s theorem (see, e.g. [11]) once we write F(s) ∼ s−1/ρL̄(s), where L̄ is a slowly
varying function at∞ and L̄(s) = L#(s−1/ρ), where L# is the de Bruijn conjugate of L (see,
e.g. [3, p. 29]). Statements (d) and (e) follow immediately from the Tauberian theorem for
power series (see, e.g. [6, p. 447]).

Observe that where Corollary 1(a) and condition (9) hold, combining Corollary 1(b) and (d),
and using the fact that �(1+ ρ)�(1− ρ) = πρ/sin(πρ), we obtain the following asymptotic
relationship:

n∑
i=0

ai ∼ sin(πρ)

πρ
E max{T1, . . . , Tn} ∼ F←(1− 1/n)

�(1+ ρ)
as n→∞.

Now if T k denotes the time to extinction of a Galton–Watson process with initial population
size k then T k = max{T1, . . . , Tk}, where Ti are i.i.d. like T := T 1, and we have the following
corollary.

Corollary 2. Let Z be a Galton–Watson process with PGF f , let {ηi}∞i=1 be the quasistationary
measure, and let T k be the time to extinction of a population of size k. Let U(s) be the
quasistationary measure generating function for Z, i.e. U(s) =∑

ηis
i , and let ρ ∈ [0, 1).

Then the following statements are equivalent.

(a) U(s) = (1− s)−ρL(1− s) as s → 1.

(b) 1− f(n)(0) ∼ n−1/ρL∗(n) if ρ > 0, and 1− f(n)(0) ∼ L←(n) if ρ = 0, where L∗(n) is
slowly varying at∞ and L∗(n) = L#(n−1/ρ).

(c) If ρ > 0, let bn = U←(1− 1/n), then, for t ≥ 0,

lim
n→∞P

(
T n

bn

< t

)
= exp(−t−1/ρ).
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(d)
n∑

i=1

ηi ∼ nρ

�(1+ ρ)
L

(
1

n

)
as n→∞.

(e) If {ηi}∞i=j is monotone for some j and ρ > 0, then ηn ∼ ρnρ−1L(1/n) as n→∞.

(f) E T n ∼ �(1− ρ)nρL(1/n) as n→∞.

Proof. We know (see, e.g. [2, p. 68]) that U(f (s)) = U(s)+1, and substituting s = f(n)(0),
we obtain f(n)(0) = U−1(n). Hence, setting ai = ηi , we let U = F←, to apply Corollary 1,
to obtain the equivalence of statements (a), (c), (d), and (e). To prove that statement (a) implies
statement (b), i.e. in order to translate the statement about U into the statement about f(n)(0),
we use the inversion of regularly varying functions using de Bruijn’s conjugate again. To prove
that statement (b) implies statement (a), observe that, for any t ∈ (0, 1), we can find an n ≥ 0
such that f(n)(0) ≤ t ≤ f(n+1)(0) and, since U is monotone,

(1− f(n+1)(0))U(f(n)(0)) ≤ (1− t)U(t) ≤ (1− f(n)(0))U(f(n+1)(0)).

Setting ρ = 0 gives the following result.

Corollary 3. Let {Z(i)}∞i=1 be a Galton–Watson process with a generating function f (s). Let
L be a slowly varying function at 0. Then the following statements are equivalent:

(a) 1− f(n)(0) ∼ L←(n);

(b) E T n ∼ L(1/n);

(c)
∑n

i=1 ηi ∼ L(1/n).

In [12] it was shown that iterates of a PGF of a subcritical process must satisfy

1− f(n)(0) ∼ µnL(µn),

where L(s) → 0 as s → ∞. Inverting this expression, we obtain logµ(nL#(n)), which is
slowly varying, and, hence, Corollary 3 covers subcritical processes. More specifically, we
immediately have the equivalence of the following statements:

(i) 1− f(n)(0) ∼ cµn, c ∈ (0, 1];
(ii) E T n ∼ log n/log(1/µ);

(iii)
∑n

i=1 ηi ∼ log n/log(1/µ).

Note that statement (i) is equivalent to E Z log Z < ∞; this result is due to a number of
authors (see [2, p. 38]). To prove that statement (i) implies statement (ii), see [1], and to prove
that statement (i) implies statement (iii), see [9].

In order to relate the regular variation of the iterates to that of the PGF, we give an asymp-
totically equivalent form for E T k in terms of the PGF using a Riemann sums approximation.
We defer the proof untill the next section.

Lemma 2. Let {Z}∞t=0 be a critical Galton–Watson process with PGF f (s) �= s, and let T k be
the time to extinction of k individuals of this process. Then

E T k ∼
∫ 1

0

1− sk

f (s)− s
ds.
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This is in the form of J (k) of Theorem 1(b) and we can immediately write the growth of
E T k in terms of f . Hence, we can combine the above observations and obtain the following
theorem.

Theorem 2. Let ρ ∈ (0, 1). For a critical Galton–Watson process with PGF f , the following
statements are equivalent.

(a) f (s)− s ∼ (1− s)1+ρL(1− s) as s → 1.

(b) 1 − f(n)(0) ∼ n−1/ρL∗(n) if ρ > 0, where L∗(n) is slowly varying at∞ and L∗(n) =
L#(n−1/ρ).

(c) Let bn = F←(1− 1/n). Then

lim
n→∞P

(
T n

bn

< t

)
= exp(−t−1/ρ).

(d)
n∑

i=1

ηi ∼ 1

ρ�(1+ ρ)

nρ

L(1/n)
as n→∞.

(e)

E T n ∼ �(1− ρ)

ρ

nρ

L(1/n)
as n→∞.

(f) If {ηi}∞i=j is monotone for some j then ηn ∼ ρnρ−1L(1/n) as n→∞.

Note that Theorem 2 is restricted to ρ ∈ (0, 1), i.e. fractional power moments exist beyond
the first one, and, of course, E Z log Z <∞.

3. Proofs of Theorem 1 and Lemma 2

The proof of Theorem 1 relies on a simple substitution and a uniform convergence theorem
for slowly varying functions (see, e.g. [3, p. 6]). We prove it for I (k); the treatment for J (k) is
entirely analogous.

Proof of Theorem 1. We first prove that g(s) ∼ (1 − s)ρL(1 − s) implies I (k) ∼ �(1 −
ρ)kρ−1L(1/k). Since g(s) = (1− s)ρL(1− s), if we let s = 1− x/k then I (k) becomes

kρ−1
∫ k

0

(
1− x

k

)k

x−ρL

(
x

k

)
ds.

Let ε ∈ (0, 1), and let N > 0 be a ‘large’ number (we shall say how ‘large’ below). Divide
I (k) by kρ−1L(1/k) and split the integral into two parts:

∫ N

0

(
1− x

k

)k

x−ρ L(x/k)

L(1/k)
dx +

∫ k

N

(
1− x

k

)k

x−ρ L(x/k)

L(1/k)
dx

=
∫ N

0

(
1− x

k

)k

x−ρ

(
L(x/k)

L(1/k)
− 1

)
dx +

∫ N

0

(
1− x

k

)k

x−ρ dx

+
∫ k

N

(
1− x

k

)k

x−ρ L(x/k)

L(1/k)
dx. (9)
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By the monotone convergence theorem for slowly varying functions (see, e.g. [3, p. 6]) for
any N1, we can choose large enough k0 = k0(ε/3�(1− ρ)) so that, for all x ∈ [0, N1] and
k > k0, ∣∣∣∣L(x/k)

L(1/k)
− 1

∣∣∣∣ <
ε

3�(1− ρ)
.

For the first integral in (9), observe that

∫ N1

0

(
1− x

k

)k

x−ρ dx ≤
∫ ∞

0
e−xx−ρ dx = �(1− ρ);

hence, for k > k0, ∫ N1

0

(
1− x

k

)k

x−ρ

(
L(x/k)

L(1/k)
− 1

)
dx <

ε

3
.

Choose N2 = N2(ε/3) such that
∫∞
N2

e−xx−ρ dx < ε/3. Hence, as k →∞, for N > N2, the
second integral in (9) is within ε/3 of �(1− ρ).

Potter’s theorem (see [3, p. 25]) states that, for any N3 : N3 ≤ u ≤ k and for any A > 0 and
δ > 0, there exist large enough k0 so that, for all k > k0, L(u/k)/L(1/k) < ANδ

3 . Observe
that

∫∞
N3

e−xx−ρ dx = o(N−δ
3 ) for any δ > 0 (using, e.g. l’Hôpital’s rule). Fix A and δ, and

take large enough N3 so that ANδ
3

∫∞
N3

e−xx−ρ dx < ε/3. Taking N = max{N1, N2, N3}, we

obtain, as k → ∞, k−ρ+1L(1/k)−1I (k) − �(1 − ρ) ≤ ε and, hence, the assertion of the
theorem follows.

We now prove the converse statement, i.e. that g(s) ∼ (1− s)ρL(1− s) is implied by

(
kρ−1L

(
1

k

))−1 ∫ 1

0
skg(s) ds → �(1− ρ).

Performing the same substitution as above, bringing (kρ−1L(1/k))−1 inside the integral, and
using L(1/k) = L(x/k)− o(1)L(1/k) for x ∈ [0, N ], we obtain

∫ N

0

(
1− x

k

)k

x−ρ xρg(1− x/k)

kρL(1/k)
dx +

∫ k

N

(
1− x

k

)k

x−ρ xρg(1− x/k)

kρL(1/k)
dx

=
∫ N

0

(
1− x

k

)k

x−ρ

((
x

k

)ρ
g(1− x/k)

(L(x/k)− o(1)L(1/k))
− 1

)
dx

+
∫ N

0

(
1− x

k

)k

x−1−ρ dx +
∫ k

N

(
1− x

k

)k

x−ρ xρg(1− x/k)

kρL(1/k)
dx

→ �(1− ρ)

ρ
.

Since the second integral on the right-hand side converges to �(1 − ρ) and the third integral
on the right-hand side is nonnegative, the first integral on the right-hand side must converge to
0, as first k→∞ and then N →∞; hence,

(x/k)ρg(1− x/k)

L(x/k)− o(1)L(1/k)
→ 1.

Setting s = x/k→ 0 and using L(1/k) ∼ L(x/k) as before, it follows that g(1−s) ∼ s−ρL(s)

as required.
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Proof of Lemma 2. Consider the lower and upper sums of (1− sk)/(f (s)− s) on the sub-
division of the unit interval by iterates of f : 0 < f (0) < f(2)(0) < · · · , where f(i)(0) is the
ith functional iterate of f , with f(0)(0) := 0. We have

∞∑
i=0

(1− f(i)(0)k) <

∫ 1

0

1− sk

f (s)− s
ds <

∞∑
i=0

1− f(i)(0)

f(i+1)(0)− f(i)(0)
(f(i)(0)− f(i−1)(0)).

The lower sum is precisely E T k . Denote the lower sums on the right-hand side by Sl(k) and
the upper sums on the left-hand side by Su(k), and let ε ∈ (0, 1). Note that

f(i)(0)− f(i−1)(0)

f(i+1)(0)− f(i)(0)
↓ 1,

since these are reciprocals of the gradients of disjoint chords on f (s) (monotonicity follows
from that of f using the mean value theorem) and we can choose i∗ = i∗(ε) such that, for
all j ≥ i∗, (f(j)(0)− f(j−1)(0))/(f(j+1)(0)− f(j)(0)) − 1 < ε/2. Observe that Sl(k) grows
unboundedly with k. Choose large enough k so that i∗f (0)/(Sl(k)(f(2)(0)− f (0))) < ε/2.
Then we obtain

Su

Sl
=

∑i∗−1
i=0 (1− f(i)(0)k)(f(i)(0)− f(i−1)(0))/(f(i+1)(0)− f(i)(0))∑∞

i=0(1− f(i)(0)k)

+
∑∞

i∗ (1− f(i)(0)k)(f(i)(0)− f(i−1)(0))/(f(i+1)(0)− f(i)(0))∑∞
i=0(1− f(i)(0)k)

≤ i∗f (0)

Sl(k)(f(2)(0)− f (0))
+

(
1+ ε

2

)

< 1+ ε.

Since ε can be chosen arbitrarily small, we see that Su ∼ Sl. This completes the proof.

4. Mean time to extinction when extinction has occurred by
time n—the case of finite variance

Suppose we know that a critical Galton–Watson individual with E Z2 < ∞ dies by time n

(‘large’ n). What is our best guess on the actual time of death? Let T := T (1), the time to
extinction of one particle, and let Tn := (T | T ≤ n).

Theorem 3. For a critical Galton–Watson process with σ 2 <∞,

E Tn ∼ σ 2

2
log n.

Proof. We condition on extinction by time n and use J (k) to approximate this conditional
mean time to extinction. We have

E Tn = 1

f(n)(0)

n−1∑
i=1

(nf(n)(0)− f(i)(0)) ∼
n∑

i=0

(1− f(i)(0)).

As before, we have

E Tn ∼
∫ f(n)(0)

0

1− sk

f (s)− s
ds.
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Let f be a PGF of a critical Galton–Watson process with σ 2 <∞. Then 1−f(n)(0) ∼ 2/σ 2n,
and we can write f (s)− s = (1− s)2f ′′(ξs), where s ≤ ξs ≤ 1. Then, for any 0 < α < 1,

E Tn ∼
∫ f(n)(0)

0

ds

(1− s)f ′′(ξs)
∼

∫ 1−2/σ 2n

α

ds

(1− s)f ′′(ξs)
∼ σ 2

2
log n.

Unfortunately, an analogue of J (k) for noncritical processes is not yet available and a similar
analysis to the foregoing cannot be performed. We conjecture, however, that the conditional
mean time to extinction for supercritical processes with E Z log Z <∞ grows linearly in n.
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