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A SUBGLACIAL BOUNDARY-LAYER REGELATION
MECHANISM

By E.M. SHOEMAKER

(Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A IS6, Canada)
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large. At least on steep bed slopes, h.P can approach Pigh
(Kamb, 1970; Vivian and Bocquet, 1973). Because ice near
the bed is in the presence of such a reduced pressure
environment during a large part, up to one-half, of its
existence before being melted, it is important to understand
the effect of this environment upon properties such as the
stress condition and melting process of ice near the bed.

We shall examine the steady-state stress and tempera-
ture fields in temperate ice near the roof of a subglacial
water-filled cavity with the condition !:J.P > 0 assumed to
apply. From equilibrium considerations, the component of
normal stress directed normal to the ice-water interface (the
exterior normal stress) must be continuous across the inter-
face. However, the component of normal stress directed
tangentially to the ice-water interface (the interior normal
stress) need not be equal to the exterior normal stress at
the interface. This should be the case if h.P > 0, since the
magnitude of the interior normal stress could be expected to
approach the overburden pressure. Similar conditions exist
on the lee sides of bedrock bumps, whether or not ice-bed
separation occurs.

Consider a crystal or grain situated directly above an
ice-water pocket interface (Fig. I) under conditions where
heat input from the water pocket causes melting. Assume
that h.P > 0 with laxl = lazl > layl =' Pw at the
interface, y = O. Then, according to the conventional
Gibbs-Kamb model (Kamb, 1961; McLellan, 1966), melting
occurs on parts of grain boundaries with the highest
magnitude of normal stress. In the present case, this will be
one or more of the lateral crystal faces A, B, C, ... of

Fig. 1. The vein-node system (modified from Nye. 1989;
not to scale.) DOlled arrows indicate drainage paths. Base
of grain is on ice-water pocket interface.

Thickness of ice cover
Defined by Equation (9)
A melting rate defined in Equation (5)
Overburden pressure equal to Pigh
Water-pocket pressure
Heat flux equal to q(O)
Critical value of Q such that q(O) is just suffi-

cient to produce a hydrostatic state of stress on
the ice-water pocket interface

Heat-flux field defined in Equation (4)
Cartesian components of normal stress deviators
Cartesian coordinates with origin at ice-water
interface. y-axis directed into ice
Parameter defined near Equation (6)
Cartesian components of strain-rate field
Temperate field relative to temperature at ice-

water pocket interface defined in Equation (3)
Asymptotic value of ice temperature given by

-c(Po-pw)
Cartesian components of normal stress field

ABSTRACT. Heat input to basal ice at subglacial low-
pressure regions, such as exist on the lee side of bed
bumps including regions of ice-bed separation, is shown to
melt basal ice internally in a narrow boundary layer at most
centimeters thick. Before ice at the ice-bed interface can
begin to melt, the heat input Q must exceed a critical value
Q*. Q* increases rapidly with an increase in the difference
h.P between the nominal (global) overburden pressure and
the magnitude of the (local) normal stress acting between
the ice and bed or ice and water pocket. Because of the
non-linear nature of the flow law, the thickness of the
boundary layer decreases rapidly with increasing h.P. The ice
in the boundary layer is likely to be soft with a high water
content. Under certain conditions, a regelation cycle may
exist between the boundary layer and the water in a
subglacial cavity. The boundary layer is sufficiently narrow
that the processes can reach steady state while ice traverses
subglacial low-pressure regions of length the order of 0.01-
0.1 m. The regelation phenomenon may preserve or aid the
formation of narrow debris-rich ice layers at the base of
temperate glaciers.

INTRODUCTION

NOMENCLATURE

h
J
m
Po
Pw
Q
Q*

It is generally accepted that small water-filled cavItIes
in the lee of bedrock bumps are ubiquitous, at least where
the ice-sliding velocity is not abnormally small (L1iboutry,
1958, 1968, 1978). Large filled or partially filled cavities
beneath thick ice also are not uncommon (Schneider, 1939,
1948; La Chapelle, 1968; Paterson and Savage, 1970; Vivian
and Bocquet, 1973). Normally, the water pressure Pw in
such cavities is less than the nominal (global) overburden
pressure Po = Pigh where Pi is the ice density and h is the
ice thickness. The pressure difference h.P = Po - Pw can be
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where q is the heat flux and k is the conductivity,
assumed to be constant.

Conversion of ice to water obeys

model (Kamb, 1961) which states that, if higher-order terms
are neglected, the melting point is determined by the
normal stress on the interface where melting occurs.
Therefore, if melting occurs somewhere on the boundary of
a grain which is at a uniform temperature, it can only
occur on those segments of the grain boundary where the
magnitude of the normal stress is maximized. (The fact that
melting occurs preferentially on the highest stressed regions
of a grain boundary causes the temperature in the grain to
be non-uniform with heat flowing towards the regions
where melting occurs.) In the prflsent case, the maximum.
normal stress magnitude occurs on planes parallel to the
y-axis and is Po - lIC1(Y) where it is assumed, to be
verified, that Po - lIC1(Y) > Pw' If this inequality is
satisfied, melting will occur exclusively on grain boundaries
paralIel, or nearest parallel, to the y-axis. (This is the
assumption leading to Equation (3).) Melting cannot occur
on the ice-water pocket interface y = 0 unless the
inequality Po - lIC1(O) , Pw is satisfied. These conclusions
are in accordance with the experiments of Nye and Mae
(1972).

Melting at interior grain boundaries produces a stress
redistribution so that lIC1(Y) is not identically zero. There
are two general cases: I. Q is sufficiently large that melting
occurs on the ice-water pocket interface and the stress state
there is necessarily hydrostatic with Po - lIC1(O) = Pw; II. Q
is insufficiently large to cause melting on the ice-water
pocket interface and Po - lIC1(O) > Pw' We will initialIy
focus on the special version of case I where Q = Q* is just
sufficient to cause melting on the ice-water pocket
interface.

The heat balance in the ice includes conduction, heat
absorption by melting at grain boundaries, strain-energy
release, and the heating of melt water generated at y > 0
as it drains along the positive temperature gradient to the
water pocket at y = O. The latter two contributions may be
neglected. While the contribution of water drainage to heat
balance may be neglected, intergranular water drainage (or
the lack of it) can influence the stress field; the effect of
water drainage will be addressed later.

Steady-state heat conduction for the homogeneous
isotropic model is described by

Figure I; melting will not occur on face N or the ice-water
pocket interface unless or until the magnitude of normal
stress on either of these faces equals or exceeds the
magnitude of normal stresses on the lateral faces. Thus,
melting will occur preferentially at interior grain boundaries
rather than on the ice-water pocket interface.

The phenomenon just outlined was recognized by Nye
and Mae (1972), who also offered experimental confirmation
of the formation of water lenses at interior grain
boundaries. Further relevant work was done by L1iboutry
(1971, 1976, 1987, p.160-64), Nye and Frank (\973), and
Nye (1976, 1989).

The consequences of melting interior to the ice
bordering a water pocket or other low-pressure regions will
be examined. It will be shown that interior melting and
consequent stress redistribution is confined to a narrow
boundary layer of ice, no more than centimeters thick. It is
expected that the water content in the boundary-layer ice is
high.

It is assumed that the characteristic length of the water
pocket is large compared to ice-crystal size and boundary-
layer thickness. Thus, plane-strain conditions apply and the
half -space geometry of the problem examined in the next
section is justified if these relative size restraints are
satisfied.

Because of the grain structure, the melting process is
highly non-homogeneous. In addition, conduction across
grain boundaries involves different coefficients than
conduction interior to grains. To illustrate qualtitative
effects, it is sufficient and convenient to replace the
discrete grain system by a homogeneous isotropic system
where conduction, melting, and water drainage take place
uniformly on any plane parallel to the ice-water pocket
interface. Certain characteristics of the grain structure,
however, will be incorporated in the model.

ANALYSIS

Consider the steady-state situation of half space y > 0
occupied by temperate ice throughout. Water occupies y < 0
at temperature 9w and pressure Pw' Assume that heat is
released by the water to the ice at a uniform rate per unit
area Q ~ O. (The source of heat input will be discussed
later.) If Q = 0, the system is in thermodynamic
equilibrium and the uniform equilibrium stress field in the
ice is taken to be

q = -kd9/dy (4)

(I) dq/dy + LfPim(y) = 0 (5)

is

where c = 9.8 x \0-8 K Pa-1 for air-saturated water
(Paterson, 1981, p.193). 9 has arbitrarily been set to zero
when Po - Pw - lIC1(Y) = 0 which renders 9 the
temperature relati ve to that at the ice-water pocket
interface. Equation (3) is consistent with the Gibbs-Kamb

where Po ~ Pw and C1X' C1y' C1Z are the xyz components of
normal stress. The usual sign convention (tensile stresses are
positive) is observed for stresses. Gravitational forces are
neglected. We shall refer to the state corresponding to
Q = 0 as the ground state.

In the more general case where Q > 0, the stress field

where Lf is the heat of fusion, Pi is the ice density, and
m is the net interior melting rate per unit volume. In the
derivation of Equation (5), it is assumed that any refreezing
at level y is of melt water generated by melting at the
same y value.

As noted, melting occurs on crystal faces most nearly
paralIel to the y-axis. Thus, interior melting on y > 0
would act to reduce the dimensions of the ice in the x-
and z-directions if it were not for the fact that the
constraint of plane strain implies that the displacement of
ice in the x- and z-directions must be independent of y.
Thus, to balance interior melting, the ice undergoes a
tensile strain-rate in the x- and z-directions due to the
components of tensile stress C1x = C1Z = lIC1(y) appearing in
Equation (2).

The strain-rate field is affected by the proportion of
the internally generated melt water which drains to the
water pocket. Following the general outline of Nye and Mae
(\972), we consider two limiting cases for the disposition of
melt water formed on the lateral faces A, B, C, ... of
Figure I. At one extreme there is no drainage of melt
water to the water pocket. Melt water remains on the grain
faces in the form of water lenses and/or is transported to
and stored in the veins. Thus, as internal melting proceeds,
the quantity of stored water increases. At the other extreme,
the melt water is evacuated to the water pocket at the rate
it is formed. (This does not negate water storage but does
imply a steady-state water content in the ice.) Evacuation is
by way of the veins (Fig. I) which are at a pressure
somewhere between Po - lIC1(Y) and Pw (Nye and Mae,

(2)

(3)9(y) = -c(P 0 - Pw - lIC1(Y»

where lIC1(Y) ~ 0 remains to be determined. The stress
redistribution resulting in lIC1(Y) originates from internal
melting of ice in a boundary layer adjoining the ice-water
pocket interface as will be shown.

The Clausius-clapeyron equation (Paterson, 1981,
p. 192), which is known to apply in the hydrostatic stress
case, is assumed to apply in the non-hydrostatic stress case.
Neglecting non-homogeneities due to the grain structure, the
equilibrium temperature can be verified to be

264
https://doi.org/10.3189/002214390793701309 Published online by Cambridge University Press

https://doi.org/10.3189/002214390793701309


Shoemaker: Subglacial boundary-layer regelation mechanism

RESULTS AND INTERPRET AnON

9(0) < 0 is now obtained as part of the solution. The stress
state on the ice-water pocket interface is non-hydrostatic.

[I - ~~] i = -E~+ Do~) (-Po + Pw + Aa(y». (13)

(14)

(15)

(16)Q.
d9

-k -;-{O)
dy

9(0) = 0

q(O)

9(y) •.• -c(Po - pw)' Y'" co

(Aa(y) ..• 0, q(y)'" 0, or m(y) •.• 0 as y ..• co).

Note that Q* = q(O) is determined as part of the solution.
Po - Pw is a forcing parameter. If Po - Pw = 0, then

Q* = 0 and the stress field reduces to the ground state
which, in this case, is the uniform hydrostatic field
Ox = 0y = 0z = -Pw'

In case Q > Q*, the excess heat Q - Q* goes into
melting ice at the ice-water pocket interface. Otherwise, the
previous formulation and results remain intact corresponding
to the heat part Q* which melts ice internally on y > O.

The previous formulation must be amended when
applied to the case Q < Q*. Boundary condition (14) must
be replaced by

from Equations (9) and (10).
For the general case, when Q > 0, we may solve for

m(y) from Equation (6) with Ex determined from Equations
(7) and (10). Thus,

For the particular case under consideration where
Q = Q*, the system of Equations (3), (4), (5), and (13) may
be solved numerically for 9, q, Ao, and m subject to the
boundary condition

or, equivalently, Ao(O) = Po - Pw as follows from Equation
(3). (The stress state is hydrostatic at the ice-water pocket
interface.) A second boundary condition may be expressed
in several equivalent ways as

A fully numerical solution is required for the general
non-linear case. However, the asymptotic case for
AP = P Q - Pw ..• 0 results in a linear equation. Insight is
gained from this solution.

For AP small w(J) ..• 0.356 in Equation (8) and E~ •.•
0.356/300(Do(-Po + pw» in Equation (II). Making these
substitutions, the differential equation in q, for example,
becomes

(7)

w(J) 0.356 + 0.342J + 0.03l7J2 (8)

where

1972). The negative pressure gradient required for vein flow
is provided by the gradient in AO(Y) which can be very
large, as will be shown by calculation.

It is impossible to establish the proportion of melt
water which will be evacuated. L1iboutry (1971) felt that
veins are blocked by ice flow. However, mechanical vein
blockage is most likely to occur where shear strains are
high, near the bed where the basal shear stress is high. I
do not believe that mechanical blockage is likely near the
roof of a cavity where the shear stress vanishes. Lliboutry
(1971) also pointed out that the concentration of salts and
air bubbles, which occurs mainly in the veins, also reduces
the mobility of water in the lens-vein system.

The proportion of melt water which is evacuated may
also be affected by the time interval for drainage to
become established. The time interval for the experiments of
Nye and Mae was the order of an hour, whereas the time
required for ice to slide over a water pocket is at least a
day. Over the larger time period, vein drainage is more
likely to be achieved, particularly in view of the potentially
large negative pressure gradient associated with Aa(y) acting
over a boundary layer only centimeters thick.

Since the actual state of drainage must lie between the
two extremes of no drainage and perfect drainage, results
for these extreme cases should place bounds upon the actual
behaviour of the system.

Assume that all melting takes place on crystal faces
which are strictly parallel to the y-axis. Assume that any
increases in water stored in veins or at crystal faces at level
y comes from melt water formed at the same level. Let 13
be the fraction of melt water stored and (1 - 13) the
fraction evacuated to the water pocket, and assume that 13
is independent of y.

If no additional strain-rates were imposed in the x-
and z-directions in response to ice melting, a compressive
strain-rate normal to the y-axis of amount (1 - I3pilpw)m/2
would exist, where Pw' Pi are the densities of water and
ice, respectively. In order to maintain the plane-strain
configuration, this shrinkage must be negated so that a
strain-rate field, associated with the stress field of Equation
(2) through a flow law, exists, given by

EX = Ez = E~ + (I - I3pj!pw)m/2 (6)

where E~ is the ground-state strain-rate. We shall not be
concerned with the strain-rate component E Y'

We assume that ice deformation is entirely due to
secondary creep and apply a flow law of the tensorial form

and °0 = 105 Pa, Do = 3.171 x 10-8 S-l (Smith and Morland,
1981). Here, sx' Sy' Sz are the stress deviators corres-
ponding to ox' 0y' 0z' respectively. J is a scaled version of
the second invarIant of the stress-deviator tensor (Paterson,
1981, p.31). Equations (7) and (8) represent a polynomial
fit to Glen's (1955) unixial compression data. The model
avoids the disadvantage of the Glen law (Paterson, 1981,
p.26) which exhibits infinite viscosity at zero stress. The
relations between deviatoric normal stresses si ana stresses 0i
for the present case are

(17)

(20)

(19)

(18)
where

q = c(P 0 - pw)kr exp(-ry)

so that

The solution to the boundary-value problem is

(9)J

Sx = Sz = (-Po + pw + Aa(y»/3,

Sy = 2(Po - pw - Aa(y»/3. (10)

Similarly, the solution for 9 is

9 = c(Po - pw)[exp(-ry) - 1]. (21)

From Equations (7) and (10), the ground-state
strain-rate E~ is

The characteristic thickness of the boundary layer, the
scale depth y* at which the exponential solutions decay by
the multiplicative factor 1 - lie, is seen to be

(11) y* = I/r (22)

where

(12) .
for AP small. Therefore, by calculation, if 13 = 0 (perfect
drainage), y* = 95 mm; if 13 = I (no drainage), y* =
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y(m)

Fig. 2. 9(y}/9 •• for various values of Po - Pw and Q Q*
assuming perfect drainage.

27 mm. It will be seen that for the non-linear model y*
decreases as /:'P increases. Thus, the characteristic scale
thickness of the boundary layer is bounded above by
95 mm. Subsequent results will be confined to the case
13 = O.

Because of internal melting, the boundary layer is apt
to have a high water content. On the other hand, Equation
(8) applies to ordinary glacier ice. It is known that the
viscosity of ice at moderate stress levels decreases with
increasing water content up to at least an order of
magnitude (Duval, 1977). However, the effect at low stress
levels is not known. If we assume that, for jj.p small, the
coefficient 0.356 in Equation (8) is increased to 3.56, r2
values in Equation (18) are increased by a f~ctor of 10 and
y* values are decreased by a factor of 1/(10) .

Figure 2 graphs 9/9"; versus y for the case Q = Q*
and 13 = 0 with Po - Pw as a parameter. Here, 9•• = -c(Po
- pw)' from Equation (3), is the asymptotic value of the
melting temperature as y ...•••. Since c/:'a(y)/9 •• = 9/9 •• - I,
from Equation (3), Figure 2 can also be interpreted as the
variation in dimensionless stress c/:'a(y)/9 ••. The exponential
nature of 9(y) is apparent. It is also clear that the width of
the boundary layer where the variables 9, q, m, and /:'a are
changing rapidly is generally very small but increases
rapidly with decreasing Po - Pw'

Table I shows the rapid growth of Q* = q(0) with
increasing Po - Pw for the case 13= O. The standard
geothermal constant is 0.05 J m-2 sol and basal heat input
might be expected to lie in the range 0.05-1 J m-2 sol. It
follows from Table I that if Po - Pw exceeds, say,
5 x 105 Pa the inequality Q < Q* should be satisfied and
all basal melting will be confined to the interior of the
boundary layer.

Table I also shows the characteristic thickness of the
boundary layer, the scale depth y* at which I - 9(y*)/9 •• =
I/e. It is clear that both Q* and I/y* vary in roughly the
same way with Po - Pw' Furthermore, the boundary-layer
thickness can be much smaller than typical crystal- or
grain-size diameters. Reference to the y* values, and
comparison of Q* values with corresponding values
calculated from Equation (20), shows that non-linearities in
the system begin to take effect for Po - Pw between 104

and 5 x J04 Pa and increase rapidly above Po - Pw '"
J05 Pa. This non-linear behaviour is also seen in Figure 2.

It is easy to show that, if the non-linear flow law (7)
is replaced by a Newtonian flow law, y* is proportional to
nt where n is the viscosity. For example, taking n =
J013 Pa s gives y* '" 88 mm. This result is independent of
jj.p so that the strong dependence of y* upon jj.p for the
present model can be attributed to the non-linear flow law
(7).

(For the case Q < Q*, the temperature of the ice at
the roof of the cavity, 9(0), is below the temperature of
the water in the cavity, which has arbitrarily been set to
zero degrees. The variation in temperature 9(0) as a
function of q(O) and Po - Pw is shown in Table II. The
values of q(O) are chosen so that the initial rows in Table

of the
to the
pocket.

satisfy the
rows are

of part of

TABLE I. VARIATION IN 9••, Q*, AND y* WITH
Po Pw FOR 13 = 0

Po - Pw 9•• Q* y*

Pa K J m-2 S'l mm

103 -9.8 x JO-5 0.022 x JO-2 95

5 x 103 -4.9 x JO-4 0.011 95

104 -9.8 x JO-4 0.022 95

5 x 104 -4.9 x 10-3 0.11 88

J05 -9.8 x JO-3 0.27 68

5 x J05 -0.049 5.2 17

J06 -0.098 32 5.6

5 x J06 -0.49 3.5 x 103 0.25

J07 -0.98 2.8 x 104 0.065

TABLE II. VARIATION IN 9(0) AND t.a(0) WITH
Po - Pw AND q(O). FOR CASE Q < Q* AND 13 = 0

q(O) Po - Pw 9(0) t.a(0)

J m-2 sol Pa K Pa

0.02166 J04 0 J04
5 x J04 -0.00401 9.1 x 103

105 -0.00912 6.9 x 103
106 -0.0980 -0
107 -0.980 -0

0.1144 5 x 104 0 5 x 104
J05 -0.00601 3.9 x 104
J06 -0.0980 -0
J07 -0.980 -0

0.2744 J05 0 105
5 x 105 -0.0473 1.7 x 104

J06 -0.0975 5.1 x 103
107 -0.980 -0

5.216 5 x 105 0 5 x J05
J06 -0.0878 1.0 x 105

107 -0.980 -0

31.60 106 0 106
5 x J06 -0.487 3.1 x 104

J07 -0.979 -0

II, corresponding to any particular value of q(O),
condition q(O) = Q*; in addition, these initial
shown in Table I. Thus, Table II is an extension
Table I to the state Q < Q*.

Table 11 also shows the quantity lla(O), calculated from
Equation (3), which is a measure of the maximum stress
change caused by melting at the ice-water pocket interface.
The results of Table II show that non-linear effects are
concentrated in a narrow range of heat input as q(O) ...• Q*.

Tables I and II results confirm that the gradient
(-dlla(y)/dy) can be large in the narrow boundary layer.
For example, if Q = Q* and Po - Pw = 105 Pa, the average
of this pressure gradient is -1.5 x J06 Pa mol through a
boundary-layer thickness of 67.5 mm. The earlier remark
that there is a potentially large pressure gradient to provide
for melt-water flow in the veins is substantiated.

The results also indicate that the thickness
typical boundary layer should be small compared
characteristic dimension of a subglacial water

0.400.350.300.250.200.150.100.05

0.2

0.0
0.00

0.8

0.4

1.0

9(y)

900

0.6
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CONCLUSIONS

It is appropriate to use values of y* from Table I and
solve for t* from Equation (22). Values of t* calculated in
this manner represent the time required for a temperature
wave with period t* to penetrate exponentially to depth y*.
These values of t* must then be compared with the actual
time t.t required for sliding ice to traverse one bed
wavelength.

For example, using a small bed half -wavelength of
0.1 m and a large sliding velocity of 0.1 m d-l gives
t.t = I d. Using the conservative value y* = 95 mm from
Table I, corresponding to Po - Pw = 10· Pa and B = 0,
gives t* = 0.3 d from Equation (22). We conclude that,
normally, the boundary layer will be heated early in the
traverse of ice over a water pocket.

To the list of conclusions which can legitimately be
made on the basis of the results, I shall add certain
conclusions which contain an element of speculation.

A boundary layer of ice, probably considerably thinner
than 0.1m, exists over water pockets at the base of glaciers,
particularly glaciers with bedrock beds where ice-bed
separation is apt to occur. Melting takes place within this
boundary layer. Recycling of the boundary layer occurs to
the extent that the ice-water-pocket-regelation mechanism
operates. To the usual source of recrystallization must be
added recrystallization in the boundary layer due to
refreezing as part of the regelation process.

The water content is apt to be high in the boundary
layer and crystal size small conforming to the results of
Vallon and others (1976). The classical phenomenon of
regelation sliding past small obstacles will be enhanced by
the soft ice in the boundary layer (assuming that the water
in the boundary layer is not immediately squeezed out after
the ice re-contacts the bed) so that regelation sliding will
be greater than predicted heretofore using properties of
ordinary glacier ice.

The boundary layer, as defined here, does not appear
to conform to the "sole" of the glacier, as suggested or
defined by Barnes and Robin (1966). Thicknesses of the
latter layer of clear ice appear to vary between 0.3 and 2 m
or more (Robin, 1976). The boundary layer, however, does
appear to agree with the observation of Carol (1947) of a
basal layer of soft ice.

The creation of a boundary layer of soft ice requires
only heat input and a normal bed pressure less than the
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