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Abstract
A preconditioned iterative method for the two-dimensional Helmholtz equation with
Robbins boundary conditions is discussed. Using a finite-difference method to
discretize the Helmholtz equation leads to a sparse system of equations which is
too large to solve directly. The approach taken in this paper is to precondition this
linear system with a sine transform based preconditioner and then solve it using
the generalized minimum residual method (GMRES). An analytical formula for the
eigenvalues of the preconditioned matrix is derived and it is shown that the eigenvalues
are clustered around 1 except for some outliers. Numerical results are reported to
demonstrate the effectiveness of the proposed method.
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1. Introduction

The Helmholtz equation arises in a variety of applications in mathematics,
scientific computing and engineering, for instance, acoustic phenomena in
aeronautics, underwater acoustics, photolithography in electromagnetic applications
and geophysics [1, 5, 16, 25]. Motivated by these applications, many mathematicians
and engineers develop specific algorithms for solving the Helmholtz equation; see [5]
for details.

In this paper, we are mainly interested in the numerical solution of the two-
dimensional Helmholtz equation with Robbins boundary conditions. Such problems
frequently arise in computational physics and many other applied areas [5, 10, 22].
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To solve such problems, a finite-difference discretization is applied, leading to an
n-by-n system of linear equations of the form Au = b. The matrix A is large but
sparse. Some direct methods based on LU -factorization can yield the solution of
Au = b. These methods are well known for their robustness for general problems.
However, they are not favourable for sparse linear systems. During the elimination
process, zero entries in the matrix may be filled by nonzero entries.

As an alternative, iterative methods may be more attractive for the solution of
a large system of linear equations. The solution is iteratively obtained from a
recursion consisting of one matrix-vector multiplication, starting with a given initial
solution. In particular, Krylov subspace methods might be used: these methods
apply techniques that involve orthogonal projections onto subspaces of the form
Kl(A, b)≡ span{b, Ab, A2b, . . . , Al−1b}. Krylov subspace methods are among the
most important iterative methods currently available. Common schemes that use
this idea are the method of conjugate gradients (CG) for symmetric positive-definite
matrices, the method of minimum residuals (MINRES) for symmetric and possibly
indefinite matrices, and the generalized minimum residual method (GMRES) for
nonsymmetric matrices, although many other methods are available; see, for example,
Greenbaum [8]. One common feature of the aforementioned methods is that the
solution to the n-by-n linear system Au = b will be found within n iterations in exact
arithmetic; see Joubert and Manteuffel [14]. In particular, if a method converges after
a finite, small number of iterations, the method is very efficient. Iterative methods,
however, are not always guaranteed to have fast convergence and it is also observed
that there are many situations in which they diverge [15]. In such cases, iterative
methods do not offer any advantage as compared to direct methods.

Therefore, the problem of slow convergence must be overcome. One way to
improve the convergence rate of a method is to precondition the linear equations. Thus,
instead of solving the original system Au = b, we solve the preconditioned system
P−1 Au = P−1b. The matrix P , called a preconditioner for the matrix A, is chosen
with the following two criteria in mind.

(i) The equation Pr = d is easy to solve for any vector d .
(ii) The spectrum of P−1 A is clustered and/or P−1 A is well conditioned compared

with A.

(See Axelsson and Barker [2].) In fact, the main idea of preconditioning is to attempt
to improve on the spectral properties, that is, the clustering of the eigenvalues, such
that the total number of iterations required to solve the system within some tolerance
is substantially decreased.

In general, there are two classes of preconditioners for the Helmholtz equation.
The first class comprises the matrix-based preconditioners. For this class, the
preconditioners are based on approximations of the inverse of A, including incomplete
LU and sparse approximate inverse [9, 19]. The second class comprises the operator-
based preconditioners. In this class, the preconditioner is built based on an operator
for which the spectrum of the preconditioned system P−1 A is favourably clustered.
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This operator does not have to be a representation of the inverse of the Helmholtz
operator. We refer the reader to [18] for a general discussion on this class of
preconditioners. Included within this class are the Analytic ILU (or AILU) [7], the
separation-of-variables [23] and the Laplace preconditioner [3, 6].

In this paper, we consider the construction of the sine transform based
preconditioners [4, 11, 12] for the Helmholtz equation with Robbins boundary
conditions. We show that the construction cost of P is O(1) and that the matrix-
vector multiplication P−1v for any vector v can be done in O(n log n) operations.
Furthermore, we conclude that we have finite termination in m iterations of the
GMRES method, where m is the number of distinct eigenvalues of the preconditioned
system. Thus P is an efficient preconditioner.

In Section 2, the discretization of the Helmholtz equation with Robbins boundary
conditions is described. In Section 3, we consider the construction of the sine
transform based preconditioners for Helmholtz problems, and also study the spectrum
of the preconditioned matrix. In Section 4, numerical results are reported to illustrate
the effectiveness of our method.

2. The discretized system

In this section, we derive the discrete linear system from the two-dimensional
Helmholtz equation

−1u − k2u = f (2.1)

over the domain 0≤ x ≤ 1, 0≤ y ≤ 1 with the following Robbins boundary
conditions:

u(0, y) = g(y),
u(x, 0) = ρ(x),

ux (1, y) = pu(1, y)+ a(y),
u y(x, 1) = qu(x, 1)+ c(x),

where k, p and q are constants.
Given a natural number m ≥ 1, consider the mesh of points

(xi , y j ), xi = ih, y j = jh, i, j = 1, 2, . . . , m,

where h = 1/m is the mesh size. Let ui, j = u(xi , y j ), fi, j = f (xi , y j ), g j = g(y j ),
ρi = ρ(xi ), a j = a(y j ) and ci = c(xi ). With three-point centred difference for the
derivative boundary conditions, we obtain

1
2h
(um+1, j − um−1, j ) ≈ pum, j + a j ,

1
2h
(ui,m+1 − ui,m−1) ≈ pui,m + ci .

If (xi , y j ) ∈ [0, 1] × [0, 1], then the Laplacian can be approximated by

(−1u)(xi , y j )≈
1

h2 (4ui, j − ui+1, j − ui−1, j − ui, j+1 − ui, j−1).
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The above formula is known as the classical five-points approximation to the
Laplacian. When using the classical five-points difference scheme for the two-
dimensional Helmholtz equation, we have

(4− k2h2)ui, j − ui+1, j − ui−1, j − ui, j+1 − ui, j−1 = h2 fi, j , (2.2)

where i, j = 1, 2, . . . , m; see [11, 12, 20] for more details.
With the imposed Robbins boundary condition, we have the matrix–vector equation

Au = b,

where the unknowns are

u = (u1,1, u1,2, . . . , u1,m, u2,1, . . . , u2,m, . . . , um,m)
T ,

and b = (b1, . . . , bm)
T is a known n-dimensional vector, where n = m2 and each

bi is an m-dimensional row vector. Let ηi = h2( fi,1, . . . , fi,m) for i = 1, . . . , m
and g = (g1, . . . , gm), a = (a1, . . . , am), βi = (ρi , 0, . . . , 0, 2hci ). Then we obtain
b1 = g + η1 + β1, bm = 2ha + ηm + βm and bi = ηi + βi for i = 2, . . . , m − 1.

In addition, the nonsymmetric matrix A has a tensor product form

A = Im ⊗ B + C ⊗ Im, (2.3)

where

B =


4− k2h2

−1
−1 4− k2h2

−1
. . .

. . .
. . .

−1 4− k2h2
−1

−2 4− k2h2
− 2hq

 ∈ Rm×m

and

C =


0 −1
−1 0 −1

. . .
. . .

. . .

−1 0 −1
−2 −2hp

 ∈ Rm×m .

We recall that the tensor product of E = (ei j ) ∈ Rs1×t1 and F = ( fi j ) ∈ Rs2×t2 is
defined as the matrix

E ⊗ F =

e11 F · · · e1t1 F
...

. . .
...

es11 F · · · es1t1 F

 ∈ Rs1s2×t1t2 .

In fact, one may rewrite A as the tensor sum A = B ⊕ C ; see [17] for more details.

https://doi.org/10.1017/S1446181111000526 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181111000526


[5] A preconditioned method for the Helmholtz equation 91

3. The sine transform based preconditioner

We begin this section by recalling some basic properties of the tensor product.

THEOREM 3.1 ([26]). The tensor product has the following properties:

(i) (E ⊗ F)T = ET
⊗ FT ;

(ii) E ⊗ (F ⊗ G)= (E ⊗ F)⊗ G;
(iii) E ⊗ (F + G)= (E ⊗ F)+ (E ⊗ G) and (E + F)⊗ G= (E ⊗ G)+ (F ⊗ G);
(iv) (E ⊗ F)(G ⊗ H)= (EG)⊗ (F H);
(v) (E ⊗ F)−1

= E−1
⊗ F−1, if E and F are nonsingular;

(vi) if E and F are orthogonal (banded, nonsingular), then E ⊗ F is orthogonal
(banded, nonsingular).

In this paper we consider the sine transform based preconditioner P defined by

P = Im ⊗ B̂ + C ⊗ Im, (3.1)

where

B̂ =


4− k2h2

−1
−1 4− k2h2

−1
. . .

. . .
. . .

−1 4− k2h2
−1

−2 4− k2h2

 ∈ Rm×m .

Obviously, the complexity of the construction of P is O(1).

THEOREM 3.2. The matrix B̂ defined above can be diagonalized as follows:

B̂ = Q131 Q−1
1 , (3.2)

where the i th column of Q1 is given by(
sin

(2i − 1)π
2m

, sin
2(2i − 1)π

2m
, . . . , sin

(m − 1)(2i − 1)π
2m

, (−1)i+1
)T

and 31 is a diagonal matrix whose diagonal entries are given by

[31]i i
.
= λi = 4− k2h2

− 2 cos
(2i − 1)π

2m
for i = 1, 2, . . . , m.

The proof is given by Pickering and Harley [21], who also observe that Q1 is
not orthogonal but satisfies QT

1 diag(2, . . . , 2, 1)Q1 = m Im . Thus the inverse of Q1

is Q−1
1 = (1/m)QT

1 diag(2, . . . , 2, 1). Therefore, the matrix–vector multiplication
involving Q1 and Q−1

1 can be computed efficiently by using discrete sine transforms
in O(m log m) operations.
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By Theorem 3.1, it is not difficult to see that P can be decomposed as

P = (Im ⊗ Q1)T (Im ⊗ Q−1
1 ), (3.3)

where T is a block-tridiagonal matrix with diagonal blocks as follows:

T = Im ⊗31 + C ⊗ Im . (3.4)

A careful observation of (3.3) and (3.4) shows that the solution of the preconditioned
system Px = y can be obtained by using 2m fast discrete sine transforms of order m
and solving m tridiagonal systems of order m after rearranging the unknowns.
Consequently, the total complexity of this solution procedure is O(n log n).

We will analyse the convergence rate of the GMRES method and give a detailed
discussion about the eigenvalues of the preconditioned matrix P−1 A. First, we have
the following theorem.

THEOREM 3.3. Let γi , i = 1, . . . , m, denote the eigenvalues of C. Then the pre-
conditioned matrix P−1 A has:

(i) an eigenvalue at 1 with multiplicity m(m − 1);
(ii) m eigenvalues given by

λi (A)= 1−
2hq

m

m∑
j=1

1

4− k2h2 − 2 cos((2 j − 1)/2m)+ γi
, i = 1, . . . , m.

PROOF. Define the error matrix Ae = A − P . Observe that Ae = Im ⊗ E1, where E1
is a rank one matrix given by

E1 =


0 · · · 0 0
...

. . .
...

...

0 · · · 0 0
0 · · · 0 −2hq

. (3.5)

We find
P−1 A = In + P−1(Im ⊗ E1).

It then follows that rank(P−1 A − In)= m. Thus, it is not difficult to see that P−1 A
has an eigenvalue at 1 with multiplicity m(m − 1).

Otto [20] shows that there exists a nonsingular matrix Q2 diagonalizing C , that is,

Q−1
2 C Q2 = diag(γ1, . . . , γm)

.
=32. (3.6)

This implies

(Q−1
2 ⊗ Q−1

1 )P(Q2 ⊗ Q1) = (Q
−1
2 ⊗ Q−1

1 )(Im ⊗ B̂ + C ⊗ Im)(Q2 ⊗ Q1)

= Im ⊗ Q−1
1 B̂ Q1 + Q−1

2 C Q2 ⊗ Im

= Im ⊗31 +32 ⊗ Im
.
=3.
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Hence, the diagonal entries of the diagonal matrix 3 are the eigenvalues of the
preconditioner P , namely λi + γ j , where i, j = 1, . . . , m. For simplicity, set

Dk = diag(λk + γ1, . . . , λk + γm).

We have 3= diag(D1, . . . , Dm). A similarity transformation of P−1 Ae is denoted
by M and given by

M = (Q−1
2 ⊗ Im)P

−1 Ae(Q2 ⊗ Im)

= (Q−1
2 ⊗ Im)P

−1(Im ⊗ E1)(Q2 ⊗ Im)

= (Im ⊗ Q1)3
−1(Im ⊗ Q−1

1 E1)

= diag(Q1 D−1
1 Q−1

1 E1, . . . , Q1 D−1
m Q−1

1 E1)
.
= diag(M1, . . . , Mm).

Thus, the eigenvalues of P−1 Ae equal the eigenvalues of Mi , i = 1, . . . , m. Due to
the special structure of E1, it is easy to observe that Mi has only one nonzero column.
We have

Mi =


0 · · · 0 Mi (1, m)
0 · · · 0 Mi (2, m)
...

. . .
...

...

0 · · · 0 Mi (m, m)

, (3.7)

where

Mi (m, m)=−
2hq

m

m∑
j=1

1

4− k2h2 − 2 cos((2 j − 1)/2m)+ γi
.

The precise forms of Mi ( j, m), i = 1, . . . , m and j 6= m, are irrelevant for our
argument. 2

As is well known, clustering of the eigenvalues may be even more important than a
condition number improvement. A careful computation shows that when m→∞, the
other m eigenvalues always lie on a bounded curve. This is illustrated by our numerical
examples in the next section. As the dimension of the nullspace of Ae is m(m − 1), it is
clear that the eigenvalue 0 of P−1 Ae has m(m − 1) linearly independent eigenvectors.
By properties of the GMRES method [8, 24], we have the following theorem.

THEOREM 3.4. When the GMRES method is applied for solving the preconditioned
system P−1 Au = P−1b, it converges within at most m + 1 iterations in exact
arithmetic.

PROOF. In general, in the i th iteration, a residual vector r (i) generated by the GMRES
method satisfies

‖r (i)‖2 = min
pi∈Pi ,pi (0)=1

‖pi (P
−1 A)r (0)‖2,
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where Pi denotes the set of all polynomials of degree i and P is a preconditioner. In
addition, if P−1 A is diagonalizable then

‖r (i)‖2
‖r (0)‖2

= κ(WP−1 A) min
pi∈Pi ,pi (0)=1

max
j
|pi (δ j )|,

where WP−1 A is the eigenvector matrix of P−1 A, κ(·) denotes the condition number
and the δ j are the eigenvalues of P−1 A; see [11, 24]. Therefore, if we can precondition
our system such that P−1 A has m + 1 distinct eigenvalues, the GMRES method will
converge to the true solution within m + 1 iterations in exact arithmetic. 2

In practical computations, we find that the number of preconditioned GMRES
iterations required for convergence is far less than m. This cannot be explained by
our theoretical results. However, all numerical tests in the following section show that
the number of iterations required is apparently independent of m. This is a very useful
property.

4. Numerical examples

We report on some numerical experiments to illustrate our results. All the
experiments discussed in this section were performed in MATLAB 7.0, using the
function “GMRES”. In all tests, the zero vector is the initial guess and the stopping
criterion is ‖rl‖2/‖r0‖2 < 10−6, where rl is the residual in the lth iteration. We
illustrate the efficiency of our preconditioner by solving the following problems arising
from [6, 13, 27].

EXAMPLE 4.1. Consider the Helmholtz equation

−1u − k2u =−(x2
+ y2

+ k2)exy

over the domain 0≤ x ≤ 1, 0≤ y ≤ 1 with

g(y)= 1, ρ(x)= 1, p = 1,

a(y)= (y − 1)ey, q = 1
2 , c(x)= (x − 1

2 )e
x .

EXAMPLE 4.2. Consider the Helmholtz equation

−1u − k2u =

(
5π2

4
− k2

)
sin
(
πx

2

)
sin(πy)

over the domain 0≤ x ≤ 1, 0≤ y ≤ 1 with

g(y)= 0, ρ(x)= 0, p =−1,

a(y)= sin(πy), q = 1, c(x)=−π sin
(
πx

2

)
.

EXAMPLE 4.3. Consider the Helmholtz equation

−1u − k2u =−(4+ k2x2
+ k2 y2)
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TABLE 1. Iterations of different preconditioned GMRES methods for Example 4.1.

n Ps P Pl ILU(0)

1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

26 7 7 8 7 5 5 5 5 8 8 10 10 13 15 Failed Failed
28 10 10 8 11 5 5 5 4 10 10 10 13 23 35 75 Failed
210 13 13 11 16 5 5 5 6 13 13 13 18 51 118 119 ∗

212 18 18 15 19 5 5 5 6 18 18 16 22 634 559 694 ∗

214 26 26 20 29 6 5 5 6 38 31 22 37 ∗ ∗ ∗ ∗

over the domain 0≤ x ≤ 1, 0≤ y ≤ 1 with

g(y)= y2, ρ(x)= x2, p = 1, a(y)= 1− y2, q =−1, c(x)= 3+ x2.

In Figures 1, 2 and 3, subfigures (a)–(e) show the distributions of the eigenvalues
for various preconditioned matrices for Examples 4.1, 4.2 and 4.3. In all cases, the
mesh size is 1/16, and k = 5. We denote by Ps , P , Pl and ILU(0) the semi-Toeplitz
preconditioner [11], our preconditioner (3.1), the shifted Laplace preconditioner [6]
and the incomplete LU factorization preconditioner mentioned in [7, 9, 19]. It is
easy to observe that the eigenvalues of the iteration matrix corresponding to our
preconditioner are more clustered than those corresponding to the other three widely
used preconditioners.

In Tables 1, 2 and 3, we show the number of iterations for the restarted GMRES(20)
method with different preconditioners for Examples 4.1, 4.2 and 4.3. (The “20” means
that the GMRES method is restarted every 20 iterations.) Here “∗” indicates that
the number of iterations was more than one thousand, and “Failed” means that the
iterative method failed. As the results show, the number of GMRES(20) iterations with
the ILU(0) preconditioner grows very quickly as the size of the coefficient matrix A
increases from n = 64 to n = 16384 for k = 1, 5, 10, 20. The numbers of GMRES(20)
iterations with the semi-Toeplitz and shifted Laplace preconditioners grow a little more
slowly with increasing n, so these methods are often used. When the sine transform
based preconditioner P is used, the convergence is generally faster. It is not difficult
to see that the number of GMRES(20) iterations with preconditioner P is almost
unchanged as the mesh size m and k increase. In order to more sufficiently illustrate
that our method converges faster than the others, we plot the relative residual norm
‖rl‖2/‖b‖2 in Figures 1(f), 2(f) and 3(f) for m = 16 and k = 5. In Table 4, we give the
relative error norm ‖ui j − u(xi , y j )‖2/‖b‖2 for Example 4.3, where u(xi , y j ) denotes
the exact solution and ui j is the solution calculated by our algorithm. It should be noted
that the computations P−1v and Av are implemented by discrete sine transforms and
fast Fourier transforms (FFTs), respectively. Therefore, the complexity of our method
is less than those of the others.
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FIGURE 1. Distribution of the eigenvalues of the iteration matrices and relative residual norm for
Example 4.1.

5. Concluding remarks

We have presented an iterative method involving the sine transform based
preconditioner for the numerical solution of the Robbins problem for the Helmholtz
equation. First, the nonsymmetric linear systems arising from discretization of
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FIGURE 2. Distribution of the eigenvalues of the iteration matrices and relative residual norm for
Example 4.2.

the two-dimensional Helmholtz partial differential equation are obtained. Then
the generalized minimal residual method is applied for solving the linear system
with a preconditioner based on the fast sine transform. We discuss the operation
cost and convergence rate of our method and provide a spectral analysis of the
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FIGURE 3. Distribution of the eigenvalues of the iteration matrices and relative residual norm for
Example 4.3.

preconditioned matrix. In numerical experiments, we compare our preconditioner with
other frequently used preconditioners. Numerical results show the efficiency of our
preconditioned iterative method. It appears that the performance is much improved in
terms of both convergence and operation cost compared to other iterative solvers.
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TABLE 2. Iterations of different preconditioned GMRES methods for Example 4.2.

n Ps P Pl ILU(0)

1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

26 7 8 7 7 4 5 4 4 8 10 10 9 11 16 Failed 23
28 8 10 8 11 4 5 4 3 10 12 11 13 20 45 59 Failed
210 11 13 10 12 4 5 3 4 13 15 13 15 63 199 195 ∗

212 15 18 13 15 4 5 3 3 17 20 15 17 98 ∗ 567 ∗

214 20 32 17 20 3 5 3 3 23 53 20 26 852 ∗ ∗ ∗

TABLE 3. Iterations of different preconditioned GMRES methods for Example 4.3.

n Ps P Pl ILU(0)

1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

26 6 7 7 8 5 6 5 5 7 8 9 11 12 17 Failed Failed
28 8 10 8 11 6 7 5 5 9 10 10 12 20 40 61 Failed
210 11 13 11 14 6 7 5 7 12 14 12 16 62 231 130 ∗

212 16 18 14 19 6 7 6 7 16 19 16 20 93 587 719 ∗

214 22 38 19 37 6 7 6 7 26 34 20 40 686 1000 ∗ ∗

TABLE 4. The relative error norm for Example 4.3.

m k

1 5 10 20

23 6.6862e-007 3.0346e-007 2.5527e-006 2.8402e-006
24 3.7366e-008 3.9208e-008 1.9463e-007 1.2261e-006
25 8.5293e-008 1.2767e-007 6.6747e-007 1.8890e-007
26 1.4360e-007 2.7673e-007 9.9293e-009 1.8229e-008
27 1.6179e-007 3.3886e-007 1.0126e-008 2.8494e-008
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