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Abstract. We have studied the large scale distribution of matter in the Chandra Deep Field
South on the basis of photometric redshifts and we have identified several over-densities between
redshift 0.6 and 2.3. We analyse two of these structures using the deepest X-ray observations
ever obtained: 4 Ms with the Chandra satellite and 2.5 Ms with XMM-Newton. We set a very
faint upper limit on the X-ray luminosity of a structure at redshift 1.6, and we find an extended
X-ray emission from a structure at redshift 0.96 of which we can estimate the gas temperature
and make a comparison with the scaling relations between the X-ray luminosity and mass or
temperature of high redshift galaxy clusters.
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1. Introduction
Being the largest and most massive bound structures in the Universe, galaxy clusters

provide the most biased environment for galaxy evolution. Thus, they are ideal labora-
tories for studying the physical processes responsible for galaxy formation and evolution.
With optical selection, it is relatively easy to obtain large statistical samples of clusters.
The main disadvantage is that these samples are seriously affected by projection effects.
Only expensive spectroscopic campaigns can confirm overdensities in 3 dimensions. The
X-ray detection is more robust against line-of-sight contamination, but it has a lower
efficiency and higher observational cost as compared to optical surveys. Studying the X-
ray properties of optically selected clusters is essential to understand the selection effect.
On one hand, extremely deep X-ray surveys with Chandra and XMM-Newton, make the
detection of the highest redshift cluster possible, on the other hand they are also extend-
ing the minimum luminosity, i.e. the least massive structures, to which X-ray clusters
can be detected and analyzed at intermediate redshifts. Galaxy groups and clusters with
kT � 3 keV are more likely to display the effects of non gravitational energy into the
intracluster medium (ICM) than hotter, more massive clusters.

In previous studies we have proposed a “(2+1) Dimensions” method, based on photo-
metric redshifts (Trevese et al. (2007)), to detect overdensities in the large scale distribu-
tion of galaxies, down to the faintest limits attainable nowadays with optical wide-band
photometric surveys. A comprehensive study of the Chandra Deep Field South (CDFS)
allowed us to detect 12 overdensities with redshifts in the range 0.6 < z < 2.3 (Castellano
et al. (2007), Salimbeni et al. (2009)).

We present preliminary results of the analysis of the deepest X-ray images available
to date, from the 4 Ms Chandra observations of the CDFS recently made public by the
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Chandra X-ray Center, and 2.5 Ms XMM-Newton observations (Comastri et al. (2011)),
restricted to two over-densities, with spectroscopic redshifts z=0.96 and z=1.6 respec-
tively.

In the following we adopt H0=70 km s−1Mpc−1 , Ωm =0.3, ΩΛ=0.7

2. Observations
The over-density at z= 1.61 All of the three X-ray sources detected in the area of

the over-density at z = 1.61, correspond to objects identified in the GOODS-MUSIC
catalogue (Grazian et al. (2006)), with redshifts 0.67, 1.04 and 1.35, thus not belonging
to the structure at z = 1.61 (Fig. 1). Eliminating these sources, we obtain a 3σ upper limit
to the flux F (0.5 − 2 keV) < 2.5 × 10−16erg/cm2/s which corresponds to a bolometric
luminosity L < 1043 erg/s, for T= 3keV. Kurk et al. (2009) provided new spectroscopic
redshifts, analysed the velocity distribution and estimated a virial mass Mvir = 9.0 ×
1013M�. Assuming a typical density profile we can convert the mass to M500 = 6.4×1013

M�, where M500 is the mass within a sphere with a mean inner density 500 times the
critical density ρc .

The over-density at z= 0.96 An extended source is detected in the region of the over-
density at z = 0.96 (Fig. 2). The peak of the X-ray emission coincides with a normal
galaxy at z = 0.96 with no emission lines (Szokoly et al. (2004). Notice that this implies
a revision of the earlier classification of the X-ray source as Type 2 AGN.

Considering the extended character of the emission and the absence of AGN detec-
tions in the cluster area, we fitted simultaneously the Chandra and XMM-Newton X-ray
spectra with a MEKAL model, with an abundance Z/Z� = 0.3, obtaining a temperature
T = 2.6+0.5

−0.3 keV (1σ error) (Fig. 2).
From 11 redshifts available in the cluster area, the velocity dispersion is σv=420 Km/s,

which would corresponds to a virial mass:
Mvir = 7.3 × 1013M� or to M500 = 5.2 × 1013M�, assuming complete relaxation and

following Kurk et al. (2009).

Figure 1. Left: Hubble Space Telescope WFC3 H band image. The spectroscopic redshift and
MUSIC catalogue identification of the X-ray sources are indicated. Right: Chandra 4 Ms image
of the same field in the 0.5-2 keV band. The X-ray isophotes are shown on both images.
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Figure 2. Left: Chandra 4 Ms image showing the extended emission from the region of the
overdensity at z = 0.96. The circle indicates the aperture adopted to extract the X-ray spec-
trum. Right: simultaneous fit of Chandra and XMM-Newton spectra of the extended source
at z = 0.96, with a MEKAL model with T = 2.6 keV and assumed abundance Z/Z� = 0.3. The
XMM spectrum (red, in the electronic version) extends to lower energy.

The M-T scaling relation obtained by Popesso et al. (2005) for clusters with mean
redshift z ∼ 0: M500 = 2.89 × 1013T 1.59M� would give, instead M500 = 1.3 × 1014M�,
possibly suggesting an evolution of the M-T relation from z ∼ 0.1 to z ∼ 1.

3. Results
In figure 3 we compare our results with the LX − T and LX − M scaling relations

obtained: i) by Hicks et al. (2008) for high redshift clusters with 0.6 < z < 1.2, optically
selected by the Red-Sequence Cluster Survey (RCS) (Gladders et al. (2005)); ii) by Ettori
et al. (2004) for X-ray selected clusters in the range 0.4 < z < 1.3.

• For the structure at z = 1.61 we indicate our 3σ upper limit on LX , while for the
unknown temperature we indicate the range 1.2-6 keV. In both diagrams the structure is
underluminous with respect to the scaling relations. This suggests it is a forming cluster
which did not reach full relaxation.
• The structure at z = 0.96 is consistent with the steeper scaling relations of Ettori

et al. (2004) and not with those of Hicks et al. (2008), despite it was selected in the
optical band.
• For the other structures we identified in the CDFS (Castellano et al. (2007), Salim-

beni et al. (2009)) the analysis of the deepest X-ray data existing to date is in progress.
• The present result, if confirmed, would strengthen the evidence of a strong redshift

evolution of the scaling relation, of the type found by Ettori et al. 2004.
• The detection of very low X-ray luminosity objects among optically selected struc-

tures could be related to the fact that our ”(2+1) D” method (Trevese et al. (2007)),
unlike the RCS, is independent of the presence of a red sequence, which tends to be less
evident at high redshift.
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Figure 3. Bolometric X-ray luminosity versus temperature (left) and versus mass (right), where
E(z) = [Ωm (1 + z)3 + ΩΛ ]1/2 . Filled circles: clusters in the range 0.6 < z < 1.2 from Hicks et al.
(2008); filled square: structure at (z = 0.96); arrow: structure at (z = 1.61). Continuous line: fit
to the Hicks et al. (2008) points; dashed line: scaling relation of Ettori et al. (2004) for an X-ray
selected sample with 0.4 < z < 1.3.
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