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1. Introduction

There are several articles which study "generic differential geometry" in Euclidean
space ([2, 3, 4, 5, 6, 7, etc]). The main tools in these articles are the distance-squared
function and the height function. The classical invariants of extrinsic differential
geometry can be treated as "singularities" of these functions, however, as Fidal [7]
pointed out, the geometric interpretation of sextactic points of a convex curve is quite
complicated from this point of view. We say that a point p of a convex curve C is
a sextactic point if there exists a conic touching C at p with at least six-point
contact.

On the other hand, it has been classically known that a sextactic point of a convex
curve corresponds to a stationary point of affine curvature (i.e., so called "affine
vertex") in affine differential geometry (cf., [1, 8, 9]). We also say that a point p is a
parabolic point if there exists a unique parabola touching C at p with five-point contact
which is known as a zero point of the affine curvature (i.e., so called "affine
inflexion"). In this paper we introduce the new notions of affine distance-cubed
functions and affine height functions of a convex curve. These functions are quite
useful for the study of generic properties of invariants of the extrinsic affine differential
geometry of convex plane curves.

As a consequence, we can apply ordinary techniques of the singularity theory for
these functions and get information on sextactic points and parabolic points of a
convex plane curve. This not only simplifies the arguments about sextactic points but
also gives a new interpretation of parabolic points. In Section 2 we shall introduce the
notion of the affine normal curve of a convex plane curve. We shall show that a cusp
singular point of the affine normal curve corresponds to a parabolic point of the
original curve (cf, Figure la; y(t) = (cos t(cos t + 2), sin r(cos t + 2))).
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;<

FIGURE la FIGURE lb

Let y : Sl -*• R2 be a smooth curve without inflexions. We assume throughout that
y has the following properties, both of which are satisfied generically. (We do not
prove the fact here (cf., [6, 7])):

(A 1) There is no conic having greater than six-point contact with y(S').

(A 2) The number of points p of y(S') where the unique non-singular conic touching
y(S') at p with at least five-point contact is a parabola, is finite.

(A 3) There is no parabola having six-point contact with y(S').

Under these assumptions, we shall give some interpretations of affine invariants of
convex plane curves from the view point of singularity theory. The main result in this
paper is Theorem 2.2 which will be given in Section 2. This theorem asserts that an
affine vertex (resp. the affine inflexion) corresponds to a cusp point of the affine
evolute (resp. the affine normal curve) under the above assumptions (cf., Figure lb;
y(t) = (2cos3r + cos2t, 2sin3t — sin2r))- This assertion for an affine vertex has been
already known by Fidal [7]; however, the arguments we use here are incredibly easy
compared with Fidal's arguments.

The basic techniques in this paper depend heavily on those in the attractive book
of Bruce and Giblin [5], so that the authors are grateful to both of them. The authors
also wish to express their hearty thanks to the referee for careful readings.

All curves and maps considered here are of class C°° unless stated otherwise.

2. Basic notions

Let R2 be an affine plane where we adopt coordinates such that the area of the
parallelogram spanned by two vectors a = (aua2), b = (bl,b2) is given by
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\a, b\ = a{b2 — a2b{. We fix the above coordinates in this section. Let y : I -*• K2 be a
curve with |y(f),y(t)| / 0 (i.e., without inflexion points), where y{t) — ^t(t). The affine
arc-length of a curve y, measured from y(t0), t0 e I is s(r) = f't \y(t),'y\t)\ipdt (cf., [9,
p. 7]). Then a parameter s is determined such that \y'(s), y"(s)l = 1, where y'(s) =£(s) .
So we say that a curve y is parameterized by affine arc-length if it satisfies
\y'(s),y"(s)\ = l.

By arguments similar to those in Euclidean differential geometry, we have the
following Frenet-Serret type formula:

y'"(s) = -/ca(5)y'(s), (2.1)

where ka(s) = \y"(s), y'"(s)\ which is called an affine curvature of y. We also call y"(s)
the affine normal vector of y. Suppose that ka(s) ^ 0, then the point y(s) + j-Lj y"(s) is
called the affine centre of curvature of y at s. 77/e affine evolute is defined to be the locus
of affine centres of curvature. The curve y" : I -*• R2 contains important geometric
information (cf., Theorem 2.2 and Section 5). We call the curve y" : I -*• E2 the affine
normal curve of y. The following fact is classically known (cf., [1, 8, 9]).

Proposition 2.1. Under the generic assumption (A 1) and (A 2), we have the following
assertions:

(1) p = y(s0) is a parabolic point ofy(I) if and only ifka(s0) — 0.

(2) p — y(s0) is a sextactic point ofy(I) if and only ifk'a(s0) — 0.

By Proposition 2.1, there is a parabola having six-point contact with y(J) at p = y(s0) if
and only if ka(s0) = k'a(s0) — 0. It is known that the affine evolute is the centre locus of the
unique conies touching the curve with five-point contact (cf, [1,8,9]).

The main result in this paper is the following theorem.

Theorem 2.2. Let y : / -*• R2 be a curve without inflexions satisfying (A 1)-(A 3).
Then:

(1) Let p be a point of the affine evolute ofy at s0, then, locally atp, the affine evolute is
(0 diffeomorphic to a line in R2 if the point y(s0) is not a sextactic point;
(ii) diffeomorphic to an ordinary cusp in R2 if the point y(s0) is a sextactic point.

(2) Let p = y"(s0) be a point of the affine normal of y, then, locally at p, the affine
normal curve is
(i) diffeomorphic to a line in R2 if the point y(s0) is not a parabolic point ofy;
(ii) diffeomorphic to an ordinary cusp in R2 if the point y(s0) is a parabolic point
ofy.
The ordinary cusp is a curve which is defined by C = {(x,, x2) e R2|x2 = x\).
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3. Sextactic points

In this section we briefly review some properties of sextactic points of a plane curve
without inflexions from the view point of the Euclidean differential geometry. We will
not use any results in this section; however, we can understand that it is very hard to
treat sextactic points from this point of view. We now fix the Euclidean structure on
R2 which may be considered as an affine structure.

For any convex regular curve y, we have two kinds of parameter with respect to
the Euclidean structure. We adopt t as the arclength and s as the affine arclength. Let
k(t) be the Euclidean curvature of y(t) which is given by k(t) = |y, y\, where y — &. It
follows that js = \y, y\~l/3 — k(t)~"3. In [7] Fidal has given characterization of a sextactic
point in terms of the curvature k(t) as follows: y(t0) is a sextactic point if and only if

36k(t0fk(t0) + 40k(t0y - 45k(to)k(to)'k(to) + 9k(tofk(to) = 0.

Therefore it is very hard to study sextactic points from the view point of the Euclidean
differential geometry, however, it is known that sextactic points correspond to affine
vertices. Since £ = /c(r)~1/3, we have § = -±k(ty5/3k(t) and § = ffc(0~3fc2 - ^k(t)'2'k\t).
By the Frenet-Serret formula, we have \y,y\ = k3. It follows from that we have

k.(s) = fe(o4/3 - iwr^Kt)2 + l-k(ty2/rk\t).

Differentiating both sides of the above equation with respect to s, we can show that
K(so) = 0 if and only if y((0) is a sextactic point, where s0 — (t0).

We can also represent the affine normal curve in terms of the unit tangent vector
T(t) and the unit normal vector N(t) obtained from T(t) by rotating anticlockwise
through f. By a simple calculation, we have

Substituting the Euclidean Frenet-Serret formula T(t) = k(t)N(i) into the above
equation, we have

f(s) = -l-k{t)-5/3kt)T(t) + /c(t)l/3N(t).

We cannot directly guess the shape of the affine normal curve from this formula, so
that we need some new techniques.
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4. Affine invariant functions

In this section we introduce two kinds of families of affine invariant functions on a
plane curve without inflexions which are useful for the study of the invariants of the
curve. Let y : / -*• R2 be a plane curve with |y(s)', y(s)"| = 1.

4.1. Affine distance-cubed functions. We now define a two parameter family of
smooth functions on /

F : / x I 2 - > R

by

We call F the affine distance cubed function on y.
Differentiating F(s, x) with respect to s, we have

|y"(s),y(s)-x|, (4.1)

K(s) = \y'"(s),y(s)-x\-\, (4.2)

/*"'(*) = ly(4)(s),y(s)-x|, (4.3)

/x""(s) = l?(5)(s), y(s) ~ x| + |y""(s), y'(s)\, (4.4)

where fx(s) = F(s, x) for any x e R2.
It follows from these formulae that we have the following proposition.

Proposition 4.1. Let y : / -> R2 be a convex plane curve with \y'(s), y"(s)\ = 1. Then

(a) /x'(s0) = 0 if and only if there exists k e R such that y(s0) — x = Ay"(s0).

(b) fx(so) =/;(s0) = 0 if and only ifka(s0) ^Oandx = y(s0) + ^y"(s0).

(c) £(s0) =£(*>) =J7fo>) = 0 if and only if ka(s0) ? 0, x = y(s0) + ^y"(s0) and

(d) fXso) =f!(so) =/x'"(s0) = 0 and /4)(s0) ^ 0 if and only if ka(s0) * 0, x = y(s0) +
^ y"(s0) a«rf k'a(s0) = 0 and fc;'(s0) * 0.

Proof, (a) By the formula (4.1), /x(s0) = 0 if and only if y"(s0) and y(s0) — x are
parallel.

(b) It follows from the formula (4.2) that f^\s0) = 0 if and only if
l/"(so).y(so)-x| = l, s o t h a t £ & ) = C(sb) = 0 >f and only if -Afca(s0) = |y'"(s0),
Ay"(-so)| = 1 because of (a). The last condition is equivalent to the condition that
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(c) We also assert that fXs0) =/x"(s0) =£"&>) = ° i f a n d only if ka(s0) ^ 0,
x = y(50) + j ^ j y"(s0) and |y<4)(s0), - j^)7"(so)l = 0 - On the other hand, differentiating
both sides of the equality ka(s0) ="\y\s), y'"(s)\, we have k'a(s) = \y"(s),yw(s)\. This
implies that k'a(s0) = 0 if and only if |y(4)(s0), - ^ y " 0 o ) l = 0.

(d) We have k"a(s) = |y'"(s), y(4)(s)| + \y"(s), y™(s)\. Differentiating both sides of the
relation \y'(s), y"(s)\ = 1, we have |y'(s), y'"(s)| = 0 . We differentiate again, so that we
have an equation |y"(s), y'"(s)| + |y'(s), y(4)(s)| = 0. It follows that we have |y'(s),
y(4)(s)| = -k.(s). By .the formula (2.1) we have |y'"(s), y(4)(s)| = | - ka(s)y'(s),
y(4)(s)| = ka(s)2. Therefore we have k'Xs) = ka(s)2 + |y"(s), y(4)(s)|, so that k'Xs0) = 0 if and
only if |y"(s0), y

(4)(s0)| = -fcfl(s0)
2. Under the condition (c), \y"(s0), y(4)(s0)| = -fco(s0)

2 if
and only if |y(5)(s0). y(5o) — x\ — —ka(

so)- By the formula (4.5), it is equivalent to the
condition that/x""(s0) = 0- This completes the proof. •

Remark. If we fix the Euclidean structure on R2 and adopt t as the arclength as
in Section 3, we can compare the above results with Fidal's in [7]. He used the function
G(t, x) = |x - y(t), k(t)T(t) - 3/c2(t)N(r)l, so that we have f (s, x) = -i/c(l)"5/3G(t, x).

4.2. Affine height functions. Let S1 be the "unit" circle in R2 given by
S1 = {(x,, x2)|x2 + x2 = 1}. We also define a family of smooth functions on y parameter-
ized by S1

H : / x S1 -> R

by

H(s,u)=\y'(s),u\.

We call H the affine height function on y.
Differentiating H(s, u) with respect to s, we have the following:

K(s) = \y"(s),u\, (4.5)

h'Xs) — \y'"(s),u\, (4.6)

K(s) = |y""(s), u\, (4.7)

where hu(s) — H(s, u) for any u e S 1 .
It follows from these formulae that we have the following proposition.

Proposition 4.2. Let y : I ->• R2 be a plane curve with \y\s), y"(s)\ — 1. Then

(a) h'u(s0) = 0 if and only if there exists /. e R such that u = ly"(so)-
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(b) h'u(s0) = h'Xs0) — 0 if and only if there exists A e R such that u = Ay"(s0) and

*.(*>) = 0.

(c) h'u(s0) = K(s0) = /C(s0) = 0 if and only if there exists A e R such that u = ly"{s0)
and ka(s0) = k'a(s0) = 0.

Proof, (a) By the formula (4.5), /^(s0) = 0 if and only if y"(s0) and u are parallel.
(b) It follows from the formula (a) and (4.6) that Ji'u(s0) = K{s0) = 0 if and only if

-ka(s0)A = A|y'"(s0), y"(so)| = \y'"(s0), u\ = 0. If A = 0, then « = 0. This contradicts the fact
that u e S1, so that the above condition is equivalent to the condition ka(s0) = 0.

(c) Differentiating both sides of the formula y'"(s) = — ka(s)y'(s), we have

y«>(s) = -k'{s)y'(s) - ka(s)y"(s).

By (b) and (4.7), h'u(s0) = K(s0) = h"(s0) = 0 if and only if there exists A e R such that
« = Ay"(s0), *a(s0) = 0 and |y'"(so)> "I = -*4(so)l/(so). "I = —*4(sb)-*- Since A ̂  0, we have
k'a($o) = 0- This completes the proof. •

We remark that A(s) = =fc ••, ... ' ..===, where y(s) = (x,(s), x2(s)).

5. Unfoldings of functions of one-variable

In this section we use some general results on the singularity theory for families
of function germs. Detailed descriptions are found in the book [5]. Let F : (R x Rr,
Oo> ^o)) —>• R be a function germ. We call / an r-parameter unfolding of
f(t) = F(t, x0). The crucial notion is that of a universal unfolding; however, we only
use some features of it, so we do not need to give the original definition of
universal unfolding (cf., [5]). We say that / ( r ) has an Ak singularity at t0 if
f(p\t0) = 0 for all 1 < p < k, and /*+1)(r0) ^ 0. In this case we adopt the following
definition. Let /~ ' ( j^(* , xo))(to) — J^T,1 aut} for i = l , . . . , r , w h e r e / " 1 denotes the
(k— ])-jet. We say that F is infinitesimally (p)versal (respectively, infinitesimally
versal) if the (k— 1) x r (respectively, k x r) matrix of coefficients (a/() (respectively,
(aOl, a,,)) has rank k — 1 (respectively, k). There are two important sets of unfoldings
relative to the above two notions. The bifurcation set of F is the set

{ rlF rfi F
x e W | there exists t with — = — = 0 at (t, x)

and the discriminant set of F is the set

XV = jxeR r
I there exists t with F = — = 0 at (t, x)

The proof of Theorem 2.2 is based on the following result.
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Proposition 5.1. (cf., [5]). Let F : ( R x W, (t0, x0)) -*• R be an r-parameter unfolding
of f{t) which has the Ak singularity at t0.

(1) Suppose that F is an infinitesimally (p)versal unfolding.
(a) Ifk = 2, then BF is diffeomorphic to {0} x W'\
(b)Ifk- 3, then BF is diffeomorphic to C x Rr~2.

(2) Suppose that F is an infinitesimally versal unfolding.
(a) Ifk = 1, then VF is diffeomorphic to {0} x Rr~'.
(b) Ifk - 2, then VF is diffeomorphic to C x Rr~2.
Here, C = {(x,, x2)|xj = x2} is the ordinary cusp.

Proof of Theorem 2.2 (1). We consider the distance-cubed function F(s, x) =,
|y'(s)> Ks) — *l- Using the results of Proposition 4.1, the bifurcation set of F is precisely
the affine evolute of y.

Next, the condition for / — FX(j to have exactly an A2 at s0 is for x0 to be on the
affine evolute of y at s0 but k'a(s0) ^ 0. Likewise the condition for / to have exactly A3

at s0 is for x0 to be on the affine evolute of y at s0 and /c|,(s0) = 0, /C(5o) ^ 0. By the
assumptions (A 1)-(A 3 ) , / has no higher Ak.

Now F(s, x) = x',(s)(x2(s) - x2) - x'2(s)(x,(s) - x,), so that we should like to show
that F(s, x) is an infinitesimally (p)versal unfolding of /(s) for the above two cases.
Here,

dF 1
— = x2(s); 2-jet at s0 = x'2'(s0)s + -xj(so)s2,
ax] 2

dF 1
— = -x' ,(s); 2-jet at s0 = -xr;(s0)s --xr;(s0)s

2.

The condition for infinitesimally (p)versal unfolding is given as follows:

(i) When / has A2 at s0, we require the 1 x 2 matrix (x2(s0), — x','(s0)) to have rank
1, which it always does since \y'(s), y"(s)\ = 1.

(ii) W h e n / has /}3 at s0, we require 2 x 2 matrix

\{x'2\s0) -±x';(so)J

to be nonsingular. But, this just says ka(s0) ^ 0 which is true since /fco) =/x"(so) = 0
(cf., Section 4).

Hence infinitesimally (p)versal conditions are automatically satisfied and we have
the required result by Proposition 5.1. •

Proof of Theorem 2.2 (2). We consider
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H:IxSlxR->R

given by

H(s, u, y) = H(s, u) - y = x\(s)u2 - x2(s)u, - y.

The discriminant set of H is

We only consider V%. Define a map

<D : R1 - {0} -> S1 x

by

where K+ is the set of all positive real numbers. It is clear that O is a diffeomorphism
and <D(Image (/')) = V%.

Using the results of Proposition 4.2 and the assumptions (A 1)-(A 3), we only need
to consider ,4, and A2 singularities.

We now define a family of functions

by

F(s, x,, x2) = x',(s) sin x, — x2(s)cosx, — x2.

This is considered as a local representation of H. We may use F instead of H. Thus

dF .
-— = x, (s) cos x, + x2(s) sin x,,
3x,

dx2

The condition for infinitesimally versal unfolding is also as follows:

(i) W h e n / has Ax at s0> we require the 1 x 2 matrix (x,(s)cosx, + x2(s)sinx,, — 1)
to have rank 1, which it always does.
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(ii) When/ has A2 at s0, we require the 2 x 2 matrix

/ x', (s0) cos x, + x'2(s0) sin x, - 1 \

x','(s0) cos x, + x2(s0) sin x, 0

to be nonsingular.
On the other hand,

(cosx,, sinx,) = ± ,K(so).
Vx';(s)2+x'i(s)2

when 5n corresponds to ((cosx,, sinx,),x2) e V*, so that x^(s0)cosx, + x2'(s0)sinx, =
±,Jx'{(s0)

2 + x2'(s0)
2 / 0. This means that the above matrix is nonsingular. So the

infinitesimally versal conditions are automatically satisfied and we have the required
result by Proposition 5.1. •
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