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Texture Analysis to Detect Cerebral
Degeneration in Amyotrophic Lateral
Sclerosis
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ABSTRACT: Background: Evidence of cerebral degeneration is not apparent on routine brain MRI in amyotrophic lateral sclerosis
(ALS). Texture analysis can detect change in images based on the statistical properties of voxel intensities. Our objective was to test the
utility of texture analysis in detecting cerebral degeneration in ALS. A secondary objective was to determine whether the performance of
texture analysis is dependent on image resolution. Methods: High-resolution (0.5 × 0.5 mm2 in-plane) coronal T2-weighted MRI of the
brain were acquired from 12 patients with ALS and 19 healthy controls on a 4.7 Tesla MRI system. Image data sets at lower resolutions
were created by down-sampling to 1 × 1, 2 × 2, 3 × 3, and 4 × 4 mm2. Texture features were extracted from a slice encompassing the
corticospinal tract at the different resolutions and tested for their discriminatory power and correlations with clinical measures. Subjects
were also classified by visual assessment by expert reviewers. Results: Texture features were different between ALS patients and healthy
controls at 1 × 1, 2 × 2, and 3 × 3 mm2 resolutions. Texture features correlated with measures of upper motor neuron function and
disability. Optimal classification performance was achieved when best-performing texture features were combined with visual assessment
at 2 × 2 mm2 resolution (0.851 area under the curve, 83% sensitivity, 79% specificity). Conclusions: Texture analysis can detect subtle
abnormalities in MRI of ALS patients. The clinical yield of the method is dependent on image resolution. Texture analysis holds promise as
a potential source of neuroimaging biomarkers in ALS.

RÉSUMÉ: Utiliser l’analyse texturale pour détecter la dégénérescence cérébrale induite par la sclérose latérale amyotrophique. Contexte : Des
indices de dégénérescence cérébrale ne sont pas manifestes lorsqu’on effectue un test d’imagerie par résonance magnétique (IRM) dans le cas de patients
atteints de sclérose latérale amyotrophique (SLA). En se fondant sur les propriétés statistiques de l’intensité des voxels, l’analyse texturale peut permettre de
détecter des altérations dans les images ainsi obtenues. Notre principal objectif a donc été de tester l’utilité de l’analyse texturale dans le dépistage d’indices
de dégénérescence cérébrale chez des patients atteints de SLA.Un autre objectif, secondaire celui-là, a été de déterminer si l’efficacité de l’analyse structurale
était tributaire de la résolution des images. Méthodes : Au moyen d’un système d’IRM Tesla 4.7, des images par coupes coronales du cerveau à haute
résolution (résolution spatiale de 0,5 x 0,5mm2) en pondération T2 ont été obtenues chez 12 patients atteints de SLA et chez 19 individus en santé d’un groupe
témoin. Des ensembles de données d’imagerie à des résolutions inférieures ont également été générés à partir d’une technique de sous-échantillonnage à 1 x
1, 2 x 2, 3 x 3 et 4 x 4mm2. À différentes résolutions, on a ainsi pu extraire des caractéristiques texturales à partir d’une tranche englobant le faisceau cortico-
spinal et procédé à des tests évaluant leur capacité discriminante et leur valeur corrélative au moyen d’indicateurs cliniques. Des examinateurs experts ont
également classé les sujets à l’étude à la suite d’une évaluation visuelle. Résultats : Les caractéristiques texturales des patients atteints de SLA se sont
révélées différentes de celles des individus du groupe témoin pour les résolutions suivantes : 1 x 1, 2 x 2 et 3 x 3 mm2. Nous avons aussi pu établir une
corrélation entre les caractéristiques texturales et des indicateurs de fonctionnement et d’incapacité du motoneurone supérieur. Un classement optimal des
résultats a été obtenu lorsque les caractéristiques texturales les plus efficaces ont été combinées à une évaluation visuelle utilisant une résolution de 2 x 2mm2

(aire sous la courbe : 0,851 ; sensibilité de 83% ; spécificité de 79%).Conclusions :L’analyse texturale permet de détecter des anomalies subtiles dans le cas
d’IRM obtenues chez des patients atteints de SLA. L’efficacité clinique de cette méthode est aussi tributaire de la résolution des images. Dans le cas de la
SLA, on peut donc soutenir que l’analyse texturale augure d’un avenir prometteur à titre de source potentielle de biomarqueurs dérivés de la neuro-imagerie.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive neurolo-
gical condition with a hallmark pathology of motor neuron
degeneration. Patients experience gradual paralysis of the limbs,
speech dysfunction, and swallowing difficulties.1 The precise
mechanisms of motor neuron degeneration are unknown at pre-
sent; however, 5%-10% of ALS cases are familial, with mutations
recognized in SOD1,2 TARDBP,3 FUS,4 and C9ORF725,6 genes.
In addition to motor cortex7 and corticospinal tract (CST)8,9

degeneration, frontotemporal lobar degeneration10,11 is present in
a significant number of patients.

The clinical presentation of ALS involves a combination of
upper and lower motor neuron (UMN and LMN) signs and
symptoms, and features of cognitive and behavioral impairment in
a subset of patients. There is no diagnostic test for ALS, and clin-
icians rely on the identification of subjective and insensitive signs
ofUMNandLMNdysfunction for diagnosis.12 Electromyography
can provide sub-clinical evidence of LMN involvement. Studies
have explored the potential of neuroimaging techniques to provide
objective evidence of UMN or cerebral involvement. These report
global and regional brain atrophy,11,13 and hyperintensity of the
CST14,15 and hypointensity of the precentral gyrus14,15 on T2-
weighted and fluid-attenuated inversion recovery (FLAIR) ima-
ges; however, these changes have inadequate accuracy to be reli-
able indices of cerebral degeneration to confirm diagnosis or
monitor progression. Thus, routine MRI only serves to exclude
diseases that mimic ALS.16 An objective biomarker is needed that
can aid in evaluating cerebral degeneration and provide a tool to
evaluate novel treatments in clinical trials.

Texture analysis (TA) is a computational image processing
method that quantifies pixel interrelationships and patterns (“texture
features”) that may be indiscernible to the human eye.17 Texture
features are best understood as properties of an image such as its
roughness, smoothness, brightness, and contrast and can be used to
classify medical images according to pathology. In a multiple
sclerosis study, TA successfully distinguished between patients
with active lesions from those with non-active lesions.18 In patients
with epilepsy, TA demonstrated 83% sensitivity and 100% speci-
ficity in identifying focal cortical dysplasia.19 Texture analysis has
also been used in evaluating brain tumors20,21 and detecting cere-
bral changes in Alzheimer’s disease.22 Recently, using a novel
three-dimensional (3D) method,22 we demonstrated changes in
texture features on T1-weighted images in ALS.23 The objective of
this study was to determine whether TA could improve upon the
ability to classify T2-weighted images. We hypothesized that TA
can detect cerebral changes in T2-weighted images with greater
accuracy than by visual inspection alone. Our second hypothesis
was that the performance of TA is dependent on image resolution,
with higher-resolution images yielding better results.

MATERIALS AND METHODS

Subjects

The study was approved by the local institutional research
ethics board, and all participants provided written consent. We
recruited patients with UMN signs on examination who had a
diagnosis of possible ALS, probable lab-supported ALS, probable
ALS, or definite ALS according to the El Escorial criteria12 from a
multidisciplinary ALS clinic. None of the subjects had a family

history of ALS, or frontotemporal dementia. Subjects were
ineligible if they had a history of other neurological disorders or
a contraindication for MRI. Finger- and toe-tapping rates, which
are clinical measures of UMN function, were calculated by
averaging the total number of taps in 10 seconds over two trials.
Scores from the left and the right side within patients did not
differ significantly and therefore were averaged to give a single
score for each patient. Disease severity was assessed using the
ALS Functional Rating Scale-Revised (ALSFRS-R), which
ranges from 0 to 48, with lower scores indicating increasing
disability. Patients’ disease duration was defined as the time
between the onset of symptoms and the MRI scan. We also
recruited age-matched healthy controls without neurological or
psychiatric diseases.

MRI Data Acquisition

MRI was conducted on a 4.7 T whole-body scanner (Varian
Unity Inova console; Varian, Palo Alto, CA, USA). High-reso-
lution, 2D fast-spin echo T2-weighted images were acquired
(TR=4000 ms, TE= 33.3 ms, echo spacing=16.7 ms, 8 echoes,
voxel size= 0.5× 0.5 mm2, slice thickness= 2 mm, no slice gap,
matrix size= 385×512, number of slices=20, acquisition
time=4 minutes) with a coronal angulation that yielded images
with the region of the precentral gyrus rostrally and the descending
CST through to the cerebral peduncles caudally; this maximized
inclusion of disease-relevant regions of the brain.

Image Processing

Images were down-sampled to 1 × 1, 2 × 2, 3 × 3, and 4 × 4
mm2 in-plane spatial resolutions using the bicubic interpolation
algorithm in ImageJ (http://rsbweb.nih.gov/ij/). Non-uniform
image intensity was corrected using bias-field correction in
SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The single coronal
slice that maximally included the precentral gyrus and the CST,
including the internal capsule, was selected for each subject under
the supervision of a neurologist; this slice was masked by manu-
ally drawing an region of interest (ROI) from the cortex to the
peduncles using ITK-SNAP (http://www.itksnap.org). The ROI
included gray and white matter (GM and WM) (Figure 1). This
anatomical region was selected for TA to (a) include maximally
affected structures in ALS and (b) exclude the skull. The mean
pixel intensity was calculated from the histogram of the ROI from
patients and controls to ensure the absence of image intensity
differences that may affect the extracted texture features.

Texture Analysis

Texture features were calculated from the ROI using in-house-
developed software for SPM8. Features were estimated using the
gray-level co-occurrence matrix (GLCM) technique, which is a
second-order statistical method for feature extraction.24 Gray-
level co-occurrence matrix was selected to estimate texture fea-
tures because statistical methods of calculating features achieve
higher discriminatory results than structural methods in medical
imaging.25 A GLCM is designed based on the relationships and
the frequencies of pairs of pixel gray levels that occur within a
neighborhood of pixels in an image.17 Pixel intensities within the
ROI were scaled down, or quantized, to 16 gray levels to reduce
computation time. The GLCM was created for gray levels over a
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pixel distance of 1 and averaged over four directions (0°, 45°, 90°,
and 135°). Texture features were calculated and extracted from the
GLCM, reflecting various pixel gray-level properties and rela-
tionships of the original image. In total, 22 different texture fea-
tures (f1, f2, … , and f22) were extracted from the GLCM (see
Supplemental Table 1).

Visual Review of MRI

MRI were initially classified independently by two of the
authors blind to the subjects’ diagnosis into either the patient or
control group. These evaluators were not involved with conduct-
ing the TA. Subjects were classified as patients if there was, in the
opinion of the evaluator, abnormal hyperintensity along the CST.
The CST was selected because it is the anatomical region that is
frequently assessed on routine clinical MRI studies for suspected
ALS patients. Next, both authors convened and agreed upon a
final classification of participants. Data sets at the native resolu-
tion and the optimal resolution based on the texture features’
performance results were used for this analysis.

Statistical Analysis

The non-parametric Mann-Whitney U test was used to test
for differences in texture features between patients and controls.
Associations between texture features and clinical measures
were examined using Spearman’s rank correlation. Type I
errors were controlled by using the false discovery rate method
for multiple comparison correction and statistical significance
was set at an adjusted p< 0.05 for each statistical test. Uncor-
rected significance levels of p< 0.05 are reported where results
were not significant after correction for multiple comparisons.
Texture features’ performance at different image resolutions
was investigated by comparing area under the curve (AUC) of
their receiver operating characteristic (ROC) curve. Classifica-
tion results from visual analysis were evaluated using sensitiv-
ity and specificity scores along with ROC curve analysis.
Logistic regression models were used to investigate the classi-
fication performances of (a) combining top-performing texture
features and (b) combining those texture features with expert
visual classification of subjects. The cutoff value for optimal
sensitivity and specificity values for each test was determined

Figure 1: (A) T2-weighted image in the coronal plane, and (B) the region of interest (in blue) for the
texture analysis.

Table 1: Table shows the characteristics of the participants in our study

ALS Controls

N 12 19

Age (years [mean ± SD]) 57.4±10.0 57.0± 10.5

Male:female 7:5 8:11

Onset (limb/bulbar) 8/4 -

Disease duration (months [median ± IQR, range]) 13.5± 6.8, 5-86 -

ALSFRS-R score (mean ± SD, range) 37.8± 8.9, 14-46 -

Finger tapping (mean ± SD, range) 40.6±15.9, 10.7-60.7 -

Toe tapping (mean ± SD, range) 28.9±14.6, 12.0-53.7 -

ALS= amyotrophic lateral sclerosis; ALSFRS-R=ALS Functional Rating Scale-Revised; IQR= interquartile range.
Median of the disease duration is presented to give an accurate presentation, as one patient had a disease duration of 86 months at the time of the scan, which
skewed the mean disease duration.
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using the Youden index in MedCalc for Windows, version
16.4.3 (MedCalc Software, Ostend, Belgium). All other statis-
tics were carried out using SPSS for Windows, version 22
(IBM Corp. Armonk, NY).

RESULTS

Demographics

In total, 12 ALS patients (57.4± 10.0 years) and 19 age-
matched healthy controls (57.0± 10.5 years) were recruited.
There were seven and eight male ALS and control participants,
respectively. The median disease duration was 13.5± 6.8 months,
with a mean ALSFRS-R score of 37.8± 8.9. Table 1 summarizes
the participants’ characteristics.

Textural Differences Between ALS Patients and Healthy
Controls

There was no statistically significant difference (p= 0.16) in
the mean pixel intensities from the histogram of the ROIs between
ALS patients (2676.41± 302.97) and healthy controls (2919.49±
531.84). Differences in texture between patients and healthy con-
trols were dependent on image resolution (Table 2). At 2 × 2mm2,

11 features were different in ALS after correction for multiple
comparisons (Table 3). Images at 1 × 1mm2 did not have differ-
ences in texture features when corrected for multiple comparisons;
however, at uncorrected p< 0.05, seven features were different
between ALS patients and healthy controls. Images at 3 × 3 and
4 × 4mm2 demonstrated no differences in texture; however, at
3 × 3mm2 resolution, one feature was different at uncorrected
p< 0.05. Texture features were not different at either corrected or
uncorrected significance levels at the 0.5 × 0.5mm2 resolution.

Correlations between Clinical Measures and Texture
Features

Correlations were dependent on image resolution (Table 4).
Texture features f2, f17, and f22 demonstrated significant
correlations with toe-tapping after correcting for multiple com-
parisons at 0.5 × 0.5mm2 and 1 × 1mm2 resolutions. Table 4
shows the correlations between clinical measures and texture
features at uncorrected significance.

Classification Performance

Texture features that were different between ALS patients and
healthy controls after correcting for multiple comparisons were
selected for ROC analysis to examine their diagnostic accuracy.
Features f2, f7, f8, f9, f10, f11, f12, f17, f18, f21, and f22 showed sig-
nificant differences at 2 × 2mm2 and were selected for further
analysis. An AUC was calculated for each feature at all five
resolutions.

Every feature improved in its performance (with increasing
AUC), with decreasing image resolution from 0.5 × 0.5mm2 to
1 × 1mm2 to 2 × 2mm2 (Figure 2). A peak in the AUCs was
observed at 2 × 2mm,2 after which the features’ AUCs declined
with further reductions in resolution. The exceptions to this trend
were features f8 and f12 that peaked at 1 × 1mm2 and declined with
decreasing resolution. The highest AUCs were achieved at
2 × 2mm2 by features f10 (0.785) and f7 (0.781), both with a sen-
sitivity and specificity of 100% and 58%, respectively. In addi-
tion, at 2 × 2mm2 AUCs for all features were clustered around the
mean AUC, whereas at other resolutions a wider spread of values

Table 2: Texture features that were significantly different on
T2-weighted MRI between amyotrophic lateral sclerosis
patients and healthy controls at different resolutions

Image resolution
(mm2)

Features

0.5 × 0.5 ns

1 × 1 f8*, f9*, f10*, f11*, f12*, f16*

2 × 2 f2**, f7**, f8**, f9**, f10**, f11**, f12**, f17**, f18**, f21**,
f22**

3 × 3 f8*

4 × 4 ns

ns= not significant.
*p< 0.05; **false discovery rate-corrected p< 0.05.

Table 3: Significant texture features at 2 × 2mm2 resolution

Features ALS Controls p value Sensitivity (%) Specificity (%) AUC

f2 4.76± 0.34 4.35± 0.54 0.03 83.3 73.7 0.759

f7 1.45± 0.07 1.35± 0.10 < 0.01 100 57.9 0.781

f8 0.03± 0.01 0.04± 0.01 < 0.01 83.3 73.7 0.763

f9 4.17± 0.13 4.01± 0.17 < 0.01 83.3 68.4 0.759

f10 0.57± 0.02 0.89± 0.02 < 0.01 100 57.9 0.785

f11 0.52± 0.02 0.55± 0.02 < 0.01 91.7 63.2 0.772

f12 0.10± 0.03 0.12± 0.02 0.02 83.3 68.4 0.763

f17 4.76± 0.34 4.35± 0.54 0.03 83.3 73.7 0.759

f18 1.61± 0.04 1.56± 0.06 0.02 100 47.4 0.750

f21 0.92± 3.69 × 10− 3 0.93± 5.00 × 10− 3 < 0.01 100 52.6 0.772

f22 0.98±1.18 × 10− 3 0.99± 1.81 × 10− 3 0.02 75.0 78.9 0.763

ALS= amyotrophic lateral sclerosis; AUC= area under the curve.
Values are shown as mean ± SD along with their receiver operator curve analysis results.
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was observed. Average AUCs of the texture features at each
resolution are presented in Table 5.

The 0.5 × 0.5mm2 and 2 × 2mm2 resolution data sets under-
went a visual examination and consensus classification by two
experts. Ten of the 31 subjects were classified as patients from the
0.5 × 0.5mm2 data set, of whom seven were true positives. The
remaining 21 subjects were classified as controls, of whom 16
were true negatives. Sensitivity and specificity were 58% and
84%, respectively, and AUC was 0.713. From the 2 × 2mm2 data
set, nine subjects were classified as patients, of whom five were
true positives. In total, 22 subjects were classified as controls, of
whom 15 were true negatives. This data set had a sensitivity of
42%, specificity of 79%, and AUC of 0.603.

Two combination diagnostic models were also assessed for
their classification performance. In model 1, texture features f10
and f7 at 2 × 2mm2 were selected as they had the highest AUCs of
0.785 and 0.781, respectively, each with a sensitivity of 100% and
specificity of 58%. Combined, these features had a sensitivity and
specificity of 92% and 63%, respectively, with an AUC of 0.785.
In model 2, texture features f10 and f7 were combined with human
classification of the 2 × 2mm2 images, resulting in a higher AUC
of 0.851 with sensitivity and specificity at 83% and 79%,
respectively. The Hosmer and Lemeshow test suggested that both
models were a good fit to the data (p> 0.05).

DISCUSSION

In this study, we demonstrated the presence of differences in
MRI-based texture features in ALS patients. Texture features also
correlated with clinical measures of disability and UMN function.
To the best of our knowledge, there have not been other studies in
the literature reporting TA on T2-weighted MRI in ALS.

Neuroimaging studies have examined morphological and
microstructural alterations in ALS. Region of interest-based
and voxel-based analyses of T1-weighted MRI have demon-
strated cortical thinning and a reduction in the GM density of the
precentral gyrus.7,8 Furthermore, WM microstructural alterations
characterized by decreased fractional anisotropy and increased
mean diffusivity have been noted in the CST and extra-motor
regions of the brain with diffusion tensor imaging.8,9 These MRI
metrics have elucidated the in vivo patterns of cerebral degenera-
tion in ALS and have been proposed as potential biomarkers for
the disease.26,27 However, these markers and advanced MRI have
not yet been validated and are not routinely acquired clinically.
Texture analysis can be performed on clinically acquired
sequences such as T1- and T2-weighted MRI, and it has been
shown to correlate with pathological changes in other diseases.28

Prior studies on T2-weighted imaging in ALS report hyper-
intensities along the CST with poor diagnostic potential. A recent
study found the evaluation of hyperintense regions along the CST
in ALS to have a diagnostic accuracy of 46.4%, sensitivity of
43.8%, and a specificity of 60.7%.29 In another study, T2-
weighted images were found to have 62.5% sensitivity when
distinguishing definite and probable ALS patients from con-
trols.30 Visual assessment of CST hyperintensity in our data
sets by expert reviewers yielded similar results; however, TA

Table 5: Image resolution dependence of the average area
under the curve (AUC) of 11 texture features (f2, f7, f8, f9,
f10, f11, f12, f17, f18, f21, and f22) that were significant at
2 × 2mm2 after correction for multiple comparisons

Image resolution (mm2) Average AUC

0.5 × 0.5 0.653

1 × 1 0.717

2 × 2 0.766

3 × 3 0.644

4 × 4 0.554

Figure 2: The discriminatory ability of texture analysis was dependent
on image resolution. Nine of 11 texture features followed a trend with
superior classification (highest area under the curve) peaking at 2× 2
mm2.

Table 4: Correlations between clinical measures and texture features at different resolutions

Image resolution (mm2) ALSFRS-R Finger-tapping score Toe-tapping score

0.5 × 0.5 Ns ns f2** (0.74), f17** (0.74), f22** (0.74)

1 × 1 Ns f9* (0.61), f14* (0.62), f15* (0.60) f2** (0.78), f17** (0.78), f22** (0.76)

2 × 2 f8** (0.61), f10* (0.68), f11* (0.72),
f21 (0.61)

f18* (0.62) ns

3 × 3 Ns f7* (0.61), f9* (0.63), f10* (0.59), f11* (0.62), f18* (0.65), f21* (0.59),
f22* (0.63)

f7* (0.62), f10* (0.68), f11* (0.69),
f21* (0.66)

4 × 4 Ns ns ns

ALSFRS-R=ALS Functional Rating Scale-Revised; ns= not significant.
Spearman’s rank correlation coefficient is provided in brackets.
*p< 0.05; **false discovery rate-corrected p< 0.05.
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outperformed their classification: f10 and f7 each had a sensitivity of
100%, although the specificity was 58%. By contrast, visual
inspection yielded classification with poor sensitivity and moderate
specificity. The greatest classification with an AUC of 0.851 was
achieved with the combination of texture features f10 and f7 and
expert classification of images at 2 × 2mm2 resolution. This was an
improvement over using texture features and expert classification in
isolation that yielded AUCs of 0.785 and 0.603, respectively.

These findings support the potential of TA of MRI images in
discriminating ALS patients from healthy controls. These pre-
liminary results suggest that there may be a role for TA to
be paired with an expert clinician in the diagnosis of ALS. One
approach would be to use a texture feature as a screening measure
to first select cases as it has very high sensitivity, followed by
confirmation by visual inspection of images by a clinician.

The greatest number of significantly different texture features
between ALS patients and controls were present at 2 × 2mm2

resolution, which suggests the presence of pronounced T2-
weighted textural changes at this resolution. In addition, the per-
formance of the texture features, as measured by their AUCs,
demonstrated less variability and converged at the 2 × 2mm2

resolution. These findings have several important implications.
First, high-resolution imaging is time-consuming and not feasible
in routine clinical practice; yet, our results show that TA is most
robust at the resolution acquired in clinical imaging. Second, a
unitary set of texture features could be used in clinical trials as a
marker for cerebral changes.

Several studies in the literature have attempted to delineate the
effect of imaging parameters on TA. In a phantomMRI study, TA
achieved a classification accuracy of over 90% accuracy even in
low-resolution images.31 Studies addressing slice thickness sug-
gest that a thin image slice thickness is not required for high TA
performance.21,32 Together, these studies support our findings,
suggesting that optimal TA performance may not require high-
resolution images.

The pattern of TA performance in our study could be caused by
changes in the signal-to-noise rate (SNR) because of changes in
image resolution. Post hoc SNR analysis of our data set showed a
rise in SNR with decreasing resolution (data not shown). This is
expected, as with down-sampling to lower resolutions noise is
reduced, but signal remains unchanged. Increasing SNR does not
fully explain the peak TA performance at 2 × 2mm2, as it declined
at higher SNRs (lower resolutions above 2 × 2mm2). The unique
pattern of TA performance across different resolutions is likely a
product of a variety of factors in addition to SNR, including TA-
relevant parameters such as neighborhood size, pixel distance, and
quantization levels. We used a pixel distance of 1, which trans-
lates to 0.5mm in the 0.5 × 0.5mm2 resolution data set and 2mm
in the 2 × 2mm2. This could indicate that signal changes occur on
a larger scale in ALS. To investigate this and uncover the
robustness of TA, future studies should study effects of changing
TA parameters at different image resolutions on classification
accuracy in clinical data sets.

Previously we have shown that TA in T1-weighted images
showed significant textural changes in the CST and the precentral
gyrus using a novel 3D voxel-wise approach.23 In the present
study, however, we did not acquire whole-brain T2-weighted
images, which restricted our analysis to 2D. A study that used TA
in ALS evaluated texture features from deep gray nuclei (DGN)
structures in T1-weighted MRI33 and found significant changes in

texture features f3, f4, and f17 between patients and controls. In our
study, we observed different texture features to be significant
because our ROI included the CST and was not specific to DGN
structures. Various regions of the brain could have discrete tex-
tural changes depending on the imaging modality and local
pathology. Very few studies have examined the relationship
between MRI measures and pathological findings in ALS. An
early study cited astrocytosis and iron deposition as the cause of
T2-weighted signal changes in the motor cortex.34 Neuronal loss,
myelin dysfunction, and astrocytosis have also been reported to
cause altered T1-weighted signals in the motor cortex and
subcortical WM of post-mortem ALS patients.35 As texture fea-
tures characterize MRI signal alterations, it is possible that the
observed changes in texture are caused in part by the pathological
correlates observed in previous studies.

There are several limitations in this study. First, we used an ROI
that covered regions from the cortex to the cerebral peduncles and
included GM and WM, whereas the visual assessment was per-
formed primarily on the CST. Images could not be segmented
into GM and WM owing to sub-optimal GM/WM contrast on
T2-weighted images. Smaller region-specific ROIs were not com-
patible with TA at lower resolutions, because the neighborhood size
was larger than the ROI. Observations from this study could there-
fore be from any tissue class in the ROI, and future studies should
aim to perform TA on structure-specific locations. Second, recent
studies have demonstrated improved sensitivity for detecting signal
intensity changes using optimized T2-weighted FLAIR and
susceptibility-weighted images.36 The performance of TA methods
could potentially improve if optimized sequences are used. Third, the
study has a small sample size from a heterogeneous disease popu-
lation. A larger sample with an equal number of patients and gender-
matched control groups in a future study would provide more robust
evidence. Last, data were down-sampled from high to low resolu-
tions instead of additional data being acquired at lower resolutions.

CONCLUSION

This study demonstrated that TA using GLCM can dis-
criminate between ALS patients and controls with T2-weighted
MRI. Performance was optimal at 2 ×2mm2 in-plane resolution.
We believe that TA has the potential to be a marker for cerebral
changes that occur in ALS. Future studies should apply TA
methods to other MRI modalities such as magnetization transfer
imaging and FLAIR to investigate its diagnostic performance in
images with different contrasts. Larger studies with longitudinal
data and disease controls are required for further validation.
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