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Abstract. We utilize the clustering properties of the Luminous Red Galaxies (LRGs) and the
growth rate data in order to constrain the growth index (γ) of the linear matter fluctuations
based on a standard χ2 joint likelihood analysis between theoretical expectations and data. We
find a value of γ = 0.56 ± 0.05, perfectly consistent with the expectations of the ΛCDM model,
and Ωm 0 = 0.29 ± 0.02, in very good agreement with the latest Planck results. Our analysis
provides significantly more stringent growth index constraints with respect to previous studies
as indicated by the fact that the corresponding uncertainty is only ∼ 0.09γ.
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1. Introduction
One of the most intriguing problems in Cosmology is to explain the fact that the

universe is in a phase of accelerated expansion. In order to deal with this problem,
one has to see Dark Energy (DE) either as a new field in nature or as a modification
of General Relativity (see for review Copeland et al. 2006, Caldwell & Kamionkowski
2009, Amendola & Tsujikawa 2010). An interesting approach to discriminate between
the aforementioned is to use the evolution of the linear growth of matter perturbations.
Specifically, a useful tool in this kind of studies is the so called growth rate of clustering,
which is defined as f(a) = dlnD

dlna � Ωγ
m (a), where a(z) = (1 + z)−1 is the scale factor

of the universe, Ωm (a) is the dimensionless matter density parameter, γ is the growth
index and D(a) = δm (a)/δm (a = 1) is the linear growth factor usually scaled to unity at
the present time (Peebles 1993, Wang & Steinhardt 1998). Notice that γ may in general
vary with redshift; γ ≡ γ(z). Theoretically speaking, it has been shown that for those
DE models which are within the framework of GR and have a constant Equation of State
parameter, the growth index γ is equal to γ � 6/11 for the ΛCDM model.

Since gravity reflects, via gravitational instability, on the nature of clustering (Peebles
1993) it has been proposed to use the clustering/biasing properties of the mass trac-
ers in constraining cosmological models (see Matsubara 2004, Basilakos & Plionis 2005,
Basilakos & Plionis 2006, Krumpe et al. 2013) as well as to test the validity of GR on
extragalactic scales (Basilakos et al. 2012, for a recent review see Bean et al. 2013). Using
the above notations, the aim of the current study is to place constraints on the (Ωm , γ)
parameter space using the joint analysis of the measured two-point angular correlation
function (ACF) of LRGs (Sawangwit et al. 2011) and the growth rate of clustering data
as collected by Basilakos et al. (2013) (see Table 1 of Basilakos et al. 2013).
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2. Angular Correlation Function
Considering a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) geometry,

we can easily relate via the Limber’s inversion equation the ACF, w(θ), with the two
point spatial correlation function ξ(r, z): w(θ) = 2H0

c

∫ ∞
0 ( 1

N
dN
dz )2E(z)dz

∫ ∞
0 ξ(r, z)du ,

where 1/N dN/dz is the normalized redshift distribution of the LRGs.
The redshift distribution for this case is given by the relation: dN

dz ∝ ( z
z�

)(a+2)e−( z
z �

)β

,
where (a, β, z�) = (−15.53,−8.03, 0.55) and z� is the characteristic depth of the subsam-
ple studied. The spatial correlation function of the mass tracers is given by: ξ(r, z) =
b2(z)ξDM (r, z), where b(z) is the evolution of the linear bias, and ξDM is the corre-
sponding correlation function of the underlying mass distribution which is written as
ξDM (r, z) = 1

2π 2

∫ ∞
0 k2P (k, z) sin(kr/a)

(kr/a) dk. Concerning P (k, z), it is P (k, z) = D2(z)P (k)
with P (k) = P0k

nT 2(k) denoting the CDM power spectrum of the matter fluctuations.
Note that T (k) is the CDM transfer function of Eisenstein & Hu (1998) or this of Bardeen
et al. (1986) and n � 0.9671 following the recent reanalysis of the Planck data by Spergel
et al. (2013). The variable r corresponds to the physical separation between two sources
having an angular separation, θ (in steradians) and E(z) = H(z)/H0 , is the normalized
Hubble parameter. Non linear effects have been also taken into account through the slope
of the power spectrum at the relevant scales: neff = dlnP/dlnk (Peacock & Dodds 1994,
Smith et al. 2003, Widrow et al. 2009).

3. The evolution of linear bias, b(z)
The linear bias is defined as the ratio of density perturbations in the mass-tracer field

to those of the underling total matter field: b = δtr /δm . In this analysis we use the bias
evolution model of Basilakos et al. (2011) and Basilakos et al. (2012) which is valid for
any DE model (scalar or geometrical) and it is given by:

b(z) = 1 +
b0 − 1
D(z)

+ C2
J (z)
D(z)

(3.1)

with J (z) =
∫ z

0
(1+y )
E (y ) dy . The constants b0 (the bias at the present time) and C2 depend

on the host dark matter halo mass Mh (see Basilakos et al.2012).

4. Fitting Theoretical Models to the data
A standard χ2 minimization statistical analysis is implemented in order to provide

constraints in the (Ωm0 , γ) parameter space. It is defined as follows:

x2
t =

n∑
i=1

[
Xobs − Xth

σ2
i

]2

where the index t stands for the clustering data of LRGs or the growth data, X is the an-
gular correlation function or the fσ8 respectively and σi is the corresponding uncertainty.
We perform a joint likelihood analysis of the two cosmological probes using:

x2 = x2
LRGs + x2

gr

The joint result of the analysis for the case of Eisenstein & Hu (1998) transfer function
is (Ωm0 , γ) = (0.29 ± 0.02, 0.56 ± 0.05), which is the strongest (to our knowledge) joint
constraint appearing in the literature. The results are shown in Table 2. For a more
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Table 1. Results in the (Ωm 0 , γ, Mh , neff ) parameter space for the different T (k) and σ8 .

T (k) Ωm 0 γ Mh /1013M� neff χ2
t ,m in/df

σ8 = 0.797 (0.30/Ωm 0 )0 .26 Hajian et al. 2013

Eisenstein & Hu (1998) 0.29 ± 0.02 0.56 ± 0.05 1.90 ± 0.10 0.10 ± 0.20 16.36/23
Bardeen et al (1986) 0.29 ± 0.01 0.56 ± 0.10 1.80 ± 0.30 −0.10+0 .30

−0 .10 16.56/23

σ8 = 0.818 (0.30/Ωm 0 )0 .26 Spergel et al. 2013

Eisenstein and Hu (1998) 0.29+0 .03
−0 .02 0.58+0 .02

−0 .06 1.70 ± 0.20 0.30 ± 0.20 15.90/23
Bardeen et al (1986) 0.29+0 .02

−0 .03 0.56 ± 0.10 1.60 ± 0.4 0.0+0 .10
−0 .20 16.13/23

detailed analysis, as well as for the case of a varying growth index with redshift γ = γ(z),
see Pouri et al. (2014).
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