Detailed stellar and gaseous kinematics of M31

$\begin{array}{c} \textbf{Michael Opitsch}^{1,2,3} \textbf{, Maximilian Fabricius} \ ^{1,2} \textbf{, Roberto Saglia}^{1,2} \textbf{,} \\ \textbf{Ralf Bender}^{1,2} \textbf{ and Michael Williams}^{1,4} \end{array}$

¹Max Planck Institute for Extraterrestrial Physics, Gießenbachstr., 80748 Garching, Germany email: mopitsch@mpe.mpg.de

²University Observatory Munich, Scheinerstr. 1, 81679 Munich, Germany

³Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany

⁴Department of Astronomy, Columbia University, 550 West 120th Street, NY10027 New York, USA

Abstract. We have collected optical integral field spectroscopic data for M31 with the spectrograph VIRUS-W that result in kinematic maps of unprecedented detail. These reveal the presence of two kinematically distinct gas components.

1. Introduction

Due to its proximity M31 is an ideal target to investigate the kinematics and dynamics of a spiral galaxy in high detail. However, its large angular extent complicates the collection of spectroscopic data for the whole galaxy. With the arrival of the integral field spectrograph VIRUS-W (Fabricius *et al.*, 2008), it has become possible to obtain high-quality two-dimensionally distributed spectra over a large field of view.

2. Conclusions

Our data cover the bulge completely and sample the disk along six different position angles, reaching approximately one scalelength along the major axis (Courteau *et al.*, 2011). We fit the line-of-sight velocity distribution of the stars with pPXF (Cappellari, Emsellem, 2004) and the one of the H β , [OIII] and [NI] emission lines with GANDALF (Sarzi *et al.*, 2006). While the stellar velocity field is fairly regular, the gas emission lines in a large fraction of our covered region show double peaks, pointing at two kinematically distinct gas components. The velocity of the first component reaches 300 km/s, the second component is significantly slower with a maximum of about 140 km/s. We are currently testing whether the kinematics of the two components can be be explained by either a warp or the presence of a secondary disk at higher inclination.

Acknowledgements

This research was supported by the DFG cluster of excellence Origin and Structure of the Universe.

References

Cappellari, M. & Emsellem, E. 2004, PASP, 116, 138
Courteau, S., et al. 2011, ApJ, 739, 20
Fabricius, M. H. et al. 2008, SPIE, 7014, 234
Sarzi, M. et al., 2006 MNRAS, 366, 1151