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Abstract. U.S. agriculture has seen a rapid adoption of biotechnology over the last
two decades. This study investigates how biotechnology has affected U.S. farm
input demand and agricultural productivity. The analysis relies on data at the
national level and at the state level for selected states in the Corn Belt. It evaluates
the rate of technological change and price elasticities of demand for agricultural
inputs over time. The study documents the evolving biases in technological change
in agriculture. It finds evidence that farm input demands have become more price
inelastic.
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1. Introduction

Over the last few decades, U.S. agriculture has benefited from rapid
increases in farm productivity (Wang et al., 2015), driven primarily by
technological innovations and improved farm management. Higher productivity
has contributed to increased profitability and competitiveness of U.S. farmers
in a global marketplace. Fertilizer use has helped maintain or enhance soil
productivity; pesticides have contributed to reducing the adverse effects of pest
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damages; and biotechnology has joined with traditional breeding methods to
improve the desired genetic characteristics of seeds in agriculture. In particular,
since its inception of commercialization in 1996, the world has seen a rapid
growth in genetically modified (GM) crops planted in both developed and
developing countries. It has generated much interest in evaluating the effects
of biotechnology on agriculture (e.g., Bustos, Caprettini, and Ponticelli, 2016;
Carpenter, 2010; Klümper and Qaim, 2014; Perry, Moschini, and Hennessy,
2016). The United States is currently the leading adopter of GM staple crops,
with adoption rates exceeding 90% each for GM soybean, cotton, and corn
(Fernandez-Cornejo et al., 2014; USDA, 2017a).

This study seeks to develop a greater understanding of the implications of
GM technology adoption on the farm demand for inputs. Of special interest
is evaluating the distinct effects between two aspects of GM technology: Bt
technology (relying on gene transfer from Bacillus thuringiensis), which helps
control the pest population for corn and cotton; and herbicide tolerance (HT)
technology, which helps control weeds for corn, soybean, and cotton (Fernandez-
Cornejo et al., 2012, 2014; Gardner, Nehring, and Nelson, 2009; Perry et al.,
2016; Xu et al., 2013). In general, GM seeds can have a considerable impact on
pesticide use, but the impact may be different for insecticide use versus herbicide
use. GM corn with corn borer and rootworm insect resistance can lead to lower
insecticide applications. Yet the GM crop with HT traits may lead to more or
lower herbicide applications depending on farm practices. Perry, Moschini, and
Hennessy (2016) found that HT traits and conservation tillage are complements.
Biotech traits may also act as a substitute for crop rotation to some extent
(Chavas, Shi, and Lauer, 2014). In the past, farmers rotated corn and soybeans
to keep targeted insects from gaining a foothold on specific plots of farmland.
However, in the GM seed era, each plant is protected and insects have limited
ability to survive in GM fields; thus, farmers adopting GM may use less crop
rotation in planting. Moving away from flexible rotation strategies could alter
the demand elasticities for inputs in ways that affect the exercise of market power
by agricultural input firms and the pricing of farm inputs. This study examines
these issues, thus shedding new light on the economic effects of biotechnology
on U.S. agriculture.

Our analysis relies on the estimation of a cost function and the corresponding
input cost shares conditional on input prices, intermediate output, and
technology. Such an approach provides the information needed for our
investigation, including the evaluation of technological change, the temporal
effects of biotechnology, and the evolving nature of price elasticities of input
demands. However, it faces a significant challenge: agricultural production is
risky as factors such as drought and pest damages can have unpredictable
effects on farm output. Yet farm inputs are typically chosen ex ante—that
is, before risky shocks become realized (e.g., fertilizer use is decided before
weather conditions are known). For risk-averse farmers, it implies that farm input
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demands must depend on the distribution of risky output (Pope and Chavas,
1994).1 It means that, unlike standard cost minimization, input demands cannot
depend on actual output as it is unobserved ex ante (LaFrance and Pope, 2010).
This study deals with this issue by relying on a cost function that depends not
on final output but rather on intermediate output. LaFrance and Pope (2010)
showed that the validity of standard cost minimization can be restored under a
weakly separable production function. Following similar arguments, we assume
a weakly separable production function and rely on a cost function conditional
on intermediate output. In this context, standard cost minimization remains valid
under production uncertainty and risk aversion, thus providing the conceptual
framework for our analysis.

The analysis is applied to U.S. agriculture, relying on two data sets: time series
data on farm inputs and output at the U.S. level over the period 1960–2013 and
time series data from nine Corn Belt states over the period 1960–2004. The data
on Corn Belt states are of interest as the Corn Belt experienced the largest impact
of GM technology. Unfortunately, the state-level data end in 2004 (when the U.S.
Department of Agriculture [USDA] stopped collecting data on farm labor at the
state level). The U.S.-level data have the advantage of covering the post-2004 pe-
riod, when GM adoption became widespread for corn, soybean, and cotton. The
analysis involves the estimation of demands for six inputs: (1) labor, (2) energy,
(3) fertilizer, (4) herbicides, (5) insecticides, and (6) other inputs. The distinction
between herbicide and insecticide is of special interest for two reasons. First,
distinguishing between herbicide and insecticide is apparently new in the analysis
of agricultural productivity and technological change bias. Second, studying
the linkages between herbicide demand, pesticide demand, and biotechnology
adoption is of significant interest to farmers, researchers, and policy makers (as
biotechnology generates new ways to manage weed and pest control).

Our investigation documents how technology has affected farm productivity
and input demands. Although the rapid productivity growth has been a
common feature of U.S. agriculture over the last few decades, our analysis
examines the changing patterns of productivity under biotechnology. It finds
that biotechnology has contributed to speeding up productivity growth in the
Corn Belt, but not at the U.S. level. It also documents the evolving biases in
technological change in agriculture. We find that Bt and HT technologies have
different impacts on farm input demands. Bt technology has increased the bias
in favor of fertilizer use. By reducing pest damages, this finding indicates that Bt
technology makes it easier for the plant to benefit from fertilizer applications.
HT technology, however, tends to be fertilizer saving. The fertilizer-saving bias
may reflect that improved weed control increases the availability of soil nutrients

1 Evaluating the output distribution (e.g., using mean, variance, and skewness) can be empirically
difficult. Representing the output distribution using a state-contingent approach is another way to proceed,
but a state-contingent approach also faces its own empirical challenges (e.g., Chavas, 2008).
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to the plant, thus reducing the need for fertilizer applications. Finally, we find
evidence that farm demands for fertilizer, herbicide, and insecticide have become
more inelastic after the GM inception (i.e., less responsive to prices). Thus,
although biotechnology has contributed to technological progress in agriculture,
GM adoption has also been associated with more restricted choices and a lower
ability of farmers to adjust to changing market conditions.

The rest of the article is organized as follows: Section 2 presents our model
of input choice, motivating our cost function approach. Relying on a translog
cost specification, Section 3 presents an application to U.S. agriculture. The
econometric results are presented in Section 4. The economic implications of
our analysis are examined in Section 5. Finally, Section 6 concludes.

2. A Model of Input Choice

This section presents the conceptual approach to our analysis. Consider a
production process involving inputs x ∈ R

n
+ and capital K in producing output z

under production uncertainty. The production function g(x, t ,K, u) represents
the largest possible output z that can be obtained using factors (x,K) under
technology t in the presence of a stochastic shock u (e.g., weather event and/or
infestation shock).2 As discussed in the introduction, farm input decisions are
often made before stochastic production shocks are known, implying that input
demand cannot depend on actual output (as in standard cost minimization; see
LaFrance and Pope, 2010). Instead, input demandwould depend on the perceived
distribution of final output (e.g., Pope and Chavas, 1994). Rather than trying to
measure this distribution, our study uses a modified approach that can reinstate
the validity of standard cost minimization. Following LaFrance and Pope (2010),
assuming a weakly separable production function provides the proper analytical
framework. In our analysis,we propose to distinguish between actual final output
(that is subject to production shocks) and an “intermediate output” (that is
immune to uncertainty). In this context, we assume that the production function
is weakly separable and can be decomposed into two stages: in stage 1, under
technology t , inputs x are used to produce intermediate output y = f (x, t ); in
stage 2, the intermediate output y is combined with capital K under stochastic
shock u to produce output z = g0( f (x, t ),K, u) = g(x, t ,K, u). Note that this
specification restricts technology t to affect only the intermediate output y in
the first stage of the production process. It allows for arbitrary possibilities
of substitution among inputs x and imposes no restrictions on the effects of
technology t on input productivity, nor on the effects of (K, u) on final output z.

2 Our analysis focuses on technology and input demands. For simplicity, it is presented assuming a
single output. As such, it neglects economic issues (such as economies of scope) that would arise in a
multioutput context (e.g., Ray, 1982).
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We consider the case where the production process takes place over time,
and input choices x are made before the stochastic shock u is observed (e.g.,
inputs are chosen at the beginning of the growing season before weather
conditions are known). Denote by r ∈ R

n
++ the vector of prices for inputs x.

Under the production function z = g0(K, u, y) where y = f (x, t ), and conditional
on intermediate output y, a rational decision maker will always choose inputs
x so as to minimize cost Minx∈Rn+ {r · x : y = f (x, t )}. Note this result holds
under general conditions as long as the decision maker has preferences that
are nonsatiated in income. Indeed, it holds under production risk (represented
here by the stochastic shock u), under output price risk, and under farmers’
risk aversion. To see this, conditional on y, cost minimizing input choices would
always stochastically dominate any other feasible input choice.

On that basis, conditional on (r, y, t ), our analysis proceeds assuming cost
minimizing behavior where inputs x are chosen as follows:

C (r, y, t ) = r · xc (r, y, t ) = Minx∈Rn+

{
r · x : y = f (x, t )

}
, (1)

where C(r, y, t ) is the indirect cost function, and xc(r, y, t ) denotes the cost
minimizing input demand functions. Conditional on intermediate output y,
cost minimization in equation (1) holds because, under weak separability,
the marginal rates of substitution among inputs x are independent of the
stochastic shocks u. In general, the cost function C(r, y, t ) in equation (1) is
linear, homogeneous, and concave in prices r. When the cost function C(r, y, t )
is differentiable, it satisfies Shephard’s lemma, where ∂C(r,y,t )

∂ri
= xci (r, y, t ), i =

1, . . . , n. Shephard’s lemma can be alternatively written as

∂ lnC (r, y, t )
∂ln(ri)

= wc
i (r, y, t ) , (2)

where wi(r, y, t ) = ri xci (r,y,t )
C(r,y,t ) is the cost share for the ith input. Our empirical

analysis will rely on the specification and estimation of the cost functionC(r, y, t )
given in equation (1) and the cost share equations wc

i (r, y, t ) given in equation
(2).

The cost minimization problem in equation (1) has well-known implications
for input demands (e.g., Chambers, 1988). From the Euler theorem, the linear
homogeneity of C(r, y, t ) in r implies the homogeneity conditions

n∑
i=1

∂ lnC (r, y, t )
∂ ln (ri)

= 1. (3)

We are interested in evaluating the effects of input prices r, intermediate output
y, and technology t on input demand. First, the effects of prices can be measured
by the price elasticities of input demands ∂ ln(xci )

∂ ln(r j )
for i, j = 1, . . . ., n. Following
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Berndt and Wood (1975), these demand elasticities satisfy

∂ ln
(
xci

)
∂ ln

(
r j

) = −δi j + w j + ∂ ln(wi)
∂ ln

(
r j

) , (4)

where δi j = {10} when i{=
�=} j. Second, from Chambers (1988), economies of size

evaluated at point (r, y, t ) can be written as

ES (r, y, t ) = 1/

[
∂ ln (C (r, y, t ))

∂ ln (y)

]
, (5)

where ES(r, y, t ){>=
<
}1 corresponds to {increasingconstant

decreasing
} return to size in the neighborhood

of (r, y, t ). Third, the rate of technological change evaluated at point (r, y, t ) can
be written as

RTC (r, y, t ) = −∂ ln (C (r, y, t ))
∂t

/
∂ ln (C (r, y, t ))

∂ ln (y)
, (6a)

where RTC(r, y, t ) measures the proportional change in output because of
technological change in the neighborhood of (r, y, t ). Finally, from Binswanger
(1974), the nature of technological change can be expressed in terms of the bias
in technological change

Bi (r, y, t ) = ∂wi (r, y, t ) /∂t , i = 1, . . . , n. (6b)

Technological change is said to be Hicks neutral when Bi(r, y, t ) = 0 for
all i and all (r, y, t ). It is Hicks-biased toward the ith factor (or ith factor
using) when Bi(r, y, t ) > 0, and it is Hicks-biased against the ith factor (or
ith factor saving) when Bi(r, y, t ) < 0. Thus, departures from Hicks-neutral
technological change correspond to situations where technological change affects
the cost share of some inputs. Such effects are relevant in the evaluation of
the “induced innovation” hypothesis (e.g., Binswanger, 1974). Under induced
innovations, technological change responds to relative scarcity: new technology
would develop to reduce the demand for inputs that are becoming more
expensive (i.e., leading to “input saving” bias) and to increase the demand for
inputs that are becoming cheaper (i.e., leading to “input using” bias).

3. An Application to U.S. Agriculture

In this section, we apply the model discussed previously to U.S. agriculture using
a translog cost specification. Our investigation involves six inputs: (1) labor, (2)
energy, (3) fertilizer, (4) herbicides, (5) insecticides, and (6) other inputs.3 Given

3 In a preliminary analysis, we estimated a cost function including capital and conditional on final
output. We found that the estimated cost function was not concave in prices, which is not consistent with
cost minimization. As discussed in Section 2, we interpreted this result as evidence that production risk
undermined the validity of cost minimization conditional on final output.

https://doi.org/10.1017/aae.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2018.6


Biotechnology and U.S. Agriculture 393

our focus on biotechnology, we include three variables for technology: a time
trend defined as t = year− 2000, which captures long-term technical change,
and the variables Bt(t ) and HT (t ), which measure biotechnology adoption at
time t (“insect resistance” for Bt(t ) and “herbicide tolerance” for HT (t )). Thus,
conditional on (r, y, t ),we consider a translog specification for the cost function
C(r, y, t ) of the form

ln [C (r, y, t )] = a0 +
6∑
i=1

ailn(ri) + 0.5
6∑
i=1

6∑
j=1

ai jln(ri) ln(r j ) + δ ln (y)

+ b0 t +
6∑
i=1

bit ln(ri) + d0 Bt (t ) +
6∑
i=1

diBt (t ) ln(ri)

+ e0HT (t ) +
6∑
i=1

eiHT (t ) ln(ri) + ε0,

(7a)

where (a, δ, b, d, e) are parameters, a = (a1, a2, ..., a6), b = (b1, b2, ..., b6),
d = (d1, d2, ..., d6), and e = (e1, e2, ..., e6), satisfying the symmetry conditions
ai j = a ji for i �= j, and ε0 is an error term with mean zero. The specification
(equation 7a) is flexible in the sense that it does not impose a priori restrictions
on the elasticities of substitution among inputs (Diewert and Wales, 1987).
The variables Bt(t ) and HT (t ) in equation (7a) identify explicitly the role of
biotechnology. From equation (5), the parameter δ captures returns to scale, with

δ {<

=
>
} 1 under {increasingconstant

decrasing
} returns to scale.

Using Shephard’s lemma in equation (2), the cost share of the ith factor
associated with equation (7a) is

wi (r, y, t ) = ai +
6∑
j=1

ai jln(r j ) + bi t + di Bt (t ) + ei HT (t ) + εi, (7b)

where εi is an error term with mean zero, E(εi) = 0, and variance/covariance
E(εi · ε j ) = σi j for i, j = 0, . . . , 6. Applied to equations (7a) and (7b), the
homogeneity restrictions in equation (3) are as follows:

∑6
i=1 ai = 1,

∑6
i=1 ai j = 0

for all j, and
∑6

i=1 bi = ∑n
i=1 di =

∑6
i=1 ei = 0. Equations (7a) and (7b) are a

system of seven stochastic equations that can be estimated econometrically.
Noting that

∑6
i=1 wi = 1 implies that knowing five cost shares is equivalent to

knowing the sixth one. It means that we drop one share equation without a loss
of information. When using maximum likelihood estimation, the econometric
results are invariant to the equation dropped (Barten, 1969). On that basis, we
proceed estimating six equations: the cost equation (7a) along with five cost share
equations in (7b).

Our empirical analysis relies on farm input and output data reported by the
USDA’s Economic Research Service (ERS).We examine agricultural productivity
in the United States in general and in the Corn Belt states because GM adoption
is significantly concentrated in the staple crops such as corn and soybean. The
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investigation will evaluate the rate and nature of technological change and its
implications for the structure of input demand. Our sample information involves
annual data starting in 1960. At the U.S. level, the data cover the period 1960–
2013. However, USDA-ERS stopped reporting state-level data after 2004. Thus,
our state-level analysis covers the period 1960–2004. Our analysis focuses on
nine states in the Corn Belt: Illinois (IL), Iowa (IA), Indiana (IN),Michigan (MI),
Minnesota (MN), Missouri (MO), Nebraska (NE), Ohio (OH), and Wisconsin
(WI). We chose the Corn Belt for two reasons: (1) corn and soybean are the two
main crops in this region, and (2) corn and soybean are two of three crops (the
third one being cotton) that have greatly benefited from biotechnology during
the last two decades.

For each of the six inputs included in our analysis, a price index in each year
(and in each state in the state-level analysis) was obtained from USDA (2017b).
Input quantity indices were obtained by dividing input cost by the associated
price indices. For labor, energy, and fertilizer, the price and quantity indices were
obtained from Eldon Ball at USDA (2017b). For herbicides and insecticides, the
input prices were obtained from Richard Nehring at ERS, following the hedonic
procedure proposed by Fernandez-Cornejo and Jans (1995). For “other inputs,”
the price index and quantity index were calculated using a Fisher index applied
to the remaining inputs (feed, seed, purchased services, and other intermediate
inputs). Finally, the quantity of “intermediate output” y was measured using a
Fisher quantity index (Diewert, 1992).4 Summary statistics for the U.S. data are
reported in Table 1.

The adoption rates Bt(t ) and HT (t ), at both the U.S. level (for the U.S.
analysis) and the state-level (for the Corn Belt analysis), were obtained from
Fernandez-Cornejo et al. (2014), USDA (2017a), and the Dmrkynetec farm
survey.5 Note that biotechnology started being adopted in 1995, thus covering
19 years in our U.S. sample (from 1995 to 2013). To make the parameters of
the variables t, Bt(t ), and HT (t ) comparable in equations (7a) and (7b), we
define Bt(t ) = [19∗ (observed proportional adoption rate of Bt technology)]
and HT (t ) = [19∗ (observed proportional adoption rate of HT technology)].
The parameters d and e in equations (7a) and (7b) provide a basis to evaluate
the effects of biotechnology adoption on U.S. agriculture, with separate effects
for Bt technology and HT technology. Bt can be viewed as an insecticide

4 Consider a situation with k quantities q ∈ R
kand k corresponding prices p ∈ R

k. For given reference

prices p0 ∈ R
k and reference quantities q0 ∈ R

k, the Fisher price index is P =
√

p·q0
p0·q0

p·q
p0·q , and the

Fisher quantity index is Q =
√

p0·q
p0 ·q0

p·q
p·q0 (Diewert, 1992). We took p0 and q0 as sample means for the

corresponding variables. Using netput notation, the Fisher index for “intermediate output” was obtained
using p · q = pa qa − ∑n

i=1 pi xi, where qa is output, xi is the ith input, and capital is excluded from the
list of n inputs.

5 Dmrkynetec changed its name to GfK Kynetec in May 1999. The company is based in St. Louis,
Missouri, and has become a leading agricultural marketing and consulting firm globally.
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Table 1. Summary Statistics for U.S. Agriculture

Variables Mean Minimum Median Maximum

Intermediate output index 1.002 0.479 0.945 1.770
Labor quantity index 90,177 57,795 82,036 155,145
Labor price index 0.488 0.060 0.325 1.343
Energy quantity index 14,906 12,724 14,506 19,540
Energy price index 0.559 0.131 0.541 1.598
Fertilizer quantity index 13,887 8,103 14,231 21,108
Fertilizer price index 0.636 0.158 0.523 1.935
Herbicide quantity index 2,851 215 3,032 6,554
Herbicide price index 0.731 0.302 0.711 1.296
Insecticide quantity index 2,820 772 2,005 9,877
Insecticide price index 0.942 0.203 1.021 1.828
Other input quantity index 67,333 49,193 68,230 86,314
Other input price index 1.001 0.317 1.023 2.335

Note: Number of observations = 54.

substitute. HT can be viewed as an herbicide complement for the corresponding
herbicide product but a substitute for other herbicides (e.g., Fernandez-Cornejo
et al., 2012). Note that our analysis is applied to agriculture as a whole. It
captures productivity effects that are specific to each crop as well as effects
that occur across agricultural activities. The latter effects include the effects
of crop rotation and of crop-livestock interactions. Although most previous
analyses of biotechnology have been crop specific (e.g., Bustos, Caprettini and
Ponticelli, 2016; Carpenter, 2010; Klümper and Qaim, 2014; Perry, Moschini,
and Hennessy, 2016), our analysis includes the productivity effects of input
use and covers a broader scope of agriculture across all production activities.
In this context, we examine the effects of HT and Bt technology on farm
productivity and on input use, especially on the demand for herbicide and
insecticides separately.

4. Econometric Estimates

In a preliminary analysis of the data, we investigated the nature of returns to
scale. As noted previously, constant returns to scale (CRS) corresponds to δ = 1
in equation (7a). We tested the null hypothesis of CRS (H0 : δ = 1) using both
U.S. aggregate data and state-level Corn Belt data. We estimated the model
by the generalized method of moments using ln(yt−1) as instrument for ln(yt ).
In this context, we failed to reject the null hypothesis at the 9% significance
level with U.S. data and at the 70% significance level using state-level Corn
Belt data. Thus, we did not find statistical evidence against CRS. On that basis,
the analysis presented subsequently was conducted imposing CRS with δ = 1 in
equation (7a). In addition, note that CRS offers a significant advantage for our
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empirical investigation: under CRS, there is no parameter associated with output
y in equations (7a) and (7b). It means that the presence of measurement errors in
y only affects the estimated variance of the error term in equation (7a), and it has
no effect on the remaining parameter estimates. In other words, the estimation
of all parameters in equations (7a) and (7b) are robust to the mismeasurement of
intermediate output y.6 This feature is important in agriculture as production
uncertainty makes the measurement of output somewhat problematic (e.g.,
Chavas, 2008; Pope and Chavas, 1994).

Assuming δ = 1, the translog model given in equations (7a) and (7b)
constitutes a system of equations. Allowing for different variances and nonzero
covariances across equations, the system was estimated by maximum likelihood
(after imposing the homogeneity and symmetry restrictions discussed previously).
To explore possible serial correlation, we allowed the error terms ε in equations
(7a) and (7b) to exhibit first-order serial correlation, where εit = ρi εi,t−1, and
ρi is the serial correlation coefficient for the ith equation, i = 0, . . . , 5. The
analysis was applied to the U.S.-level data over the period 1960–2013 and to the
state-level data from the Corn Belt over the period 1960–2004. For the state-
level analysis, the estimation was pooled across states, with state dummies being
added to each equation to capture possible heterogeneity across Corn Belt states.
The state dummies were introduced to be as intercept shifters in the cost equation
(7a) and the cost share equation (7b), reflecting possible differences in technology
across states, and they were introduced as interaction effects with the time trend
variable t in the cost equation (7a), capturing possible differences in productivity
growth across states.7

The econometric results are reported in Table 2, where the subscript stands
for the corresponding input: “1” for labor, “2” for energy, “3” for fertilizer, “4”
for herbicides, “5” for insecticides, and “6” for other inputs.

Table 2 shows that many estimated parameters are statistically significant.
As reflected by the coefficients a, input prices have significant effects on input
demands. Also, most of the time trend parameters b are statistically significant,
indicating the presence of important technological change in U.S. agriculture
during the last 50 years. In addition, several of the d and e parameters are
statistically significant, indicating that biotechnology is among the important

6 Note that this robustness disappears under any departure from CRS. Indeed, without CRS (or more
generally under nonhomothetic technology), measurement errors in y create endogeneity problems and
identification issues that can be difficult to resolve (e.g., Tack et al., 2015). Without CRS, endogeneity
issues would arise from the correlation between y and the error term in equation (7a), implying that least
squares would generate biased and inconsistent parameter estimates. Such issues raise questions about
the validity of some previous cost-based empirical analyses of agriculture (e.g., Antle, 1984; Lopez, 1982;
Ray, 1982).

7 We did consider estimating the model taking into consideration the spatial autocorrelation for
the Corn Belt model. However, this was problematic because of our small sample size: having only 44
observations to estimate covariances across six equations and nine states generates a singular estimated
variance-covariance matrix.
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Table 2. Parameter Estimates of the Translog Cost Function in Equations (7a) and (7b)

Corn Belt States
United States (benchmark Iowa)

Standard Standard
Parameters Estimate Error Estimate Error

Intercept a0 0.053∗∗ 0.021 0.042 0.051
a1 0.326∗∗∗ 0.013 0.321∗∗∗ 0.013
a2 0.081∗∗∗ 0.005 0.055∗∗∗ 0.003
a3 0.073∗∗∗ 0.008 0.069∗∗∗ 0.004
a4 0.028∗∗∗ 0.003 0.022∗∗∗ 0.004
a5 0.027∗∗∗ 0.004 0.003∗∗∗ 0.001
a6 0.465∗∗∗ 0.013 0.530∗∗∗ 0.013

Coefficients of
log(input prices)

a11 0.143∗∗∗ 0.019 0.171∗∗∗ 0.005
a22 0.043∗∗∗ 0.004 0.041∗∗∗ 0.002
a33 0.016∗∗ 0.007 0.020∗∗∗ 0.003
a44 0.003 0.002 0.008∗∗∗ 0.001
a55 −0.0004 0.003 0.0005∗ 0.0003
a66 0.164∗∗∗ 0.017 0.158∗ 0.008
a12 −0.012∗∗ 0.005 −0.014∗∗∗ 0.001
a13 −0.016∗ 0.009 −0.022∗∗∗ 0.002
a14 0.005 0.004 −0.009∗∗∗ 0.001
a15 −0.006 0.004 −0.001∗∗∗ 0.0003
a16 −0.114∗∗∗ 0.014 −0.126∗∗∗ 0.005
a23 0.004 0.003 0.005∗∗∗ 0.001
a24 −0.006∗∗∗ 0.002 0.0001 0.001
a25 0.006∗∗∗ 0.002 0.001 0.0004
a26 −0.035∗∗∗ 0.006 −0.032 0.002
a34 0.002 0.002 −0.0004 0.001
a35 −0.003 0.003 −0.001∗ 0.0004
a36 −0.003 0.008 −0.002∗ 0.004
a45 0.005∗∗∗ 0.002 0.0002 0.0004
a46 −0.011∗∗∗ 0.004 0.001 0.002
a56 −0.001 0.005 0.001 0.001

t coefficients b0 −0.031∗∗∗ 0.001 −0.026∗∗∗ 0.002
b1 0.005∗∗∗ 0.001 −0.005∗∗∗ 0.0003
b2 −0.0001 0.0002 0.0004∗∗∗ 0.0001
b3 0.001∗∗ 0.0003 0.001∗∗∗ 0.0001
b4 0.0004∗∗∗ 0.0001 0.001∗∗∗ 0.0001
b5 0.001∗∗∗ 0.0001 0.0001∗∗∗ 0.0000
b6 0.003 0.0004 0.002∗∗∗ 0.0003

Bt coefficients d0 0.015 0.014 0.006 0.013
d1 −0.005 0.005 −0.002 0.002
d2 0.001 0.001 0.0004 0.0004
d3 0.005∗ 0.003 0.002∗ 0.001
d4 0.001 0.001 −0.001∗ 0.0004
d5 0.001 0.001 0.0001 0.0001
d6 −0.003 0.004 0.001 0.002
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Table 2. Continued

Corn Belt States
United States (benchmark Iowa)

Standard Standard
Parameters Estimate Error Estimate Error

HT coefficients e0 0.003 0.012 −0.010 0.009
e1 0.007 0.004 0.001 0.002
e2 −0.001 0.001 −0.001∗∗ 0.0003
e3 −0.004∗ 0.002 −0.001∗ 0.001
e4 −0.002∗∗ 0.001 −0.001∗∗ 0.0003
e5 −0.001 0.001 0.0001 0.0001
e6 0.001 0.003 0.001 0.002

Serial correlation
coefficients

ρ0 − 0.030 0.140 0.271∗∗∗ 0.049
ρ1 0.217 0.138 0.724∗∗∗ 0.034
ρ2 0.171 0.137 0.580∗∗∗ 0.042
ρ3 0.508∗∗∗ 0.117 0.659∗∗∗ 0.036
ρ4 0.446∗∗∗ 0.124 0.871∗∗∗ 0.025
ρ5 0.246∗ 0.138 0.676∗∗∗ 0.039

Notes: The number of observations is 54 (covering the period 1960–2013) for the United States and 396
(= 44 × 9 states, covering the period 1960–2003) for the Corn Belt states. The estimates are based on
the maximum likelihood estimation of the cost function (7a) and the cost share (7b) equations with six
inputs: 1, labor; 2, energy; 3, fertilizer; 4, herbicide; 5, insecticide; 6, other inputs. ρi is the first-order serial
correlation coefficient for εi in equations (7a) and (7b). The asterisks (∗∗∗, ∗∗, and ∗) indicate significance
at the 1%, 5%, and 10% levels, respectively. Although not reported in the table, parameters for state
dummy variables were also estimated for the Corn Belt states, allowing for differences in technology and
in productivity growth across states. Bt, Bacillus thuringiensis; HT, herbicide tolerance.

factors affecting technological change. The exact nature of these effects is further
examined subsequently. Finally, in our state-level analysis, many of the state
dummy variables (not reported in Table 2) were also found to be statistically
significant (see Table 3).8

As discussed in Section 2, the cost functionC(r, y, t ) is concave in prices r. We
investigated whether the estimates reported in Table 2 satisfy this property. The
concavity of C(r, .) means that the matrix ∂2C/∂r2 is negative semidefinite, all
its eigenvalues being nonpositive. We evaluated the eigenvalues of ∂2C/∂r2 at all
data points in our U.S. sample. We found that all eigenvalues were not always
less than or equal to zero. Based on the estimated distribution of the parameters
reported in Table 2, we usedMonte Carlo simulation to simulate the distribution
of the eigenvalues at each data point. Using these simulated distributions, we
tested the hypothesis that all eigenvalues are nonpositive. We found that, when
positive, the eigenvalues were not statistically different from zero at the 10%

8 We also conducted the analysis of Corn Belt states for each state separately. The econometric
estimates showed additional evidence of heterogeneity across states. The results are available from the
authors upon request.

https://doi.org/10.1017/aae.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2018.6


Biotechnology and U.S. Agriculture 399

Table 3.Hypothesis Testing

Wald tests United States Corn Belt states

No technological change
Wald test statistic 2,223.4 861.2
P value 0.0001 0.0001
Hicks neutral technological change
Wald test statistic 274.4 750.4
P value 0.0001 0.0001
Testing for identical productivity across states
Wald test statistic – 1,843.5
P value 0.0001
Testing for identical productivity growth across states
Wald test statistic – 17.76
P value 0.023

significance level. On that basis, we conclude that, in our U.S. sample, there is no
strong statistical evidence against the concavity of the estimated cost function.

To support our analysis of the effects of technological change, we conducted
several formal tests. The test results are reported in Table 3. First, we tested the
hypothesis of no technological change. It corresponds to the null hypothesis
that all parameters b, d, and e are jointly zero. Using a Wald test, Table 3
provides strong evidence against this null hypothesis both at the national
level and at the state level (with P values less than 0.01), which confirms a
large impact of technological change on U.S. agriculture. Next, we investigated
the nature of technological change. We tested whether technological change
was “Hicks neutral” (i.e., whether it would not affect the input cost shares).
From equation (6b), Hicks neutral technological change corresponds to the
parameters (bi, di, ei) for factor i being all zero for all i = 1, . . . , 6. Using a
Wald test, Table 3 shows that Hicks neutral technological change is strongly
rejected for all factors both at the national level and the state level (with P
values less than 0.01). Thus, consistent with previous research (e.g., Binswanger,
1974), we find strong evidence that technological change is “Hicks biased” and
has significant effects on input cost shares. The exact nature of this bias is
further discussed subsequently. Finally, in the state-level analysis, we examined
possible heterogeneity in productivity across states. This involved testing the null
hypothesis that all coefficients associated with the state dummy variables (as
cost shifters, as cost share shifters, and as interactions with time trend) are zero.
As reported in Table 3, we strongly reject this null hypothesis (with a P value
less than 0.01), indicating the presence of much heterogeneity in agricultural
productivity across states in the Corn Belt. This is consistent with the results
obtained by Lusk, Tack, and Hendricks (2017). We also investigated whether
productivity growth was similar across states. This was done by testing the
null hypothesis that the coefficients of interaction variables between the state
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Table 4. Rate of Technological Change (annual percentage)

Corn Belt States

Period United States Average IA IL IN MI MN MO NE OH WI

1960s 2.46 2.46 1.92 3.19 2.60 2.82 1.23 3.34 2.56 2.52 1.91
1970s 2.54 2.51 1.97 3.24 2.65 2.87 1.33 3.41 2.60 2.57 1.96
1980s 2.60 2.52 1.98 3.25 2.66 2.87 1.34 3.42 2.61 2.58 1.96
1990s 2.50 2.95 2.41 3.68 3.09 3.31 1.77 3.85 3.04 3.01 2.34
2000s 1.29 3.12 2.58 3.85 3.26 3.48 1.94 4.02 3.21 3.18 2.56
Pre-1995 2.57 2.53 1.97 3.26 2.67 2.89 1.35 3.43 2.62 2.59 1.97
Post-1995 1.65 2.96 2.42 3.69 3.10 3.32 1.79 3.86 3.05 3.02 2.41

Note: The analysis is based on 54 years of data (covering the period 1960–2013) for the United States
and 44 years of data (covering the period 1960–2003) for the Corn Belt states.

dummies and time trend are zero. As reported in Table 3, we rejected this null
hypothesis at the 0.023 significance level, providing evidence of heterogeneity
in productivity growth across states in the Corn Belt. The differences in
productivity growth across states are reported in Table 4 and discussed
subsequently.

5. Economic Implications

The estimates of equations (7a) and (7b) reported in Table 2 provide all
the information necessary to evaluate agricultural technology and farm input
demands. First, the rate of technological change (RTC) can be obtained from
equation (6a). The estimated RTC (measured in annual percentage) is reported
in Table 4 for selected periods. Table 4 shows that U.S. agriculture has exhibited
rapid technological progress over the last few decades. The RTC goes from
1.29% to 2.60%. These results can be compared with previous USDA estimates
of RTC obtained by Ball et al. (1997), Ball, Hallahan, and Nehring (2004), and
Wang et al. (2015). All estimates reflect rapid productivity growth in agriculture.
Our pre-1995 RTC estimate is 2.57; it is broadly consistent with the estimate
of 2.65 reported by Ball et al. (1997) for the period 1960–1994.9 Table 4
reports that, at the U.S. level, RTC declines from 2.57 before 1995 to 1.65 after
1995. This pattern indicates some slowdown of technological progress in U.S.
agriculture. Again, this result is consistent with previous evidence (e.g., Wang
et al., 2015).

However, our results differ in the Corn Belt. Table 4 reports RTC for each of
the nine Corn Belt states as well as the average RTC for the Corn Belt. It shows
that Illinois exhibits a high RTC varying from 3.19 in the 1960s to 3.85 in the

9 Note that Wang et al. (2015) reports a lower RTC estimate of 1.7% for U.S. agriculture over the
period 1960–1990.
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2000s. In contrast, Minnesota has an RTC going from 1.23 in the 1960s to 1.94
in the 2000s. This documents significant heterogeneity in productivity growth
among Corn Belt states. The average RTC was 2.53 in the Corn Belt before
1995, but that number has increased to 2.96 after 1995. Thus, on average, the
Corn Belt had a slightly lower productivity growth than the United States before
1995, but its productivity growth has increased since 1995 and is now ahead of
the rest of United States. Since the year 1995 marks the start of the biotechnology
revolution (i.e., the inception of GM commercial crops in U.S. agriculture),
our analysis shows that the Corn Belt has benefited from biotechnology, and
it has benefited more than the rest of the United States. This observation is
not surprising: adoption of biotechnology has been rapid for corn and soybean
(Fernandez-Cornejo et al., 2014), and corn and soybean are the two major crops
grown in the Corn Belt. This result indicates that biotechnology has been a major
driving factor of agricultural productivity in the United States. It also indicates
that other U.S. regions (besides the Corn Belt) have not benefited as much from
biotechnology, thus resulting in some slowdown in agricultural productivity
growth. This slowdown is of some concern. Declining productivity growth
may make it more difficult to feed a growing world population. A scenario
where population grows faster than farm productivity would be associated
with increased food insecurity and rising food prices. Such arguments stress the
importance of research and development (both private and public) as key drivers
of future agricultural productivity.

Second, our analysis allowed us to estimate the bias in technological change.
The bias is given by the term Bi = ∂wi/∂t in equation (6b), where technological
change is said to be the ith factor-using if Bi > 0 and the ith factor-saving if
Bi < 0. Before 1995 and from equation (7b), we have Bi = bi. The coefficients di
and ei capture the changes in bias since 1995 because of the adoption of Bt and
HT technology, respectively. As reported in Table 3, we found strong statistical
evidence of bias in technological change. Recall that we consider six inputs: (1)
labor, (2) energy, (3) fertilizer, (4) herbicides, (5) insecticides, and (6) other inputs.
For both the U.S. and the Corn Belt results, Table 2 shows strong evidence that
technological change has been labor saving (as b1 is negative and statistically
significant) and fertilizer using, herbicide using, and insecticide using (as the
corresponding bi values are positive and significant). In addition, Table 2 shows
evidence of bias in favor of energy for Corn Belt states. These results are largely
consistent with previous research (e.g., Binswanger, 1974).

Table 2 also reports the biases related to biotechnology, including evaluations
of Bt technology (as captured by the parameters d) and HT technology (as
captured by the parameters e). Such parameters measure the change in biases
beyond the ones captured by the parameters b. From Table 2, the parameters d1
and e1 are not statistically different from zero, indicating that neither Bt nor
HT technology has affected the labor-saving bias of technological change in
U.S. agriculture. This result differs from Bustos, Caprettini, and Ponticelli (2016)
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who argued that HT technology contributed to labor-saving bias in Brazilian
agriculture.

In addition, Table 2 reports that b5 and e5 are not statistically significant,
indicating that neither Bt nor HT has affected the strong bias in favor of in-
secticide use that prevailed before 1995. Although previous literature has argued
that biotechnology has contributed to a reduction in pesticide use (e.g., Klümper
and Qaim, 2014), our analysis indicates that this result applies to herbicide (as
discussed subsequently), but not to insecticide: neither Bt nor HT have reduced
the bias toward insecticide use in U.S. agriculture. This likely reflects the fact
that the insects targeted by Bt technology (e.g., the European corn borer and
rootworms for corn) are not easily controlled using traditional insecticides.

For both the United States and the Corn Belt states, the parameter d3 is
found to be positive and statistically significant at the 10% level, indicating that
Bt technology has increased the bias in favor of fertilizer use. This finding is
important: by improving pest control, Bt technology helps reduce pest damages,
making it easier for the plant to benefit from fertilizer applications.

For both the United States and the Corn Belt states, the parameters e3 and
e4 are negative and statistically significant at the 10% level, providing evidence
that HT technology has reduced the input-using bias for fertilizer and herbicide.
Having b3 > 0, e3 < 0, and b3 + e3 > 0 indicates that this bias in favor of using
fertilizer was reduced but not eliminated by HT. For herbicide use at the U.S.
level, we have b4 > 0, e4 < 0, and b4 + e4 < 0, implying that HT was associated
with a switch in technological change bias from herbicide using before 1995 to
herbicide saving after 1995. This is another important finding: HT technology
behaves as a substitute for herbicide use. Note that this finding is consistent
with the results obtained by Fernandez-Cornejo et al. (2012) and Klümper
and Qaim (2014).10 To the extent that reducing herbicide use is seen as being
desirable from an environmental viewpoint, it indicates that, beyond improving
weed control and reducing yield loss from weed infestation, biotechnology can
generate environmental benefits. Yet, the patterns differ for the Corn Belt states,
where we find that b4 > 0, e4 < 0, and b4 + e4 > 0. Thus, in the Corn Belt
states, HT technology reduces the bias in favor of using herbicide but does
not eliminate it, indicating weaker substitution between HT and pesticide use.
This reflects apparent regional heterogeneity in the effects of biotechnology on
agriculture.

Another difference between the United States and Corn Belt results involves
energy use. For the United States, the estimates of b2, d2, or e2 are not statistically
significant, indicating no bias in technical change with respect to energy use.
However, the estimates differ for the Corn Belt where b2 and e2 are statistically

10 Although our analysis indicates that HT technology has been “herbicide saving”in the United States
after 1995, it remains to see whether this effect will hold in the future. Indeed, the slow development of
Roundup-resistant weeds indicates that such effects may not persist in the longer term.
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Table 5. Price Elasticities of Input Demand: U.S. Level, Evaluated at Sample Means

Price Quantity Labor Energy Fertilizer Herbicide Insecticide Other inputs

Labor −0.208∗∗ 0.018 0.009 0.035∗∗ −0.004 0.149∗∗∗

(0.067) (0.019) (0.032) (0.014) (0.014) (0.049)
Energy 0.083 −0.236∗∗∗ 0.128∗∗ − 0.076∗∗ 0.115∗∗∗ −0.014

(0.086) (0.056) (0.056) (0.032) (0.036) (0.096)
Fertilizer 0.040 0.118∗∗ − 0.700∗∗∗ 0.053 −0.029 0.517∗∗∗

(0.136) (0.052) (0.106) (0.032) (0.039) (0.123)
Herbicide 0.601∗∗ −0.286∗∗ 0.215 −0.776∗∗∗ 0.345∗∗∗ −0.099

(0.234) (0.122) (0.133) (0.149) (0.119) (0.224)
Insecticide −0.056 0.371∗∗∗ − 0.100 0.297∗∗∗ −1.008∗∗∗ 0.496∗∗

(0.206) (0.118) (0.138) (0.102) (0.145) (0.238)
Other inputs 0.075∗∗∗ −0.002 0.062∗∗∗ − 0.003 0.017∗∗ −0.149∗∗∗

(0.024) (0.011) (0.015) (0.007) (0.008) (0.031)

Notes: Standard errors are presented in parentheses below the elasticity estimates. The asterisks (∗∗∗, ∗∗,
and ∗) indicate significance at the 1%, 5%, and 10% levels, respectively.

Table 6. Evolution of Own Price Elasticities for Selected Inputs: U.S. Level

Input Energy Fertilizer Herbicide Insecticide Other inputs
Period

1970s −0.03 −0.95 −1.55 −2.74 −0.14
(0.01) (0.14) (0.30) (0.39) (0.03)

1980s −0.32 −0.86 −1.17 −1.64 −0.14
(0.08) (0.13) (0.22) (0.23) (0.03)

1990s −0.17 −0.74 −0.94 −1.19 −0.15
(0.04) (0.11) (0.18) (0.17) (0.03)

2000s −0.16 −0.17 −0.26 −0.76 −0.16
(0.04) (0.03) (0.05) (0.11) (0.03)

Note: Standard errors are presented in parentheses below the elasticity estimates.

significant at the 5% level, with b2 > 0, e2 < 0, and b2 + e2 < 0 implying a
switch in biased technical change from energy using before 1995 to energy
saving after 1995. This result likely reflects the fact that HT technology has been
associated with reduced tillage (Fernandez-Cornejo et al., 2012; Perry,Moschini,
and Hennessy, 2016).

Next, we evaluate the price elasticities of input demand. These estimates are
obtained from equation (4) and reported in Tables 5 and 6. For the United
States, Table 5 shows the own-price and cross-price elasticities for input demand
evaluated at sample means. The own-price elasticities vary from −0.149 for
“other inputs” to −1.008 for insecticides. With the exception of insecticides,
all input demands are price inelastic. The results show that labor, energy, and
other inputs have highly inelastic demands (with elasticities between −0.15 and
−0.25). Demand for fertilizer and herbicides are also inelastic but are relatively
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more price sensitive (all around −0.75). The cross-price elasticities tend to be
positive, indicating that most inputs are substitutes.11 The cross-price elasticities
are 0.345 for herbicide demand with respect to insecticide price and 0.371
for insecticide demand with respect to energy price, both being statistically
significant.

Finally, Table 6 reports the evolution of own-price elasticities over time for
the United States. Table 6 shows that the own-price elasticity for other inputs
is fairly constant over time. It also reveals that the demands for fertilizer,
herbicide, and insecticide are becoming much more price-inelastic over time. For
example, the demand elasticity for fertilizer changed from −0.95 in the 1970s
to −0.74 in the 1990s and to −0.17 in the 2000s. This increased inelasticity of
demand implies that farmers are becoming less responsive to prices for fertilizer,
herbicide, and insecticide. Note that biotechnology has contributed to reducing
the adverse effects of pest and weed damages. If pest and weed damages reduce
the farmers’ incentive to use fertilizers, then the adoption of biotechnology would
be associated with stronger incentives to use fertilizers. Our results indicate that
such changing incentives are associated with less demand sensitivity to input
prices for fertilizer, herbicide, and insecticide. In other words, although U.S.
farmers have benefited from rapid technological progress, their input choices
have now become less sensitive to changing market conditions.

6. Conclusion

This article has explored the effects of biotechnology on farm productivity
and input demands, with an application to U.S. agriculture. The analysis relies
on a cost specification involving six inputs (labor, energy, fertilizer, herbicide,
insecticide, and other inputs) and evaluating output as “intermediate output.”
We argue that focusing on intermediate output helps validate cost minimization
in the presence of production uncertainty. Also, the distinction between herbicide
and insecticide is relevant as it allows us to evaluate the separate effects of two
aspects of GM technology: Bt technology (targeted to improving pest control)
and HT technology (targeted to improving weed control).

Our empirical analysis is applied to two agricultural data sets: U.S. data
covering the period 1960–2013 and data for nine Corn Belt states covering the
period 1960–2004. Cost and cost share equations are specified and estimated,
providing useful information on the speed and nature of technological change,
with a special focus on GM technology. The results document the changing
patterns of farm productivity under biotechnology. They find that biotechnology
has contributed to speeding up productivity growth in the Corn Belt, but not
at the U.S. level. The results also document the evolving biases in technological

11 Table 5 shows that, when negative, the cross-price elasticities are not statistically significant. Thus,
our analysis does not find statistical evidence of complementary among inputs.
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change in agriculture, with a special focus on the demand for herbicides and
insecticides. We find evidence that Bt technology has increased the bias in favor
of fertilizer use. By reducing pest damages, this indicates that Bt technology
makes it easier for the plant to benefit from fertilizer applications. We also find
that HT technology has reduced the technical change bias in favor of herbicide
use. Finally, we find evidence that farm demands for fertilizer, herbicide, and
insecticide have become more inelastic, (i.e., less responsive to prices). Thus,
although biotechnology has contributed to technological progress in agriculture,
GM adoption has also been associated with a lower ability of farmers to adjust
to changing market conditions.

Our results tend to support a growing literature regarding the impact of
biotechnology in agriculture. For example, in the Corn Belt states, we find that
the bias in technical change has changed from energy using before 1995 to
energy saving after 1995. This result is consistent with HT technology being a
complement to reduced tillage (Fernandez-Cornejo et al., 2012; Perry, Moschini,
and Hennessy, 2016). We also document the heterogeneity in productivity both
over time and across space.We find that, since 1995, agricultural productivity has
increased faster in the Corn Belt than at the U.S. level, likely reflecting regional
differences in biotechnology adoption. Finally, we documented evolving patterns
of elasticities of farm input demands in the United States, with some trends
toward more inelastic demands. Such trends raise several issues that appear
to be policy relevant. The last few decades have seen a rise in concentration
in farm input industries (Fuglie et al., 2012). Biotechnology firms have been
vertically integrating into seed breeding and chemical production. In the presence
of inelastic demand for inputs, increased concentration in farm input industries
may contribute to the exercise of market power, leading to higher farm input
prices. This change could have adverse effects on farm welfare and on the
efficiency of agriculture. Exploring the economic and policy implications related
to such issues appear to be good topics for future research.
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