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Let <p be a continuous, decreasing, real-valued function on 0 ^ r g 1
with 95(1) = 0 and <p(r) > 0 for r < 1. Let Eo be the Banach space of
analytic functions / on the open unit disc D, such that f(z)<p(\z\) -> 0 as
z\ —> 1, with norm

\\f\\ = svv{\f(z)}<p(z):zeD},

where we write tp(z) = (p(\z\) for z e D. Let E be the Banach space of
analytic functions f on D for which ftp is bounded in D, with the same norm
as Eo. It is easy to see that E is complete in this norm, and that Eo is a
closed subspace of E.

The dual space of Eo will be shown to be identifiable with a quotient
space of LX{D). Hence the second dual can be identified with a subspace of
L°°(D). Our main result is that E may be naturally identified with this
second dual, and that the inclusion map of Eo into E coincides with the
natural embedding of Eo in E$*. The corresponding result fails, as one can
easily see, if the hypothesis of analyticity is replaced by mere continuity
in the definitions of Eo and E. The result bears some similarity to the
situation for sequence spaces; the second dual of the space of null sequences
is the space of bounded sequences. It should also be compared with results
of de Leeuw [2] and of Duren, Romberg, and Shields [3, § 4] for spaces of
Lipschitzian functions.

Let q)E0 = {cpf : / e Eo}; q>E is defined similarly. Let

Here, dA denotes two-dimensional Lebesgue measure on D. If geL1{D),
let [g] denote the coset g+N1 that contains g. Thus, [g] is an element of the
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quotient space U-jN1. As usual, we define the quotient norm by

THEOREM 1. (£„)* = L^N1 and {L^N1)* = E.

REMARK. More precisely, the first part of the theorem means that each
continuous linear functional % on Eo has the form X = Xg where g e LX(D)
and

and ||A,|| = \\[g}\\.
Similarly, the second part means that each continuous linear functional

on UjN1 has the form A = Af where / e E and

Af([g]) = f vfgdA; geV(D),
and \\A,\\ = 11/11*.

The proof will be given via a series of lemmas and connecting comments.

LEMMA 1. <pE is a weak-star closed subspace of Loa(D).

PROOF. By a theorem of Banach (see [1], Chapter VIII, Theorem 5),
it is enough to prove that cpE is weak-star sequentially closed in L°°(D).
Suppose now that fne E, n — 1, 2, 3, • • •, with <pfn converging weak-star
to AEL°°(Z)), that is,

$<pfngdA-+jhgdA, VgeZ-i.

By the uniform boundedness principle, the functions q>fn are bounded in
norm. Therefore {/„} is uniformly bounded on each compact subset of D
and so forms a normal family. By passing to a subsequence if necessary,
we may assume that {/„} converges uniformly on compact sets to some
analytic function /, which must lie in E since {<£>/„} is uniformly bounded.
Finally, by the Lebesgue dominated convergence theorem,

J <pfngdA -> j <pfgdA for all g e I> (D),

and so h = yf, which proves the lemma.
The second part of the theorem now follows from the general theory

of Banach spaces. For TV1 is a closed subspace of ^(D), and so the dual of
the quotient space U-jN1 may be identified with (N1)-1, the annihilator of
2V1 in L°°{D). From the definition of N1 and from the general theory, we
see that <pE is a weak-star dense subspace of (TV1)x. It follows from Lemma 1
that q>E = (TV1)-1.

The first part of the theorem is somewhat harder. First note that <pE0

is a closed subspace of CQ(D), the continuous functions on the closed disc
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that vanish on the boundary, with the supremum norm. Then (Co)* = M(D),
the space of bounded complex-valued Borel measures on D, with the
variation norm. Let

N=[pe M(D) : J <pfdp = 0, V/ e Eo).

Then the general theory of Banach spaces tells us that the dual space of
<pE0 may be identified with the quotient Banach space M(D)/N. Thus,
our task is to show that this quotient space may be replaced by
We do this in two steps.

LEMMA 2. If neN then f <pfdp = 0 for all f eE.

PROOF. Fix / e E and let fr(z) = f(rz), 0 <r < 1. Then fr e Eo and
/r ->• / uniformly on compact subsets of D. Also

<p(z)\f(rz)\^<p(rz)\f(rz)\^\\f\\E,

and the result now follows from the bounded convergence theorem.
If (ieM(D), then [/*] will denote the coset (t-\-N that contains p.

We will identify ^(D) with the space of measures veM(D) that are
absolutely continuous with respect to dA. We write lu1 ~ fi2 to mean that

LEMMA 3. Given fi e M(D) and given e > 0, there exists v e ^(D) such
thatv~n and \\v\\ ^

PROOF. This lemma is very similar to a result proved in § 4.1 of [4],
for which two proofs were given, the second occurring in § 4.24. Either
proof can be adapted to the present situation — we follow the first proof,
giving only the main steps. First, let ew be the unit point mass at a point
w e D. Choose a = a(w) and b = b(w) as continuous functions of w so that
0 < a < b and so that the annulus Aw = {z : a 5̂  \z—w\ fS b} lies in D.
Later, an extra condition will be imposed on b. We define the measure vw by

for all Borel subsets E of D, where XE *S the characteristic function of E.
That vw ~ sw holds is just the Cauchy integral formula averaged over an
annulus. Now, for any measure (i e M(D), let v be defined by

v(E) = j vw{E)dn{w) =j(j XB(z)dvw(z)) dfi(w).

Then j " ~ jx. To estimate the norm of v, we have, for any function / that is
bounded and continuous in D, say |/(z)| <S 1,
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<p(w)J f{z)dvw{z)
<p{\w\+b)

so that on choosing b sufficiently small, we have \\vw\\ ̂  l+e, from which
the lemma follows, since it is clear that v is absolutely continuous with
respect to dA.

Using Lemmas 2 and 3, we see that the inclusion map of Ll(D) into
M(D) induces an isometric mapping of Z /̂iV1 onto MjN. The proof of the
theorem is complete.

REMARK. For certain special weight functions q> (e.g.<p(r) =(1—r)x, « > 0)
Shields and Williams [5] have shown that the subspace N1 is actually a
direct summand of L1, and so the quotient space UjN1 may be replaced,
in the statement of Theorem 1, by a subspace of L1.

One word of caution is in-order against trying to generalize the theorem
too far. Let Ao be the space of entire functions / such that f(z)jz -*• 0 as
z -> oo, with norm

| | / | | = sup {|/(*)|/|z|: |*| ^ 1 } ,

and let A be the space of entire functions / for which f{z)\z is bounded for
\z\ 5: 1, with the same norm. It is not true that (Ao)** = A, since Ao is
one-dimensional and A is two-dimensional, by Liouville's theorem.

It would be interesting to find analogues of our theorem for non-radial
weights 9? and for non-circular domains. Williams [6] has obtained an
analogue for spaces of entire functions /, assuming that rnq>(r) -»• 0 as
r-i-oo for n = 0, 1, 2, • • •. Our proof will work there, except that in the
proof of Lemma 2, the approximating functions fr must be replaced by the
polynomials an which are the Cesaro means of the first n partial sums of
the power series for /.

We conclude with a theorem about 'dominating' sets for E, in analogy
with what was done for H°° in [4], § 4.10, 4.15. We shall not carry out a
systematic investigation of this concept here, however.

THEOREM 2. For each e > 0 there exists a countable subset S = Se of D,
with no limit points in D, such that

(1) sup {<p(z)\f{z)\ : z e S} > (l-s)\\f\\B

for all f e E.

PROOF. Let B denote the unit ball of E. The functions in B, on each
compact subset of D, are uniformly bounded and hence are uniformly
equicontinuous. Let

\z\
n ~ ' - n+l
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If e > 0 is given, then there exists <5 = dn > 0 such that

\<p{z)f(z)-<p{w)f{w)\ <s

for all z, w e Kn with \z—w\ < d and all f e B. Hence if Sn is a finite subset
of Kn that is dn dense, then for all / e B, we have

(2) s u p {\<p(z)f(z)\ :zeSn}^ s u p {\<p(z)f(z)\ : z eKn}-s.

Now let S = u Sn so that S is a countable subset of D with no limit
points in D. Clearly, we have

(3) sup {\V[z)f(z)\ : z € S} ^ sup {\<p(z)f(z)\ : z e £»}-e.

Finally, let / e E be arbitrary. Clearly (1) is satisfied if / is the zero function.
If / is not the zero function, then //||/|| e B and so

which completes the proof.
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