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A b s t r a c t : The generation of magnetic field by a conducting, compressible fluid inside 
a spherical shell is studied by direct numerical simulations. A pseudo-spectral method 
is used in order to resolve accurately all the scales present in the problem. The range 
of parameters considered is the following: a unit Prandtl number, Rayleigh numbers up 
to 100 times critical, Taylor number 625, an aspect ratio of 2, a Mach number slightly 
less than 1, and pressure and temperature scale heights of the order of the thickness of 
the shell. A dynamo effect is observed for magnetic Prandtl numbers larger than 1. We 
present the properties of the turbulent flow, the role of the helicity and of the differential 
rotation in the enhancement of the magnetic field, and the spectral properties of the flow 
fields. 

1. The reference state 

We consider a compressible fluid inside a spherical shell heated from within. We 
take as thermodynamic equation the perfect gas law. The equations are solved 
using a pseudo-spectral semi-implicit method (Valdettaro and Meneguzzi, 1989). 
No model is used for the small scales; the resolution used is 64 points in la t i tude, 
128 points in longitude and 65 points in radius. 

The reference s ta te is determined as follows: 
We suppose t ha t t he equilibrium quanti t ies depend only on radius, and tha t 

the gravity is due to the inner core, i.e. we neglect the self-gravitation. Therefore 
the t empera tu re , density and gravity profiles are of the form: 

g(r) = ^ , T(r) = a1 + ^ , p(r) = a3T
m, 

with a0, ai, 02 and 03 arbi t rary constants; m is the polytropic index. The constants 
are determined by giving the values of the following quanti t ies: 

The Rayleigh number 

Ra = — 
dS/Cp gh3 

dr KV top 

where S is t he entropy, Cp is the specific heat a t constant pressure, h is the 
thickness of the shell, g is t he gravity and « and v are the thermal conductivity 
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and the kinematic viscosity. The Rayleigh number is the parameter which governs 
the onset of convection and of turbulent motions. We have taken Ra = 100i?oc, 
Rac being the critical Rayleigh number for the onset of convection. 

The stratification rate x — Ptopl Pbottom- We take a constant density, i.e. \ = 1. 
Consequently the polytropic index m is equal to zero. 

The entropy gradient 
dS/Cp 

dloSr top' 

This quantity measures the relative importance of compressibility, since it is pro
portional to the square of the Mach number (Gilman and Glatzmaier, 1981). We 
choose a value of order 1 (e = 3) in order to have non negligible compressible ef
fects. It turns out from the computations that the average Mach number is slightly 
less than 1. 

The other quantities which define the initial state are: 
The Taylor number Ta — H2d4/i>2; we have taken a moderate rotation rate: 

Ta — 625. The aspect ratio /?, i.e. the ratio between the outer and the inner radius 
of the shell; we have chosen the value /3 = 2. The Prandtl number: we have assumed 
the kinematic viscosity and the thermal diffusivity constant and equal. Therefore 
Pr = U/K is equal to 1. This assumption is in good agreement with the solar 
context if we assume that both v and K there can be represented there as eddy 
diffusivities. Finally we have assumed a perfect monoatomic gas, i.e. cp = 5/2, 
c„ = 3/2. 

The boundary conditions we impose are the following: we specify the tem
perature at the bottom and at the top of the shell. The ratio between the in
ner and outer temperature is fixed by the parameters we have defined above: 
Thottom/Ttop = 1 + 2e/?cp/(c„ — m) = 21. We have thus between 2 and 3 temper
ature scale heights. For the velocity we consider rigid boundary conditions, i.e. 
v = 0. Finally for the magnetic field we take a perfect conductor at the bottom 
of the shell (i.e. the radial components of the magnetic field and of the electric 
current vanish there) and we allow only for a radial component of the magnetic 
field at the top boundary. 

2. The properties of the flow 

We let the fluid evolve from the initial state defined above and without magnetic 
field until a statistically stationary state is achieved. We summarize here the char
acteristics of the flow we obtain. 

The entropy profile, averaged in latitude and longitude, is shown in Fig. 1. As 
expected, the flow field acts to maintain a constant entropy inside the shell. The 
central adiabatic part is surrounded by the inner and outer thermal boundary 
layers, which represent roughly 10% of the total width. In Fig. 2 we plot the den
sity profile. We find, as in Massaguer and Zahn (1980), a reversal of the density 
perturbation near the top of the shell, indicating a negative buoyancy force there. 
This effect does not exist in the incompressible case. 
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The efficiency of the convection is measured by the Nusselt number which is 
the ratio of the total superadiabatic energy flux divided by the purely conductive 
energy flux. The profile we obtain is strongly dependent on the radius, going from 
a minimum of about 3 near the boundaries to a maximum value of 15 at a middle 
radius. 

The effects of compressibility are measured by the average Mach number, which 
in our case is around 0.3. The maximum Mach number fluctuates in time around a 
value of 0.6. The flow is therefore entirely subsonic. The Reynolds number averaged 
over the sphere is around 60, with a maximum value of 140. The Rossby number 
R0 = Re/y/Ta, which measures the importance of rotation is slightly less than 1. 

Figure 1. Radial profile of the entropy, 
averaged over the angles. Note the cen
tral adiabatic part . 

M X «• 4S M « « 

Figure 3. Horizontal spectrum of the 
radial component of the velocity at the 
middle radius. 

Figure 2. Radial profile of the density, 
averaged over the angles. Note the re
versal of the density perturbation near 
the toil of the shell. 

Figure 4. Mollweide projection on the 
sphere of the isocontours of the radial 
velocity at middle radius. Continuous 
lines: Vr pointing toward the exterior; 
broken lines: Vr pointing toward the in
terior. 
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Figure 5. View of a descending plume. 
The velocity vectors are represented by 
a vector of length proportional to the ve
locity. Only vectors larger than a given 
threshold are shown. The outer part of 
the shell is on top. 

Figure 6. Evolution in time of the to
tal magnetic energy during the nonlin
ear phase. 

Equator — 
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Figure 7. Horizontal spectrum of the 
radial magnetic field at middle radius. 

Figure 8. Isocontours of the differen
tial rotation. Continuous lines: rotation 
in the direction of the mean rotation. 
Broken lines: rotation in the opposite 
direction of the mean rotation. 

Figure 9. Isocontours of the toroidal 
component of the magnetic field. Cut 
in a meridional plane. Note the strong 
magnetic tube at the base of the convec
tion zone. 
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The fluid displays motions in a wide range of scales; this is clearly seen from the 
spectrum of the radial velocity, which is plotted in Fig. 3. The large scale motions 
are organised in the form of convection cells. In Fig. 4 are shown the isocontours 
of radial velocity at the middle radius. We see that there are both ascending and 
descending cells; however, the most intense cells are descending. In Fig. 5 is shown 
a descending plume: it has the form of a thin tube, enlarged at the base, and 
extending throughout the depth of the shell. 

3. The dynamo effect 

After the statistically stationary state has developed we have introduced a seed 
magnetic field of very low intensity (Em/Ekin — 10 - 5 ) and we let it evolve in 
time. At the beginning we have frozen the fluid and we let the magnetic field 
evolve alone. The equation for the magnetic field becomes linear and the evolution 
is exponential in time (it is the "kinematic dynamo"). We find, for a magnetic 
Prandtl number Pm = 2.5, an intensification of the magnetic field with a small 
growth rate, of the order of the thermal diffusion time. We have thus a slightly 
supercritical dynamo effect. Higher values of the magnetic Prandtl number would 
have lead to stronger dynamo effects, but we could not increase Pm above that 
value, without increasing the resolution of the computations. 

We have then let the fluid evolve together with the magnetic field for 0.4 
thermal times, which is much larger than the eddy turnover time (of the order of 
0.03tth in our calculations) but it is only of the order of the growth rate of the 
magnetic field we expect from the linear analysis. In Fig. 6 we plot the evolution 
of the magnetic energy in time. We clearly see an increase, which is however 
much lower than those observed in other direct simulations (see e.g. Meneguzzi 
and Pouquet, 1989; Brandenburg et al., 1991). Although we have not reached the 
stage of the nonlinear saturation of the magnetic field, we are able to explore and 
interpret the growth phase. 

In Fig. 7 is plotted the spectrum of the radial component of the magnetic field, 
at middle radius. As expected (Meneguzzi et al, 1981) the magnetic field spectrum 
appears to be more flat than that of the velocity field (Fig. 3). This means that 
the magnetic field displays structures on smaller scale than the velocity field. 

The two major factors which tend to increase the magnetic field are the dif
ferential rotation (v^) /r sintf, which generates strong toroidal magnetic field, and 
helicity {v • w), which generates poloidal fields from toroidal fields. We plot in Fig. 8 
a typical profile of the differential rotation we obtain. We clearly see a strong gen
eration of differential rotation near the base of the convection zone. As expected, 
this strong differential rotation generates a strong toroidal magnetic field. This is 
shown in Fig. 9, where the contour lines of B<j, are plotted in a meridional plane. 
We see the section of a strong magnetic tube at the base of the convection zone. 

The relative helicity (H = (v • u>) /((v2) (w2))1/2) in our run fluctuates be
tween a minimum of 1% and a maximum of 6%. This value is small, although of 
the same order of magnitude of that found in Meneguzzi and Pouquet (1989) in 
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Boussinesq approximation, and could explain the small growth rate we obtain for 
the magnetic field. 

In conclusion, our three-dimensional simulation suggests a consistent compress
ible dynamo, based at the bottom of the convection zone, probably due to an a — Q 
mechanism. This mechanism (Parker, 1955) has been the most successful one for 
the solar dynamo. Applications of our results to the solar context are however 
not possible, due to the large difference between the solar parameters and those 
we can afford with present computers. We think that the interest of such direct 
simulations is to give a better insight to the basic mechanisms and lead to a better 
theoretical understanding of the dynamo problem. 
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