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Abstract

The first paper (written jointly with L. G. Kovacs) of this three-part series reduced the problem of
determining all varieties of the title to the study of the varieties of nilpotent groups of class (at most)
four whose free groups have no nontrivial elements of odd order. The present paper deals with these
under the additional assumption that the variety contains all nilpotent groups of class three. We label
each such variety by a vector of eleven parameters, each parameter a nonnegative integer or oo, subject
to numerous but simple conditions. Each vector satisfying these conditions is in fact used, and
matches directly a (finite) defining set of laws for the variety it labels. Moreover, one can readily
recognize from the parameters whether one variety is contained in another. The third paper will
complete the determination of all varieties of nilpotent groups of class four.

1980 Mathematics subject classification (Amer. Math. Soc): 20 E 10.

1. Introduction

The determination of varieties of nilpotent groups of class four was considered in
Fitzpatrick and Kovacs (1982) where it was shown that the problem splits into
two parts: the case of 2-torsionfree varieties (that is, varieties whose free groups
have no element of order 2) and the case of 2'-torsionfree varieties (whose free
groups have no nontrivial elements of odd order). The first case was dealt with
completely in that paper; we begin an analysis of the second by finding those
2'-torsionfree subvarieties of 9̂ 4 containing 5R3. (All varietal notation follows
Hanna Neumann (1967) unless otherwise stated.)

As usual all the work will be carried out in the dual context; we wish to
determine those 2'-isolated fully invariant subgroups of the rank 4 free group F of
9̂ 4 which are contained in the last nontrivial term N3 — 9fJ3(F) of its lower
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[2] Varieties of nilpotent groups of class four II 75

central series. (A normal subgroup is 2'-isolated if its factor group has no
nontrivial elements of odd order and isolated if its factor group is torsionfree.)

Let {x, y, z, t) be a free generating set of F. We choose certain endomorphisms
of F, namely: the 24 which permute these free generators; the endomorphism
which maps x to xy and leaves each of y, z, t fixed; and, for each integer K, the
endomorphism which maps x to xK and leaves y, z, t fixed. The restrictions of
these endomorphisms generate the semigroup of all endomorphisms of the
commutator factor group F/F' (see Lemma 3.1). Observe that any two endomor-
phisms of F which agree on F/F' also agree on N3. This means that a subgroup of
N3 is fully invariant in F if and only if it admits the distinguished endomorphisms
listed above. In fact, as a group with the endomorphisms of F as operators N3

may as well be viewed as a module for the semigroup of all endomorphisms of
F/F'. With reference to the basis {xF', yF', zF', tF'} of F/F', that semigroup is
just the multiplicative semigroup G = Matx (4, Z) of all 4 X 4 matrices with
integer entries. As our interest lies in the 2'-isolated submodules of N3 (those
whose factor modules are 2'-isolated as abelian groups), it is convenient to tensor
it (over Z) with the ring Z(2) of rational numbers with odd denominators (the
localization of Z at 2) and look for submodules in this tensor product. Thus we
end up investigating modules over the semigroup algebra Z(2)G.

The Magnus-Witt argument elaborated in Wall (1978) and more specifically in
Kovacs (1978) allows us, with a few minor modifications, to restate this problem
in the following more convenient formulation. Let L be the free Lie algebra of
rank 4 over Z(2), freely generated by the "variables" x, y, z, t. (This may be
envisaged within the algebra of all polynomials in these noncommuting variables
with coefficients from Z(2). With respect to the usual Lie product [u, v] defined as
uv — vu this is also a Lie algebra and L is its Lie subalgebra generated by x, y, z,
t.) As we shall not need to use associative products here we shall simply use
juxtaposition for Lie products and omit left normed brackets: thus we write xyz
for [[x, y], z\ We shall be particularly interested in the set Woi those elements of
L which as polynomials are homogeneous of (total) degree 4; this is a free
Z(2)-module freely generated by the 60 basic Lie monomials of degree 4.

Our semigroup G acts on L by linear homogeneous substitutions: the matrix
(a, ) mapping x to aux + al2y + anz + aut and so on. It is clear that W is a
G-submodule of L annihilated by the zero of G so W is a module for the
(contracted) semigroup algebra Z(2)G\ for a definition see Section 3. The
Magnus-Witt argument mentioned above now yields that the lattice S(W) of
submodules of W is isomorphic to the lattice of those 2'-isolated fully invariant
subgroups of /"contained in N3.

Our aim then is to find the Z(2)G-submodules of W and make the appropriate
translation back to F. In fact we obtain a great deal more information than is
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really necessary for this specific task. Namely, we give a complete description of
the quotient of Z(2)G modulo the annihilator Ann W of W, from which we derive
our results on submodules. After translation to F these can be summarised as
follows: N3 contains two proper nontrivial isolated fully invariant subgroups,
which of course correspond to the two torsionfree varieties (that is, varieties
whose free groups are torsionfree) 9^2) n 9?4 and 212 n 914 lying between 9ff3 and
9^4. Each 2'-isolated fully invariant subgroup contained in N3 is labelled by a
vector of 11 parameters, each parameter a non-negative integer or 00, subject to
simple but numerous conditions. Each vector satisfying the conditions does in
fact correspond to such a subgroup and from it we can directly read off a set of
fully invariant subgroup generators for the subgroup it labels. For any such
subgroup H we can also determine its isolator Ho (the smallest isolated fully
invariant subgroup containing it) and give an upper estimate for the exponent of
the quotient Ho/H. Thus our description fulfills the requirements of the pro-
gramme outlined in Section 2 of Fitzpatrick and Kovacs (1982). One can also
recognise from the parameters whether one subgroup is contained in another.

As far as the problem mentioned in the first paragraph of this introduction is
concerned, we have left outstanding only the determination of the 2'-isolated fully
invariant subgroups of F not contained in N3: this will be taken up in a
subsequent paper.

Most of the material for this paper is taken from the author's thesis [Fitzpatrick
(1980)]. Financial support from the Australian National University is gratefully
acknowledged. I would like also to thank my supervisor Dr L. G. Kovacs under
whose patient guidance this work was carried out.

2. Associative rings and algebras

We begin by collecting some facts concerning associative rings and algebras.
Each associative ring considered will have a multiplicative identity element
normally denoted by 1 which acts identically on all the modules we look at
(usually right modules). For such a ring R we denote by Mat(n, R) the ring of
n X n matrices over R. The symbol en(i, j) stands for the n X n elementary
matrix with all entries 0 apart from the (i, j) entry which is 1: the context will
make clear to which ring 0 and 1 belong. The n X n identity matrix will also be
denoted by 1 and the diagonal matrix diag(r,,. ..,/•„) is the n X n matrix with
(/, 0 entry r, (for 1 < / < n) and all other entries 0.

2.1. PROPOSITION. Let R be an associative ring, e an idempotent element of R
such that ReR = R, and M any right R-module. Then the lattice S(M) of
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submodules of M is isomorphic to the lattice S( Me) of submodules of the eRe-module
Me.

PROOF. The assumption ReR = R means that the identity 1 of R may be
written as a finite sum 2 a,e/>, with a,, bt E R.

Define

, Xt->Xe,

If X G S( Af) and x G X, we have * = x2 a,e6, = 2 xa,efe,; as xa, G X this shows
x E A'e.R. Thus A'e/? > X. The converse inclusion is obvious, so XeR = X, and
<p\p is the identity map on §(M) . If y G S(Me), then Y — Ye (because e2 = e)
and so 7 = YeRe — YRe: thus i//<p is the identity on §>(Me). It is clear that <p and
\p preserve order, and well known that any poset-isomorphism of lattices is a
lattice isomorphism.

2.2. REMARK. If Y G S(Me) and °b is an e/?e-generating set for Y then ^ is also
an /^-generating set for YR.

Such an idempotent will frequently arise from a ring homomorphism
s

® Mat(n(*),Z) -*R.
/t=i

Giving a homomorphism like this amounts to specifying elements efy in R, with A:
ranging from 1 to s while for any fixed value of k the subscripts /, j range from 1
to n(k\ satisfying the relations

(2-3) e*e"lm = 8kn8jtfm

(where 8kn and Sj, are Kronecker deltas). Without loss of generality we may take

(2-4) 2 24=1:
for if this is not the case we may put e ^ 1 = 1 — 2 2 e* and extend the range of
the superscript k. Then define e as

(2.5) * = 2*f.-

Clearly, e is an idempotent, and

shows that ReR — R, so 2.1 may be applied with this choice of e.
Now let A' be a commutative (and associative) ring with 1 and let A be an

algebra over K. The next result shows how if e is an element of A satisfying 2.3,
2.4 and 2.5, then a set of algebra generators of A leads to a set of generators for
eAe.
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2.6. LEMMA. Suppose the subset § of A generates A as K-algebra, and 2.3, 2.4, 2.5
hold. Then the set

U 49$
1,7, k, m

generates sAe as K-algebra.

PROOF. We need to show that if p is any product of elements of § then epe is a
linear combination of elements from the proposed generating set. When p is just
rs with r, s G §, we have

since the middle factor on the right hand side is 1. This is a sum of products of
the form e{ ,/•£,* and e"se"lt each of which lies in the proposed generating set.
When p G § or p is a product of more than two factors from §, the argument
follows the same pattern.

In the opposite direction, if we know the algebra eAe, its elements ef, and the
positive integers n(k) then A can be explicitly reconstructed as a subalgebra of
Mat(n, eAe) where n = ~2s

k=\ "(^)- ^n t n i s matrix algebra it is convenient to index
rows and columns by

{* | 1 <k<s, 1 < / « « ( * : ) } ,

write the elementary matrices as e,*' with multiplication rule

ekiek;r = s,,,S ,ekV,

and denote a general matrix by (afj) where of course

It is straightforward to check that within Mat(«, eAe) the subset

{(«*') | a*j e 4i(eA*K f o r all ij, k,

is a subalgebra, A say. Our claim is then

2.7. PROPOSITION. V4 « isomorphic to A.

PROOF. The map tp: A -> A given by
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[ 61 Varieties of nilpotent groups of class four II 79

where a,*'= e^ae', (which belongs to ef^e^, because it is e f ^ a e ' , ^ , ) is an
isomorphism with two sided inverse \p: A -* A given by

The details are left as an exercise.

It is in this context that we shall describe the algebra Z(2)G/Ann W mentioned
in the introduction.

3. Preliminary reduction

We now focus our attention on KG = A" Mat* (4, Z). This (contracted) semi-
group algebra is defined as the AT-module freely generated by the nonzero
elements of G, with multiplication defined by A-linear extension of the multipli-
cation in G, after identification of the zero of G with the zero of the module KG.
Explicitly, the elements of KG are the formal expressions 2 Kgg with summation
over all nonzero g in G, the Kg elements of K, all but finitely many of them zero.
They are manipulated according to the rules

and

where yg — 2 <xg.ftg->, summation being over all ordered pairs (g1, g") with g'g" =
g. We identify the nonzero elements of G and the formal expressions with one
coefficient 1 and all other coefficients 0. Thus the identity of G is also the identity
of KG.

First we state an elementary result which was used implicitly in the introduc-
tion.

3.1. L E M M A . The semigroup G is generated by the set § which consists of the 4 X 4
permutation matrices, the diagonal matrices nK defined by iiK — d iag(« , 1,1,1) (one
for each K in Z ) , and the matrix T obtained from the 4 X 4 identity matrix by
changing its (1 ,2 ) entry to 1.

PROOF. This is a straightforward consequence of the familiar fact that every
integer matrix can be transformed to diagonal form by elementary row and
column operations, that is, by pre- and post-multiplication by products formed
from T, ji_| and the permutation matrices. All diagonal matrices are obviously in
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the semigroup generated by the /tK and the permutation matrices so our claim
follows.

It will lead to no confusion if we write 1 for the identity of G. We shall also
write

a, =

1
0
0
0

0
0
1
0

1
0
0
0

0
1
0
0

0
0
0
1 /

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0/

S, for the group consisting of 1 alone,
S2 for the group generated by a2,
Sj for the symmetric group generated by a2 and a3, and
54 for the symmetric group generated by o2 and <J4.
We put 9, = ju0 and 9, = a,/ioa,"' for / = 2,3,4; thus for instance 93 =

diag(l, 1,0,1).
Our next task is to identify elements of KG which satisfy the relations 2.3. Of

course, the e4(i, j) of G would always do, but as these annihilate W, they are no
help. So we must look for others; to this end we exploit first the pairwise
commuting idempotents 9,,... , 94. Formal expansion in KG gives

4

/=i j jej igy

with summation over all subsets / of {1,2,3,4}. Put

the fact that the 9, are pairwise commuting idempotents immediately yields that
the tj are pairwise orthogonal idempotents. As ea = 0 we restrict attention to
nonempty / . It will be convenient to name the subsets {1,...,/} as Z,, and to
write e, for ez.

For subsets /, / of equal cardinality, let o(I, J) denote that permutation of Z4

which maps / to J preserving order, and Z4\ / to Z4\ / also preserving order; we
shall write a(I, J) also for the corresponding permutation matrix. Note that
o(I,J) = o(J,iyl. Next, define e(I, J) by e(/, J) = 6^(7, / ) . We shall show
that these elements satisfy 2.3, but first we prove the following.

3.2. LEMMA. Let a G 54. Then eya = aeJa.
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PROOF. It is clear that 3,a = a3ja (note the dual use of the symbol a): thus

n o - a,)

= 4 n 0-3,) n 3,1,
[jeJo i<£Jo J

i<2.J

and this is what we want.

We shall make frequent use of this lemma and its obvious corollaries asj — eJaio
and e(/, / ) = o(I, J)eJy without specific reference.

3.3. PROPOSITION. For all subsets /, / , M, N ofZ4,

e(I,J)e(M,N) = 8JMe(l,N)

(SJM a Kronecker delta).

PROOF. e(I, J)e(M, N) = e,o(I, J)eMa(M, N) = a(I, J)ejSMa(M, N) and
this is zero unless J = M.U this is the case then the cardinalities | / | , | / | , | M | ,
| ^ | are all equal and e(I, J)e(J, N) = e7a(7, J)sja{J, N) = a(I, / ) e y e / a ( J , N)
= a(I, J)ejo(J, N) = £jo{I, J)a(J, N) = e,a(I, N) = e(I, N) since
a{I, J)o(J, N) — a(I, N). This completes the proof.

For an application of 2.3 and so on, we may view the e(7, / ) as having
subscripts /, J and the common cardinality of I and / as superscript. Since
J — M implies | /1 = | M \ we may omit the superscript and the other Kronecker
delta S|y| 1^ required in 2.3.

Observe that e(7, / ) = e,a(I, I) — e, since o(I, I) is the identity permutation,
so 2/ e(/, / ) = 2/ e, — 1, corresponding to 2.4.

The obvious choices for the subsets corresponding to the subscript 1 in 2.5 are
the initial subsets Z,-, 1 < / < 4. Then for

we have (KG)e(KG) = KG and thus we may apply 2.1.
The only remaining task is to describe explicitly the generating set of eKGe

obtained from § by 2.6.

3.4. PROPOSITION. The union of the sets e^e, (1 < / < 4),
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and

{e,T»(Z,\{l}, Z,.,)^-,, tj-AZj-x, Z,\{2})Te,. | 2 < 1,7 < 4}

generates eKGe.

PROOF. We know from 2.6 that eKGe is generated by

so it suffices to show that all nonzero elements of this set occur among the
proposed generators. Just for this proof, write / for j /1 andy for | J1 . We consider
e(Zf, I)S^e{J, Zj), e(Z,, / > K e ( J , Zj) and e(Z,, I )TE( J, 2y) in turn.

Firstly:

e(Z,, /)54e(7, Z,) = e.-ofZ,., 7)S4o(j, Z,)e, = e,S4e,.

Let a £ S4 and e,aey =̂  0. As e,aey = aeMey with M = Z,a, we must have Z;a = Zy,
soy = / and <r Jeaves Z) (setwise) fixed. Therefore it is possible to write <? = a'a"
where a ' leaves each element of Z, fixed and a" S 5,. Now e, is, by definition, a
multiple of II_,•>,• 3y, and direct multiplication shows (II_,->,- dj)o' — II7>, 9y: thus
e,a' = e, and so £,ae, = e,a"e,. This proves that e,54£y C {0} U £,5,6,.

Secondly: observe that /tK commutes with each dk and hence also with each e,,
and with all permutations that fix 1. Thus

£(Z,, / )M,e ( / , Zy.) = e,a(Z,, / K e y a ( / , Z,.)

and this is zero unless / = / . Now if 1 £ / then 3,juK = d{ yields that £//iK = e,,
and so

£(Z,, 7)/i.e(7, Z,) = a(Z,, 7)£/jaKe(/, Z,)
= t(Zl,I)e(l,Zi)=ei&tiSiei.

On the other hand, if 1 E 7 then a(I, Z,) fixes 1 and so commutes with juK: hence

£(Z,, l)nKe(I> Z,) = e^iZt, I)nKo(I, Z,.)e,. = £,/iK£,.

Thirdly: observe that T commutes with all permutations that fix 1 and 2 and
also with 33 and 34. Moreover, 9,T = 3,, T3 2 = 32 and 32T3[ = 32a23, (recall that
a2 is the permutation which interchanges 1 and 2 and fixes 3 and 4).

Writing E(Z, , I)re(J, Zj) in the form a(Zh I)errejo(J, ZJ) we see that if 1 £ I
then e, has a factor 3, so T is redundant; if 2 £ J then £y has a factor 32 so T is
again redundant; if 2 £ I and 1 £ / then E/TE/ has a factor 3 2 T3 , SO this
generator belongs to E(Z, , I)S4e(J, Zj); and finally if 7\{1,2} ^ y \ { l , 2 } then
e,Tej has a factor (1 — 33)33 or (1 — 34)34 and so is zero.
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Thus the following cases remain for consideration:

(ii) {1,2} C / a n d / =
(iii){l,2) C / a n d / = 7\{2}.
In cases (i) and (ii), o(Z,, I) fixes 1 and 2 and hence commutes with T, SO we

have

e(Z,, I)re(j, Zj) = e,Ta(Z,, l)a(l, Z,)e, = e,re,

and

e(Z,, I)re(j, Z,) = e,Ta(Z,,

respectively.
In case (iii), a{J, Zj) commutes with T SO we have

e(Z,, I)re(j, Zj) = ̂ -^(Z^, , J\{2})a(j, Zj)r£j

= eJ.la(ZJ.l,ZJ\{2})rej.

(The products of the permutations in these last two calculations are tedious but
straightforward consequences of the definitions.) This completes the proof of the
proposition.

The symbols e,-To(Z,-\{l}, Z,_,)e,_, and e/_1or(Zy-_1, Z7\{2})re7 are rather
unwieldy so we shall abbreviate them to (i -* i — 1) and (j — 1 ->j), respectively.
Also note that elSiei — { e ^ e , } , while £,£,£; is generated by e,o2£, and e,a,e. when
i — 2, 3 or 4. Thus we have the following.

3.5. COROLLARY. The union of

{e,a2e,, Eia,e,, (i - 1 -» / ) , (i -»i - 1) | 2 < i < 4}

{e,M«e,, e,.T£,-| 1 < / ^ 4, K G Z }

generates eKGe.

Further applications of 2.1 become possible when 3 is a unit in K, for then it is
known that KS3 ~ KS2 © Mat(2, K) and

i ( l + a 3 + a3
2), j ( l - a 3 + a2a3 - a2a3

2), ^(l - a3
2 - a2a3 + a2a3

2)

are pairwise orthogonal idempotents with sum 1. (This is readily verified by direct
calculation; see also the description in Boerner (1963) of Young's "natural
representation" of Sn.) We know from 3.2 that e3 and e4 commute with 53 and so
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r -» e,re, (/ = 3,4) define ring homomorphisms KS3 -> e,ATGe,. Thus eKGe con-

tains the direct sum e3KS3e3 © e4KS3e4 of the homomorphic images eiKS3ei of

KS2 © Mat(2, AT). In particular, we obtain 6 pairwise orthogonal idempotents

with sum e3 + e4.

All this is available once we focus our attention on Z(2)G instead of the general

KG, but a lot more will be needed. There is one more step which can be sketched

before we begin investigating the action of Z(2)(? on particular modules. This

exploits the fact that, as we hinted before, e, will annihilate all the modules we

look at, so they may be viewed not only as Z(2)(7 or eZ(2)(7e modules, respectively,

but also as modules for the quotients of these rings modulo their (two-sided)

ideals generated by e,. Now the definitions of e, and e2 give

e2 = ( - e , - a2exa2) + 3334,

and we have already noted that 3334 commutes with ju_,, a2 and T. The semigroup

H generated by a2 and O2/X_,T is isomorphic to 53 . Thus

Z( 2 )S2 © Mat(2 , Z( 2 ) ) - ZmH - Z(2)G/Za)GexZ{2)G

defined by r \-> e2re2 + Z(2petZi2)G is a ring homomorphism, and so is Z(2)H ->

eZ(2)Ge/eZ(2)GeiZ(2)Ge, r h-» e2re2 + eZ(2)Ge,Z(2)Ge. This prepares the way for yet

another application of 2.1. Unfortunately we find it necessary to take one even

more ad hoc step before we get through. That, and what one would obtain from

this paragraph and the last, will be telescoped into a single, complex move. The

purpose of these two paragraphs has been to offer at least some partial motiva-

tion for what might otherwise appear a set of quite arbitrary choices, and to

indicate the nature of some calculations which will be suppressed.

4. Idempotents and further reduction

In this section we look more specifically at the action of eZ(2)Ge on We. From

the definition of the 8, it is immediate that each (Lie) monomial in W is either

annihilated or left unchanged when acted upon by a 3,; so the same can be said

for the 1 — 3, and hence also for the e,. In fact, a monomial must be annihilated

by e, unless it is the (Lie) product of precisely the first z variables (in any order

and any bracketing, repeated factors allowed): so that to each monomial there is

at most one exceptional e,. (Note that e, must annihilate every monomial of

degree 4 so Wex — 0: this will be taken for granted without further reference.) It

follows then that each monomial is either annihilated or fixed by e. On examining

the 60 basic monomials of degree 4 in turn, we find that 42 are annihilated by e

and 18 are left unchanged; these 18 will then form a Z(2)-basis for We. However
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we shall find another basis more convenient to use as our starting point. The
reason for this is that while the diagonal generators juK of G act very simply on
each monomial (multiplying it by K"1 where m is the degree of the monomial in x),
the permutation matrices in G mix basic and nonbasic monomials. This complica-
tion cannot be entirely avoided, but one can do better than by using basic
monomials.

4.1. LEMMA. The following sets are bases for the We;.
We2: {yxxy, yxxx, xyyy},
Wty {yxxz, zxxy, (yx){xz), zyyx, xyyz, (zy)(yx), xzzy,yzzx, {xz\zy)},
We4: {txyz, (tx)(yz), tyzx, (ty)(zx), tzxy, (tz)(xy)}.

PROOF. Recall that Wex — 0 and, as e = e, + e2 + e3 + e4 and the e, are
pairwise orthogonal We = We2 © We3 © We4. The three sets listed above lie in
the relevant Wet, and their union has the right cardinality for a basis of We: this
much is obvious. It is therefore sufficient to show that the union spans We. A
routine calculation shows that each of the 18 basics fixed by e is in the span of the
union and thus completes the proof. Details are omitted.

With reference to the basis of We just found we can identify End Z i We with
Mat(18, Z(2)). Let S stand for the homomorphic image in EndZ 2 We of eZ(2)Ge.
We forget eZ(2)Ge for the time being, transferring the names of its elements to the
corresponding elements of S. Thus for instance we have e, = 0 and e = e2 + e3 +
e4 = 1 in S1 for this is how e, and e act on We. Proposition 3.4 provides us with a
generating set for S.

The aim of this section is, in effect, to understand precisely which elements of
Endz We lie in 5. The decisive step is that we can pick 12 pairwise orthogonal
idempotents £, , . . . ,£,2 in S, with sum 1. These lead in turn to elements ef,
satisfying 2.3 and a further reduction of 5 along the lines of Section 2.

One way of proceeding at this stage would be to give explicitly matrices
describing the action of the known generating set of S on our basis of We.
However the matrices so obtained do not easily yield the required elements efj, so
we shall omit them on the grounds that they could easily be recovered from the
matrices we do actually write down. Our first step is to change to a different basis
in We: we then give the action of 5 on that basis. Define

a, = yxxy + yxxx — xyyy,
2L2 — 2 yxxy — yxxx — 2 xyyy,
a 3 = 2 yxxy + 2 yxxx + xyyy,
a = -lyxxz + zxxy + 3(yx)(xz),
a4 = a(2 - a3 - a3

2),
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a 5 = a(l - 2a3 + a3
2),

a6 = a(l + o 3 + a3
2),

a3 + a3

a3
2

a 7 = yxxz,
a8 = (yx)(xz),
a 9 = a7<r3,
a10 = a8O3>

a,, = a 7 o 3
2 ,

a 12 = a8a3
2,

a,3 = - ( ^ ) ( ^ ) - tyzx
a14 = -2(/xX^) + (0>X«) + (tz)(xy),
al5 = -ai3°3'
ai6 a l 4a3,
a |7 = txyz + tyzx + /z-xy,
alg = (txXyz) + (/y)(zx) + itz\xy).»i8 = V*Ayz) -t" WU-XJ -t- (tz)(xy).

(The element a which appears fourth in this list is simply a useful piece of
shorthand.)

4.2. LEMMA. The following sets are bases for the We,:
We2: {a, ,a2 ,a3},
We3:

PROOF. Each element of the proposed bases is expressed in terms of the basis
elements of the corresponding We, which we already know from 4.1. Thus it is
sufficient to show that the matrices of coefficients expressing the a7 in terms of
those bases are invertible. The straightforward details are omitted.

Next the promised matrices expressing the action of S on We with reference to
the basis of the a;. Where a matrix would have fractional entries, for simplicity we
display a multiple (by a unit of Z(2)). In each matrix the row labelled by a,
contains the coordinates of the image of a,. Thus, for example, the first row of the
first matrix means that a,(e2a2e2) = -a , ; the fourth row of the matrix for
3(3 -» 2) is blank because a7(3 ->• 2) = 0.

4.3. Action on We2.

a,
-1

e2a2e2:
-1
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3(2 - 3):

4.4. Action on

3e3a2e3:

a4

a5
a6
a7

a8

a9

a,0

a,,

a.
a2
a3

K(2K2 -

-2(K +
2K(K -

a.
K + 2)

2)lc(jC -

1)(2K +
1)
1)

a2
-K2(K -
K2(K +

-2K2(K

-1)
2)
-1)

a
K(K -
2K(K

K(2K

3

"I)
"I)
+ 1)

a, a2 a3

a, 5 2
3E2T£2: a2 4 1 - 3

a, 4 4 3

a4
4
-1
8

a5

-3

a6

1

-4
2

a7
24
-24
48

a8
-18
18

-36

a,, a12

-12 9
-24 18
-24 18

a 12

a6

-9
1

1

1

a7
24
48
-24

9

a 8

-18
-36
18

-9
-3

a9
-48
-24
-24
9

aio

36
18
18
-9
-3

an
24
-24
-24

9

a12
-18
18
18

-9
-3
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Patrick Fitzpatrick

a7 a8 a9 aH) a,, ai2

a5 1 -1

a7 1
a8 1
a9 1

a,-, 1

3e3/xKe3:

a. a.•4

a4 K(2K + 1) 2K(K — 1)
a5 K(K — 1) 3K K(K — 1)
a6 K(K - 1) K(K + 2)
a7 3K2

a8 3K2

a9 3K2

a10 3K

a,, 3K

a l 2 3 K

3e3Te3:

a4

a5

a6

a7

a«
a9

n

aM

a,-,

3 -4
1

-2
1

4
2
5

-1

48
24
24
-9

-36
-18
-18

9
3
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a,
12
12
-6

a2
-7
-5

4

a 3

-2
2
2

3(3 - 2): a8

a9 2 -1
aio
a,, 1 - 1 - 1
a12

"13 a14 a15 a16 a17
16

a7 -3
3(3 - 4): a8

'10

4.5. Action on We4.

-12
-6
-6

3
1

16
8
8

-3

-12
-6
-6

3
1

4
2
2

-2
-1
-1

a 1 5 a 1 6 a 1 7 a 1 8

1

1

17

a i 3 a i 4 a 1 5

a13 - 1 - 1

a14 - 1
3e4a4e4: a l 5 2 - 3 - 1

a,6 - 2
ai7 - 4 4 8

a,8 2

a i 6

3
3
3
3

-6

1

a l 7

- 1

-1

-1

-1
-1

a i 8

-1
-2

2
2
1
1
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(4 - 3):

e4a3£4:

•13 a14 a l 5 "16 "17

14

13 o 1 4 a1 5 a1 6 a1 7 a , 8

e4Te4: a15

16

al3

a,4

a 1 5
a l 6
a l 7
a i 8

a4

1

a 5

a,,

a 6

1

a 1 3

a 7

-1

-1

8

a14

a 8

3
3
3
3

-6

a 1 5

-1

a9 a10 a n a12

a l 6 a l 7 a l 8

I 4

.6

[This last matrix is only included as an aid to the calculation of £10, £,, and £,2

later in this section.]

We proceed now to pick the £,, • • • £12. A little shorthand will help. L e t / b e a

polynomial over Z(2). We abbreviate f(<pa<p, <py8cp,...) to (pi f(a, /?,...)I<p where

the significance of the symbols <p, a, / ? , . . . will be clear from the context. Thus for
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example, £ 3 [<J 2 (T + l ) ]e 3 means (£302e3)(£3Te3 + e3). Define

f = £2IIa2Jti-iTI£2>

i) = e 3 [ ( l + (o 2 + T - I )a 3
2 ) ( l - T)a2 lE3 .

The last paragraph of Section 3 shows how f leads to

three pairwise orthogonal idempotents with sum e2. Direct calculation shows that
these act (on We2) as diag( 1,0,0), diag(0,1,0) and diag(0,0,1) respectively. Next,
use the matr ices just given to calculate tha t on We3, TJ acts as
d i ag (0 ,0 ,0 ,1 ,1 ,0 ,0 ,0 ,0 ) and that therefore £7, £8 and £9 chosen as

act as pairwise orthogonal idempotents with the latter two acting as
diag(0,0,0,0,0,1,1,0,0) and diag(0,0,0,0,0,0,0,1,1) respectively. Put

£ = e 3 - U 7 + £g + !9);
note that £E 3 = £3£ = £; £ annihilates e2 and £4 and acts as diag(l , 1 ,1 ,0 , . . . ,0) on
We3. One can readily see from the tables that multiplicatively j £a 2 £ ( = i££3a2£3£)
and £a3£ ( = ^e^e^) generate another isomorphic copy of the symmetric group
5 3 ; hence

£4 - 3£IH - a3 + 3-a2a3 -

define three more pairwise orthogonal idempotents with sum £. These are seen by
direct calculation to act as diag(l, 0,. . . ,0), diag(0, 1,0,. . . ,0) and
diag(0,0,1,0,...,0) respectively, and we now have £4 + • • • +£ 9 = £3. Finally,
put

£l0 = 3e4in ~ °3 + °2ff3 ~ a2a32l£4'

£11 = ^e4[l - a3
2 - a2a3 + a2a3

2]e4,

£ 1 2 = i £ 4 I l + 0 3 + a3
2]£4:

we have seen in the second last paragraph of Section 3 that these are pairwise
orthogonal idempotents with sum £4. Again by direct calculation these may be
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shown to act (on We4) as diag(l, 1, 0, 0, 0, 0), diag(0, 0, 1, 1, 0, 0) and
diag(0,0,0,0,1,1) respectively. As e2 + e3 + e4 = 1 a u this combined proves the
following.

4.6. LEMMA. The £, , . . . ,£l2 so defined are pairwise orthogonal idempotents with
sum 1 in S.

It will now be clear why our basis of We was so chosen: the idempotents £, all
act diagonally on it. Recall that en(i, j) is the n X n elementary matrix whose
entries are all 0 apart from the (i, j) entry which is 1.

4.7. LEMMA. The following elements are in S.

eji,j), i, ye {2,3,4,5},

eji,j) + e,g(i+l,j+l), i, j £{7 ,9 ,11 ,13 ,15} .

PROOF. Note that e)8(2,3) = -£2e2o2e2£3
 e $ simply because the (2,3) entry of

the matrix for e2a2e2 is - 1 . Also e,8(7,9) + e)8(8,10) = £7e3a3e3£8 is in S because
the (7,9) and (8,10) entries of e3a3£3 are 1 while the (7,10), (8,9) entries are 0.

Similarly we find that S contains

el g(3,2) using e2a2e2,

e18(2,4),e18(2,5) using ( 2 - 3 ) ,
e,8(4,2),el8(5,2) using ( 3 - 2 ) ,
£>18(9,11) + e,8(10,12) using £3ff3e3,
e l 8( l l ,7) + el8(12,8) using e3a3e3,
e18(13,15) + e,8(14,16) using e4a2e4,
e,8(15,13) + e,8(16,14) using e4a2e4,
e,8(7,15) + elg(8,16) using 3[|7(3 - 4)^l l][ |10e4a4e4| l0],
e,8(15,7) + el8(16,8) using [£,,(4 - 3)^][|7(£3a

(Note that in each of the last two cases the given matrix has precisely one nonzero
2 X 2 submatrix.) The other e,8(/', j) and e18(z, j) + e]8(/ + 1, j + 1) are ob-
tained from these by multiplication. This completes the proof of the lemma.

Rename

ei8(i, j) = « ? - . , , - , f o r / . y G {2,3,4 ,5},

e,8(6,6) = e3
u,

els(i, j) + «,8(1 + l,j+l)= e(
4,-5)/2,o-5)/2 for/, j G {7,9, 11,13, 15},

e I g (17 ,17)+e I 8 (18 ,18)= e f , .
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These elements satisfy 2.3 and 2.4 so it follows that

e = *, + i2 + £6 + |7 + £12

defines an idempotent e with SeS — S and 2.1, 2.2, 2.6 and 2.7 become applic-
able. Thus we can shift our attention to the ring eSe and the module Wee. Write
w, = a,, w2 = a2, w3 = a6, w4 = a7, w5 = a8, w6 = a17 and w7 = alg. Then
w,,...,w7 form a Z(2)-basis for Wee. We identify End z Wee with Mat(7, Z(2))
according to this basis.

Let T stand for the image of eSe, under restriction to Wee, in Mat(7, Z(2)). This
change from eSe to T is essentially a notational matter: if an element of eSe is
written as p = (p(/, _/)) according to eSe < S < Mat(18, Z(2)), then the entries
p(/, j) of p vanish unless /, 7 E {1,2,6,7,8,17,18}; to obtain the corresponding
element of T, we simply omit the rows and columns which must vanish because we
started with an element of eSe. With this final shift of view our task becomes the
study of T and the T-submodules of Wee.

The main result of this section gives a precise description of T as subalgebra of
Mat(7, Z(2)). In order to state it, we make the following definitions.

« = («('> 7')) =

1 2

4 1

2 2

1 1

0 0 0
2 1 1

0 0 0
l io

where a , , . . . , a 6 are 1 X 2 and a 7 , . . . , a , 0 are 2 X 2 submatrices;

^ = { K ( 4 - 3 ) | K E Z ( 2 ) } ;

A — itc(7 — 111 K f= 7 \ •

A 3 = A 5 = 2 A X \

- K
1 0
0 1

-1 2

) K-K

K|-

:̂  i + -=

2 G Z(2)

(2)

(2 G Z,2)

I K,, K-, E Z,
•(2)
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Let T be the subset of Mat(7, Z(2)) consisting of all matrices p = (/?(/, j))
satisfying the following conditions:

P(i, j) £ a(i, j)Z(2) torj < 3,
the 1 X 2 or 2 X 2 submatrix j8( corresponding to a, belongs to the set A{ for

1 < i < 10.

4.8. THEOREM. T - T.

PROOF. It is straightforward to check that T is a subalgebra of Mat(7, Z(2)).
Thus in order to prove that T < V it is sufficient to show that T contains the
generating set of T obtained by 2.6 from the known generating set of S. To see
what this involves let us consider any generator of S in the form of an element y
of Mat(18, Z(2)). The generators of eSe arise by premultiplying y by t'Xj and
postmultiplying by e™ where /, j , /, m have the appropriate ranges given by the
definition of the e* . Each (nontnvial) generator of eSe so obtained has precisely
one nonzero submatrix (of size 1 X 1, 1 X 2, 2 X 1 or 2 X 2) and the correspond-
ing generator of T is obtained by omitting the appropriate zero rows and columns
to give a 7 X 7 matrix with precisely one nonzero submatrix. This can then be
tested for inclusion in 7". To verify this one must examine each submatrix of each
of the matrices given in the tables 4.3 to 4.5: a tedious but straightforward
exercise.

For the converse we observe that V has 29 generators each of which must be
checked for inclusion in T. The following table lists for each generator of T, with
two exceptions, an element of 5 from which it may be obtained after pre- or
postmultiplying, if necessary, by an appropriate element from those listed in 4.7.

e 7 ( U ) £,
2e7(l,2) I,(e2™2)€2

e7(l,3) « , (2-3)«6

4e 7 ( l ,4 ) -3e 7 ( l ,5 ) £,(2 -> 3)£9

4e7(2,1) €2(e2«2){,
«7(2,2) £2

2e7(2,3) £ 3 ( 2 - 3 ) | 6

8e7(2,4)-6e7(2,5) |2(2 - 3)£7

2e7(2,6)-e7(2,7) | 5(3 - 4){12

2e7(3,1) | 6(3 - 2)|,
2e7(3,2) f 6 (3 -2)€ 3

«7(3,3) ^6

8e7(3,4)-6e7(3,5) i6(e3a2e3)^
2e7(3,6)-e7(3,7) |6(3 - 4)|12
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3e7(4,4) - 3e7(4,5) - e7(5,5)
e7(4,4) + e7(5,5)
<?7(4,6) + e7(4,7) + 2e7(5,7)
e7(4,6) - 2e7(4,7) - 2e7(5,7)

4e7(6,4) - 4e7(6,5) - 2e7(7,5)
8e 7 (6 ,4)-6e 7 (6 ,5)
e>7(6,6) - e7(6,7) - e7(7,7)

The exceptional cases are 2e7(l,6) — e7(l,7) which is in T because it is
e7(l, 3)[2e7(3,6) - <?7(3,7)] and 2e7(6, 1) which is in T because it is
e7(6,3)[2e7(3,1)]. This completes the proof of the theorem.

4.9. REMARK. This theorem could be used via a repeated application of 2.7 to
provide a complete description of Z(2)G/Ann W. Thus the claim made in the
introduction is justified, although it is clear that we have no need to perform this
purely mechanical task.

We end this section with some consequences of Theorem 4.8.

4.10. COROLLARY. W is generated as Z(2)G-module by yxxz.

PROOF. This follows via repeated application of 2.2 noting that J\XJCZ = a7 = w4

which can be seen by 4.8 to generate Wee. (This result is related to 34.45 of
Hanna Neumann (1967).)

It is very easy to check that Wee has a submodule spanned as Z(2)-module by
{w|; w2, w3,4w4 — 3w5, 2w6 — w7}. Since these elements are obviously independent
modulo 2Wee we conclude that they form a Z(2)-basis for their span and that that
span is isolated as Z(2)-submodule of Wee. We denote by U the corresponding
submodule of W and relabel as follows:

u, = w,, u2 = w2, u3 = w3, u4 = 4w4 - 3w5, u5 = 2w6 - w7.

Similarly Wee contains an isolated submodule with Z(2)-basis {w5,w7}. Let V be
the corresponding submodule of W and relabel v4 = w5, v5 = w7. (It would of
course be more natural to use subscripts 1,2 here instead of 4,5: the reason for
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our choice will become clear in Section 6.) Clearly U D V = 0. By an easy
application of 2.1, I/and Fare isolated as Z(2)-submodules of W.

We may now use 4.8 to see that each submodule of Wee either is contained and
has finite index in Uee or Vee or contains some nontrivial (2-power) multiple of
each of them. It follows easily using 4.10 that each submodule not contained in
one of the two isolated submodules we have found contains a nontrivial (2-power)
multiple of Wee. Such a submodule has finite index in Wee and is therefore not
isolated unless it is Wee itself. This confirms another claim made in the introduc-
tion.

4.11. COROLLARY. U and V are proper nontrivial isolated submodules of W and
they are the only such submodules.

We thus have Uee © Vee a submodule of finite index in Wee with Z(2)-basis
{u,,... ,us, v4, v5). In order to aid our discussion of submodules it is convenient
to have the explicit form of the restriction TU(BV of T to Uee © Vee. We identify
Endz Uee © EndZ2 Vee with Mat(5, Z(2)) © Mat(2, Z(2)) according to the bases
consisting of the u, and v,, and consider this direct sum naturally embedded in
Endz (Uee © Vee) which is in turn identified with MatZz(7, Z(2)).

Define

«' = («'(/,

Let T" be the set of all those y © 8 in Mat(5, Z(2)) © Mat(2, Z(2)) which satisfy
the following conditions:

y(i, j) £ 2a '<'-%, for all i, j in {1,.. . ,5};

y(i, j) = S(i, j) (mod4) for (i, j) E {(4,4), (5,4), (4,5)};

Y(5,5)=S(5,5)(mod2)

(note that we have indexed rows and columns in the latter direct summand
according to the subscripts on the \j).

4.12. COROLLARY. TU(BV= T".

PROOF. This follows the same pattern as 4.8. First it is easy to check that T" is
a subalgebra. To prove Tuev < T" it is therefore sufficient to show that each of
the generators of Tuey obtained from the known generating set of T is contained
in T". Conversely, for each generator of T" we must show there is an element of
T which acts like it on Uee © Vee. The straightforward details are omitted.

0
2
1
2
2

1
0
1
2
1

0
1
0
2
1

0
1
1
0
1

0
0
0
1
0
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Now let Ty and Tv denote the restrictions to Uee and Vee.

4.13. COROLLARY.

Tv = {y G Mat(5, Z(2)) | y(i, j) G 2«'<'-»Z(2)} ;

^ = { « e Mat(2, Z(2)) | 8(/, y) G 2«'<'"-;>Z(2)}.

PROOF. Only the second statement calls for comment. Comparing the moduli of
the congruence conditions in the definition of T" with the exponents a'(i, j) for
i, j G {4,5}, one sees that y © S G T" implies 8(i, j) G 2a'(l'--')Z(2). Conversely,
2"'1'-J)(e5(i, j) © e2(/', j)) satisfies the defining conditions of T" whenever /, j G
{4,5}.

5. Submodules of U and V

We are thus lead to study in detail the submodule structure of U and V. As an
aside we note the following.

5.1. LEMMA. U is generated by yxxy. V is generated by (tx)(yz).

PROOF. Firstly, use Corollary 4.13 to confirm that Uee is generated by u, + u2

= w, + w2 = a, + a2. Next return to the definitions to see that yxxy = i ( - a i +
a2 - a3), and use tables 4.3 to 4.5 to show that (yxxy)[3(^ — £3)e2a2e2] = a, +
a2 while (a, + a2)[}(e202e2 + £2 + 2|3)] = yxxy. This proves the first part; the
second follows similarly.

5.2. REMARK. This lemma is relevant in Section 2 of Fitzpatrick and Kovacs
(1982).

Corollary 4.13 makes it very easy to see just what T-submodules there are in
Uee and Vee.

As Tv contains the diagonal elementary matrices e5(i, i), each T-submodule of
Uee has a Z(2)-basis consisting of scalar multiples of the basis elements u, of Uee.
With the convention that 2°° — 0, we may therefore write each submodule in the
form ®2"(')Z(2)u, where each u(i) is either oo or a nonnegative integer. Since Tv

has Z(2)-basis 2a('J)e5(i, j), such a Z(2)-submodule admits 7*if and only if

(5.3) u ( i ) + a ' ( i , j ) > u ( j ) for all i j in { \ , . . . , 5 ) .

In particular, it follows that if ffi2"<0Z(2)u, is a T-submodule and one of the u(i) is
oo then all the «(/') must be oo, that is, the submodule is 0. Also, u,T =
(B2a'UJ)Z{2)Uj. In view of the connection we established by repeated use of 2.1, 2.2
between the T-submodules of Uee and the Z(2)G-submodules of U, we therefore
have the following.
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5.4. THEOREM. The nonzero Z(2)G-submodules of U are in one-to-one correspon-
dence with the (ordered) 5-tuples

of nonnegative integers satisfying 5.3; namely, the submodule of U corresponding to
such a 5-tuple is 2 2"(')u,Z(2)(/. This submodule contains the submodule correspond-
ing to (w'(l), . . . ,M'(5)) if and only ifM(1) *£ u'(l),- •. ,«(5) *£ u'(5). More generally,
the sum and the intersection of these two submodules correspond to the 5-tuples

and

(max{ii(l), «'(1)},.. • ,max{«(5), «'(

respectively. In particular, U corresponds to (0,. . . ,0), and u,Z(2)G to
(a'(/\ l ) , . . . ,a ' ( i ,5)) .

(00000) = U

u,Z( 2 )G= (01000)

u4Z(2)G = (22201)

- (11010) = u3Z(2)G

(20110) = u2Z(2)G

(11111) = 1U

(21110) = u5Z(2)G

(22211) = nU,Z( 2 )G = ID

Submodule lattice of V
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In order to visualize just which 5-tuples satisfy 5.3 and how the corresponding
submodules relate to each other we have drawn the diagram of the sublattice of
the submodule lattice §(£/) of U consisting of the submodules which contain
Pi u,Z(2)G. For the moment, whenever convenient we identify a submodule with
the corresponding 5-tuple; the omitted vertex labels of the diagram are readily
obtainable by the rules for sums and intersections given in Theorem 5.4.

One helpful formal property of 5.3 is that if (w(l),.. . ,w(5)) satisfies it, so does
(M(1) + 1,...,«(5) + 1 ) : this if the former corresponds to the module M, the
5-tuple corresponding to 2M is the latter. Similarly, if 0 ¥= N (=§>(U) and
N = (M(1),. . . ,«(5)), we may take n = min{M(l),... ,w(5)}, define M as
22"</)-"u,Z(2)G so N = 2"M, and conclude that M = (w(l) - « , . . . ,M(5) - n).
As u(j) = n for somey, for thaty we have u{j) — n = 0 and hence M > uyZ(2)G
s* PI u,Z(2)G: thus M is one of the vertices of our diagram.

Heavy dots distinguish the vertices really needed in this context: those which
correspond to submodules containing at least one uyZ(2)G (equivalently: those not
contained in 2(7)- Note N determines n and M uniquely.

Consider the translation of the plane of our diagram which takes U to 2U.
Observe that if the translate of a vertex M is in the diagram, it is in fact 2Af, and
that each submodule contained in 2(7 is such a translate. (In particular, D u,Z(2)G
— 2D with D = (11100), a submodule of purely transient relevance.) Also, if M
and AT both have their translates in the diagram, M and M' are joined by an edge
if and only if 2M and 2 A/' are.

We could build up the diagram of the whole lattice S(£/)\{0} by applying the
translation repeatedly, marking the images of all the vertices and edges, and
labelling the nth translate of M by 2"M. The discussion above proves that the
vertices in this extended diagram would be in bijective correspondence with the
elements of S(( / ) \{0}, and it is clear that all edges drawn would be justified. The
remaining point is that every necessary edge would be drawn this way. To see
this, suppose 2" A/' is a maximal submodule of 2"M (where M ^ 2U and
AT ^ 2U). If n = n', our instructions ensure that an edge is drawn joining 2"M
to 2"'M'. If n > «', then M' < 2"~"'M =£ 2(7, so this is excluded by our assump-
tions. Suppose then that n < ri'. Now 2" ~"M' is a maximal submodule of M. We
cannot have 2"'~"M' + 2D = M, for M 4 2U; on the other hand, M 4 2U
implies 2D < M: so 2"'~"M' must contain 2D. Thus 2"'~"M' and M are both
vertices in the diagram we have actually drawn, so there is an edge joining them,
and our instructions provide that one will be drawn joining 2" M' and 2"Af. This
establishes that the whole of S((7)\{0} can be visualized as indicated.

The submodules of V are understood similarly, the rule of 5.3 being taken by

(5.5) v(i) + a'(i, j) > v(j) for all i,j in { 4 , 5 } .
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Of course, the nontrivial part of 5.5 may be written simply as

(5.5') o(4) - 1 <«(5)«St>(4) + 1.

5.6. THEOREM. The nonzero Z^G-submodules of V are in one-to-one correspon-
dence with the ordered pairs

of nonnegative integers satisfying 5.5; namely, the submodule of V corresponding to
such a pair is 2t)(4)v4Z(2)G + 2v(5)v5Z(2)G. This submodule contains the submodule
corresponding to (t/(4), t/(5)) */ and only if v(4) < t/(4) and v(5) < v'(5). More
generally, the sum and the intersection of these two submodules correspond to

(min{e(4),©'(4)},min{e(5),t>'(5)})

and

(max{tj(4),o'(4)},max{»(5),i5'(5)}),

respectively. In particular, V corresponds to (0,0), and v, Z(2)G to (<*'(/, 4), a'(i, 5)).

The reason the theorem has been expressed in this elaborate form is that later
we have to combine it with 5.4, but of course it can be put much more concisely:
the nonzero Z(2)(7-submodules of V are just the 2'V, 2yv4Z(2)G, 2k\5Z(2)G; two
such submodules are comparable if and only if that is directly visible (using the
relations 2j\4Z(2)G > 2J+ XV =£ 2yv5Z(2)G) from the way we have written them.

The diagram §(K)\{0} is the following
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6. Submodule structure of W

Consider first the T-submodules of Use © Vee. Let M be such a submodule.
Put

M n Z(2)u, = 2«<'>Z(2)u,,

M n Z(2)v, = 2vU)Z{2)Vj

(using the convention that 2°° = 0 when some of these intersections are 0) and
5 5

i = l y = 4

Corollary 4.12 shows that the 4e5(/,;') and the 4e2(j, j) are in TUBV, so we can
conclude that

Since M D i/ee is a T-submodule and the e5(/, /) are all in Tv, we have
M Pi Uee= ® ( M n i/ce D Z(2)u,) = ®{M (1 Z(2)u,), and a similar statement
for M fl Fee. Therefore

N = (M H Uee) ® (M D Vee),

the u(i) satisfy 5.3,

and

the v(j) satisfy 5.5.

In particular if one of the v(j) is oo, so is the other, and then M n Vee = 0; thus
AM < JV = Af fl t/ee and hence M < Uee. This case has been covered fully in the
previous section, as has the case M < Vee. For the submodules M which require
further investigation, we therefore have that

all the u(i) and v(j) are nonnegative integers.

Next we exploit that Tvmv contains e5(i, i) when / =£ 3 and e5(j, j) © e2(j, j)
when j > 3, to conclude that

M = 0 (M n Z(2)u,) © 0 (MH (Z(2)u, © Ztfj)).
i=\ 7=4

The first three summands are, of course, just the 2"(OZ(2)u,; the last two need to
be looked at more closely.

Take the case^ = 5 first. We have

(M n (Z(2)u5 © Z(2)v5))/ (2^Z ( 2 ) u 5 © 2»<5>Z(2)v5)

^ (Z ( 2 ) u 5 ) / (2^Z ( 2 ) u 5 ) © (Z(2)v5)/(2»<5>Z(2)v5).
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Here the right hand side is a direct sum of two cyclic 2-groups, and the left hand
side is a subgroup which avoids both direct summands. Moreover, 2e5(5,5) G
Tumy implies that this subgroup has exponent at most 2. Forgetting our complex
context for a moment, it is a trivial exercise that in such a direct sum there is only
one such subgroup apart from 0. (Of course, if one or both cyclic direct
summands degenerate, there is no nonzero subgroup of this kind.) We shall find it
convenient to state the conclusion in the following form: M D (Z(2)u5 © Z(2)v5) is
generated (as additive group) by 2u(5)Z(2)u5 © 2t)(5)Z(2)v5 and n(2u(5)~lu5 +
2«(5)-iVj) where n is 0 or 1, and if n = 1 then M(5) > 1 and v(5) > 1.

Similar considerations apply to the case j = 4. Again, we have to identify
subgroups avoiding both direct summands in a direct sum of two cyclic 2-groups,
but now we can only say that the subgroups of interest have exponent dividing 4,
so we find three nonzero possibilities (fewer when one or both summands have
order less than 4). We consolidate the conclusions as follows.

6.1. LEMMA. / / M is a T-submodule of Uee © Vee, then as Z(2) module M is
generated by elements

2V<-J)\j,

where
(1) the u(i) and v(j) are nonnegative integers or oo, subject to 5.3 and 5.5, and if

any oo occur then k = I = m = n = 0;
(2) k, I, m, n G {0,1} and k + I + m < 1;
(3) ifk = 1 then u(4) > 1 andv(4) ^ 1,

ifl + m= 1 then w(4) > 2 and v(4) > 2,
ifn=\ then u(5) > 1 and v{5) > 1.

We now consider any Z(2)-submodule M of Uee © Vee generated by the
elements listed in 6.1 with the parameters satisfying the conditions of 6.1. For any
elements of Uee © Vee expressed in terms of the basis u , , . . . ,v5, it is straightfor-
ward to decide whether it lies in M. Thus we are well prepared to find a necessary
and sufficient set of conditions (in terms of the parameters w(l),...,« of M) for
M to admit Tumv. Indeed, the conditions already imposed on the parameters
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clearly ensure that M admits the following subset of Tumy:

{2«'<'-A?5(i, y) | 1 < i < 3} U {e5(j, j) © e2(j, j) \ 4 <j < 5}

U {4e 5 (4 ,4 ) , 4 * 5 ( 4 , 5 ) , 4 e 5 ( 5 , 4 ) , 2 e 5 ( 5 , 5 ) } .

Corollary 4.12 shows that the union of this set with

{2«'<">e5(i, y ) 11 > 3 > y } U ( 2 e 5 ( 4 , 5 ) © 2 e 2 ( 4 , 5 ) , 2e 5 (5 ,4 ) © 2 e 2 ( 5 , 4 ) }

generates TU9V. Thus we need only write down the conditions which express that
M contains the image of each of its given generators by each of the (eight)
elements of the last displayed subset. The list of simple conditions so obtained is
long and highly redundant; we shall not write it out here. Instead, we include a
shorter but trivially equivalent list in the following statement, which also takes
advantage of the connection established, via 2.1 and 2.2, between T-submodules
of C/ee © Vee and Z(2)(7-submodules of U © V.

6.2. THEOREM. The Z^G-submodules of U © V are in one-to-one correspondence
with the ordered W-tuples

which satisfy conditions (1), (2), (3) 0/6.I and also the following:

(4) if k=\ then «(4) + 1 > max{w(l), w(2), M(3)} and either M(4) S* «(5) and
o(4) 5= o(5) or u(4) = u(5) - 1 andv{4) = v(5) - 1 andn = 1;

(5) // / + m = 1 then u(4) > max{«(l), «(2), «(3)} and either w(4) = w(5) + 1
andv{4) = o(5) + 1 or u(4) = u(5) andv(4) = o(5) and n = 1;

(6) if n=\ then u(5) > max{w(l) - 1, «(2), M(3)} and either u{4) < u(5)
o(4) < o(5) or K(4) = M(5) + 1 and o(4) = o(5) + 1 and k + I + m = 1.

The submodule corresponding to these parameters is generated, as Z^G-module, by
the elements listed in 6.1. It contains the submodule corresponding to (w'(l), . . . ,« ') if
and only if the following conditions hold:

(7) u(i) < u'(i)for 1 < / *£ 5, o(y) < v'(j)for 4 <y < 5;
(8) ifk'=l then either w(4) < u'(A) - 1 and v(4) < c'(4) - 1 or «(4) = M'(4)

an^o(4) = u'(4) and k + I + m = 1;
(9) if I' + m' =\ then either «(4) < «'(4) - 2 an^ «(4) ^ v'(4) - 2 or u(4) =

M'(4) - 1 a«c/o{4) = v'(4) - \andk + l + m= I oru(4) = u'(4) andv(4) = v'(4)
and I — l',m = m'\

(10) ifn'=\ then either w(5) < «'(5) - 1 and v(5) < v'(5) - 1 or M(5) = u'(5)
and v(5) = v'(5) and n = 1.
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The conditions (7)-(10) are also obtained in the context of 6.1 and Uee © Vee.
Their derivation is merely tedious and is omitted. The submodule lattice §(£/ © V)
is clearly much more complicated than §(£/) or S(F) : it contains the direct
product of these two lattices (as the sublattice consisting of the submodules with
k = l = m = n = 0) but it is not distributive and this makes it hard to visualize;
we present no diagrams. The parameters for the sum and intersection of two
submodules may be calculated from the parameters of the components, but the
best algorithms we could find for these calculations are rather complicated so we
do not include them.

The final step in this section is to use 4.10 to conclude that AWee is the
submodule of Uee ffi Vee generated by u4 + 3v4. Theorem 6.2 may now be used
to identify AW as the submodule of U © V corresponding to (2,2,2,2,2,2,2;
0,0,1,1). We can use 6.2 again to find the submodules of AW. As W-> AW,
w \-> Aw is an isomorphism that information can be translated into the following
description of all submodules of W.

6.3. THEOREM. The Z(2)G-submodules of W are in one-to-one correspondence with
the ordered 11 -tuples

which satisfy the conditions (1), (2) of 6.1, the conditions (A), (5), (6) o/6.2 and the
following conditions:

(\\)ifk = 1 then either u(4) > 1 andv(A) 3* 1 or u(A) = v(A);
(12) if I = 1 then either u(A) s* 2 and v(A) >2or u(A) = v(A) = 1;
(\3)ifm= 1 then either u(A) > 2 and v(A) > 2 or u(A) = v(A);
(\A)ifn= 1 then either u(5) > 1 and v(5) > 1 or u(5) = v(5).

The submodule corresponding to these parameters is generated, as Z{2)G-module, by
the elements listed in 6.1. It contains the submodule corresponding to the parameters
(u'(\),... ,n') if and only if conditions (7), (8), (9), (10) o/6.2 are satisfied.

Note that the conditions (11), (12), (13), (14) which replaced (3) of 6.1, allow
four problematic expressions to occur in the list of generators of submodules:
namely 2"'u4 ± 2~'v4, 2"2u4 — 2"2v4, and 2"'u5 + 2"'v5. These should be han-
dled with care, as for instance 2"2u4 is not an element of W. They can be
interpreted however, by translating back to the basis {w,,...,w7} of Wee: this
minor inconvenience seems preferable to making the formalism of 6.3 still more
complicated.
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As we have seen U and V are the only isolated proper nonzero Z(2)G-submod-
ules of W. Their parameters are:

U- ( 0 , 0 , 0 , 0 , 0 , oo,oo;0, 0 ,0 ,0 ) ,

V= (oo, oo, oo, oo, oo ,0 ,0 ;0 , 0, 0, 0)

while

W= ( 0 , 0 , . . . , 0 ; 0 , 0 , 1, 1).

Of course,

0 = (oo, oo, . . . ,oo; 0 , 0 , 0 , 0 ) .

It is straightforward to recognise from the parameters, just by the occurrences of
oo, what the isolator of any particular Z(2)G-module is. Also the exponent of the
quotient of the isolator modulo the submodule may readily be determined: for
example, if the submodule has parameters (w(l) , . . . ,«) with no oo among them,
then the exponent of the quotient of W over this submodule is the maximum of
the following list of numbers:

2«(D 2"<2> 2"(3)-

2U(4)+2, 2t)<4)+2 unless M(4) = v(4) and k + I + m = 1 in which case these two
numbers are replaced by 2u{4)+k+l;

2"(5)+1, 2C(5)+I -unless «(5) = v(5) and n = 1 in which case these two numbers
are replaced by 2"<5).
These examples illustrate the kind of information one can derive from 6.3. It is
also true that the long argument which culminated in 6.3 implicitly enables one to
decide, for any element of W and for any submodule given by its parameters,
whether the element lies in the submodule. We shall not undertake the task of
making this claim formal and elaborating a general algorithm.

7. The last term of F

At last we are ready to turn to the project outlined in the introduction. Let F be
the free nilpotent group of class 4 freely generated by x, y, z, t: our task is to
determine the 2'-isolated fully invariant subgroups of F which lie in the last
nontrivial term N3 — SSli(F)oi the lower central series of F. As we mentioned in
the introduction, the Magnus-Witt argument given in Section 3 of Kovacs (1978)
admits an obvious adaptation which yields that the 2'-isolated fully invariant
subgroups of F contained in N3 are in one-to-one correspondence with the
Z(2)G-submodules of the module W we have been studying so far. Moreover, the
nature of that correspondence is that if Lie ring sums are replaced by group
products and Lie products by group commutators, most of the detail we have
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uncovered can be translated from W to N3. We have deliberately used x, y, z, t in
both contexts. Expressing the u,, vy of W in terms of x, y, z, t allows one to
identify the corresponding elements of N3, to which we transfer the names
U | , . . . , v5: from now on,

u, = [y, x, x, y][y, x, x, x][x, y, y, y}~\

u2 = [y, x, x, y][y, x, x, x]~'[x, y, y, y]'2,

u3 = [y, x, x, z]~3[z, x, x, y][y, x,, x, zf[z, y, y, x]~3[x, y, y, z]

• [z, y,, y, xf [x, z, z, y]'3[y, z, z, x][x, z,, z, yf,
u 4 = [y> *>*> z\A[y, *»*> z l ~ \

u5 = [t, x, y, zf[t, y, z, x]2[t, z, x, y]2[t, x,, y, z]~'[r, y,, z, x]~l

[t,z,,x,y}-\

v4 = [y,x,,x,z],

v5 = [t, x,, y, z][t, y,, z, x][t, z,, x, y].

(Commutators without double commas are to be read as left-normed, so
[y, x, x, y] = [[[y, x], x], y], while [y, x,, x, z] stands for [[y, x], [x, z]], and so
on.) The translation of 6.3 is the following.

7.1. THEOREM. The 2'-isolated fully invariant subgroups of F contained in 3
are in one-to-one correspondence with the ordered W-tuples

( « ( l ) , . . . , i # ( 5 ) , » ( 4 ) , » ( 5 ) ; * , / , » » , « )

which satisfy conditions (1), (2) o/6 .1 , (4), (5), (6) of 6.2, and{\\), (12), (13), (14) of
6.3. The subgroup corresponding to these parameters is generated (as fully invariant
subgroup of F) by the following elements:

uf" with 1 < / < 5 ,

v/"o> with 4 <y < 5,

V 4
2

[y, x, x, y]2 where u — m a x { « ( l ) , . . . , M ( 5 ) } ,

[t, x,, y, z]2 where v = max{u(4), u (5 )} .

It contains the fully invariant subgroup corresponding to the parameters (w ' ( l ) , . . . ,« ' )
if and only if conditions (7), (8), (9), (10) of 6.2 are satisfied.
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The convention 2°° = 0 remains in force. The explanatory paragraph after 6.3
translates as follows:

U4V ' = [y, x, x, z]2[y, x,, x, z]'\

u2
4~'v4~2 ' = [y,x, x, z]2[y, x,, x, z]'2,

U4V 2 2 = [y,x,x, z][y, x,, x, z]'\

" s V = [',x,y, z][t, y, z, x][t, z, x, y]

give the interpretation of formally nonsensical expressions which sometimes
appear in the list of generators in 7.1.

Let M be the fully invariant subgroup closure of [y, x, x, y] and F" the second
derived group which is the fully invariant subgroup closure of [t, x,, y , z\. By
Fitzpatrick and Kovacs (1982), M is isolated (where our Lemma 5.1 was used in
this context), so M is the verbal subgroup corresponding to the variety 9? f> n 9? 4.
Moreover in the same paper it was shown that A^4 < MF" (where if A is any
abelian subgroup of F we write A k for {ak \ a G A}).

Let H be the 2'-isolated fully invariant subgroup of F corresponding to the
submodule of W with parameters ( M ( 1 ) , . . . , « ) . Clearly, H is the 2'-isolated fully
invariant subgroup closure of the set of elements listed in 7.1 with the omission of
the last two; that is, H is the subgroup of F generated by this set of elements
under the operations of applying endomorphisms of F and taking « th roots where
possible for each odd (positive) integer n. Let Ho be the isolator of H (see the
introduction) and H] the fully invariant subgroup closure of the complete set of
elements listed in 7.1. Then // , < H < Ho and Ho is also the isolator of Hx.
Moreover there is a nonnegative integer r such that H% < Hx: by the previous
paragraph, if Ho = M then r = u, if Ho = F" then r = v and if Ho = N3 then
r = 2 + max{«, t>}.

Now if w belongs to H then w can be expressed as w — w\/n where w, is a
product of (integer) powers of images of the generators of H (as 2'-isolated fully
invariant subgroup) and n is an odd positive integer. Hence w, = w" is an element
of //,. But wr E Ht and so w G Hx also. Thus H — Hl and the derivation of 7.1
is complete.

The parameters of JV3 are ( 0 , 0 , . . . , 0 ; 0 ,0 ,1 ,1 ) , those of M are ( 0 , . . . , 0 , 00, 00;
0 , . . . ,0) and those of F" are ( 0 0 , . . . , 00 ,0 ,0 ; 0 , . . .0). Clearly, the factor group
Ho/H has exponent dividing

2" when u < 00 — v,
2V when u — 00 > v,

(Of course this factor is trivial when u = v — 00.) Thus the requirements of the
programme laid out in Fitzpatrick and Kovacs (1982) are fulfilled.
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