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Signed-Selmer Groups over the
Z2

p-extension of an Imaginary
Quadratic Field
Byoung Du (B. D.) Kim

Abstract. Let E be an elliptic curve over Q that has good supersingular reduction at p > 3. We
construct what we call the ±/±-Selmer groups of E over the Z2

p-extension of an imaginary quadratic
field K when the prime p splits completely over K/Q , and prove that they enjoy a property analogous
to Mazur’s control theorem.

Furthermore, we propose a conjectural connection between the ±/±-Selmer groups and Loeffler’s
two-variable ±/±-p-adic L-functions of elliptic curves.

1 Introduction

This paper is the algebraic counterpart to the author’s previous paper [4]. In
this paper, we construct certain Selmer groups sel±/±p (E/K∞) (which we call the
±/±-Selmer groups) of an elliptic curve E/K where K is an imaginary quadratic
field, and K∞ is its Z2

p-extension, and then study their control theorem (and by so
doing, we argue that these Selmer groups are useful). In addition, we make a conjec-
ture analogous to the classical main conjecture of Iwasawa Theory that connects our
±/±-Selmer groups to Loeffler’s two-variable±/±−p-adic L-functions [10].

Readers acquainted with the plus/minus Iwasawa theory will recognize that we try
to generalize the ±-Selmer groups of S. Kobayashi [5]. However, in this paper we
are working with the Z2

p-extensions of imaginary quadratic fields rather than with
Zp-extensions, which results in many differences.

To understand the context of this work, it is helpful to understand not only Koba-
yashi and Pollack’s work that initiated the current plus/minus Iwasawa Theory [5,14],
but also more recent developments in this area by A. Lei, D. Loeffler, F. Sprung, S.
Zerbes, et. al. [7–9, 16], though this is hardly an exhaustive list). Also see Kurihara,
Rubin, and Perrin-Riou’s papers on the topic that predate the current theory [6, 13,
15].

First, we introduce our±/±-Selmer groups.
Let f be an integral ideal of K prime to p. One crucial assumption of this paper is

that pOK = pp, p 6= p. Also, we assume that E is defined over K, and

ap(E) = 1 + NK/Q p− #E(OK/p) = ap(E) = 0.
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(This last assumption is automatically true if E is defined over Q , E has good su-
persingular reduction at p, and p > 3.) Then p is unramified over K(fp

∞)/K and
totally ramified over K(fp

∞
p∞)/K(fp

∞), so we can apply the plus/minus technique
to K(fp

∞
p∞)q/K(fp

∞)q, where q is any prime above p. This is a natural extension of
[3, Section 3.2], which is itself a natural extension of [2]. We can apply the same idea
to K(fp∞p

∞)q̄/K(fp∞)q̄, and combining these two, we obtain±/±-local conditions
that define sel±/±p (E/K∞). (See Section 2.3.)

Second, we prove a theorem analogous to Mazur’s Control Theorem [12] for the
∆1-parts of these Selmer groups where ∆1 = Gal(K(fp)/K(f)).

Theorem 1.1 (Proposition 2.19) We assume p > 2. We also assume that 4 -
[K(f)P : Qp] for every prime P above p except in the case of the sel−/−p group. For
m, n ≥ 0, the natural homomorphism

sel±/±p

(
E/K(fpn+1p

m+1)
)∆1 −→ sel±/±p

(
E/K(fp∞p

∞)
)∆1[

ω±n (S)
][
ω±m (T)

]
has bounded kernel and cokernel as n and m vary.

Initially, we erroneously thought we could prove this only for the sel−/−p groups,
but the referee pointed out that a more general claim can be proven. We owe Theo-
rem 2.8 to the referee.

Remark 1.2 Proving a more general statement

sel±/±p (E/K(fpn+1p
m+1))→ sel±/±p (E/K(fp∞p

∞))[ω±n (S)][ω±m (T)]

was initially our goal, which we hope to achieve some day.

In Iwasawa Theory, we usually believe that there is an analytic theory that matches
every algebraic theory. Such a theory in our case must be a theory of four integral
two-variable power series L±,±p (X,Y ) so that

L±,±p (ζpn − 1, ζpm − 1) =
L(πE, ω, 1)

∗
(where n and m are even or odd depending on the signs {±,±} and ω is a finite
character of K determined by ζpn , ζpm ), where L(πE, ω, s) is an L-function (in a cer-
tain way) attached E/K twisted by ω, and ∗ is some term that possibly contains peri-
ods, the Gauss sums, π, i, etc. The existence of such p-adic L-functions was already
predicted by D. Loeffler and S. Zerbes [11].

The answer can be found in Loeffler’s remarkable recent work [10] in which he
constructed such p-adic L-functions based on a clever application of S. Haran’s gen-
eralized Mazur-Tate elements for GL2 [1]. We include a brief sketch of Loeffler’s work
in Section 3, but an interested reader should read the full account described in [10].

Finally, we conjecture the following.

Conjecture 1.3 (See Conjecture 3.1)

(L±,±p ) = char(X±/±) ⊂ Zp[[Gal(K(fp∞)/K)]]

where X±/± is the Pontryagin dual Hom(sel±/±p (E/K(fp∞)),Qp/Zp).
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2 ±/±-Selmer Groups

In this section, we construct the ±/±-Selmer groups, and prove a control theorem
for them.

2.1 Plus/minus Norms Group Decomposition

In this section, we slightly generalize Kobayashi’s construction [5] of what we call the
plus/minus norm points. The construction presented in this paper is the same as the
one given in [3], but, the situation of this paper is yet different from [3], because
we only deal with the cyclotomic extension of an arbitrary unramified field k for a
reason that will become clear in Section 2.3. Because of this particular situation, we
do need all the ideas for the construction of [3], yet the presentation is more elegant
and illustrative because of the properties of the cyclotomic fields.

Many results in [3, Section 3.1] were proved only for the minus groups. In this
paper, we will deal with both the plus groups and the minus groups. In the case of
the plus groups, we may assume some mild conditions.

In this section, we assume the following:

(a) the elliptic curve E/Qp has good reduction;
(b) if Ẽ is the reduced curve of E over Z/pZ, then ap = 1 + p − |Ẽ(Z/pZ)| is 0.

Let k be a finite unramified extension of Qp of degree d and let Ok be its ring of
integers.

For a fuller explanation of the following construction, see [3, Section 3.2]. We will
explain this briefly, and only point out the differences that matter to us. For a local
field k ′, we let Ê(k ′) denote Ê(mk ′) for convenience.

Definition 2.1 (Kobayashi) For n ≥ −1, we define

Ê+
(

k(µpn+1 )
)

=
{

x ∈ Ê
(

k(µpn+1 )
) ∣∣

Trk(µpn+1 )/k(µpl+2 )(x) ∈ Ê
(

k(µpl+1 )
)

for 0 ≤ l < n, 2 | l
}
,

Ê−
(

k(µpn+1 )
)

=
{

x ∈ Ê
(

k(µpn+1 )
) ∣∣

Trk(µpn+1 )/k(µpl+2 )(x) ∈ Ê
(

k(µpl+1 )
)

for − 1 ≤ l < n, 2 - l
}
.

Remark 2.2 We can plausibly argue that it is more natural to define Ê± inductively
as follows:

First we let Ê+(k(µp0 )) = Ê(k). Then for every even number n ≥ 0, we let

Ê+(k(µpn+1 )) be the set of points x ∈ Ê(k(µpn+1 )) such that Trk(µpn+1 )/k(µpn )(x) ∈
Ê+(k(µpn )), and for every odd number n ≥ −1, we let

Ê+
(

k(µpn+1 )
) def

= Ê+
(

k(µpn )
)

inductively.
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(For Ê−, switch the roles of odd and even.)

Notation 2.3 Let Φn(X) be the minimal polynomial (“the cyclotomic polynomial”)
of the pn-th primitive root of unity ζpn for every integer n ≥ 0. (Then, of course,
Φn(X + 1) is the minimal polynomial of ζpn − 1.) And, for every n ≥ 0, we define

ωn(X) = (X + 1)pn

− 1,

ω+
n (X) =

∏
0≤m≤n,

m even

Φm(X + 1),

ω−n (X) = Φ0(X + 1)
∏

0≤m≤n,
m odd

Φm(X + 1).

Remark 2.4 By examining Definition 2.1, we can easily see that

rankZp Ê−(k(µpn+1 ))η =


d · (deg(ω−n )− 1) if η 6= 1 and n is odd,

d · (deg(ω−n−1)− 1) if η 6= 1 and n is even,

d · deg(ω−n ) if n is odd,

d · deg(ω−n−1) if n is even,

rankZp Ê+(k(µpn+1 ))η =

{
d · deg(ω+

n ) if n is even,

d · deg(ω+
n−1) if n is odd.

Now we construct points cn+1 ∈ E(k(µpn+1 )) satisfying

Trk(µpn+1 )/k(µpn ) cn+1 = −cn−1.

It is not hard to see that cn+1 ∈ E+(k(µpn+1 )) if n is even, and cn+1 ∈ E−(k(µpn+1 )) if n
is odd.

Let ϕ denote the p-th Frobenius map of k, and for a unit z ∈ O×k , we let

fz(X) = (X + z)p − zp, log fz
(X) =

∞∑
n=0

(−1)n f (2n)
z (X)

pn
,

where f (n)(X) denote f ϕ
n−1 ◦ f ϕ

n−2 ◦ · · · ◦ f (X). Fix a logarithm logÊ of the formal

group Ê associated with the minimal model of E over Zp and a primitive pn-th root
of unity ζpn for each n ≥ 0. (We may assume ζ p

pn = ζpn−1 for each n > 0.) As in
[3, Section 3.2], we can construct a point cn,z such that

(2.1) logÊ(cn,z) =
[ ∞∑

i=1
(−1)i−1zϕ

−(n+2i)

· pi
]

+ log
f ϕ
−n

z

(
zϕ
−n

· (ζpn − 1)
)
.

Because logÊ is injective on Ê(k(µpn+1 )) (which follows from [3, Proposition 3.1],
a slight but necessary generalization of [5, Proposition 8.7]), from (2.1) we can see
that Trk(µpn+1 )/k(µpn ) cn+1 = −cn−1 for every n > 0.

Fix ζ ∈ O×k such that {1, ζ, . . . , ζd−1} linearly generates Ok/pOk over Z/pZ. With
the points {cn,1, cn,ζ , . . . , cn,ζd−1}, we study the following.
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Notation 2.5 For an even number n ≥ 0, let C+
n+1 be the subgroup of Ê+(k(µpn+1 ))

generated by {cn+1,ζ i}i=0,...,d−1 over Zp[Gal(k(µpn+1 )/k)], and for an odd number n >
0, let C+

n+1 = C+
n .

On the other hand, for an odd number n ≥ −1, let C−n+1 be the subgroup of
Ê−(k(µpn+1 )) generated by {cn+1,ζ i}i=0,...,d−1 over Zp[Gal(k(µpn+1 )/k)], and for an even
number n ≥ 0, let C−n+1 = C−n .

Proposition 2.6 For every n ≥ −1, we have

Ê
(

k(µpn+1 )
)

= Ê+
(

k(µpn+1 )
)

+ Ê−
(

k(µpn+1 )
)
.

In fact, we can prove a slightly stronger claim that C+
n+1 + C−n+1 = Ê(k(µpn+1 )).

Proof We only need to generalize [5, Proposition 8.11] slightly.
First, the same argument used in [5, Proposition 8.11] shows that for any n ≥ 0,

logÊ(x) ∈ mk(µpn ) + k(µpn−1 ) for x ∈ Ê(mk(µpn )). This gives us the following injection

logÊ

(
Ê(k(µpn ))

)
/ logÊ

(
Ê(k(µpn−1 ))

)
−→(

mk(µpn ) + k(µpn−1 )
)
/k(µpn−1 ) ∼= mk(µpn )/mk(µpn−1 ).

From (2.1), it is not difficult to see that

logÊ(cn,ζ i ) ≡ (ζ i)ϕ
−n

· (ζpn − 1) (mod k(µpn−1 )).

We will prove that {ζ i · (ζpn − 1)}i=0,1,...,d−1 generates mk(µpn )/mk(µpn−1 ) over

Zp[Gal(k(µpn )/k)].
It is clear that mk(µpn ) is generated (over Zp) by ζ i(ζpn − 1) j for i = 0, . . . , d − 1

and j = 1, 2, . . . . Now, we observe that (ζpn − 1) j can be written as a combination

of (ζpn − 1), (ζ2
pn − 1), . . . , (ζ j

pn − 1), so we can see that ζ i · (ζpn − 1) j can be written

as a linear combination of ζ i · (ζpn − 1), ζ i · (ζ2
pn − 1), . . . , ζ i · (ζ j

pn − 1). On the other

hand, if p | l, we have ζ l
pn − 1 ∈ mk(µpn−1 ). Since ζ l

pn − 1 for any other l is the image

of ζpn − 1 under some element of Gal(k(µpn )/k), our claim follows.

Thus, {logÊ(cn,ζ i )}i=0,...,d−1 generates logÊ(Ê(k(µpn )))/ logÊ(Ê(k(µpn−1 ))) over
Zp[Gal(k(µpn )/k)] for every n ≥ 0, which in turn implies that {cn,ζ i}i=0,...,d−1 gen-

erates Ê(k(µpn ))/Ê(k(µpn−1 )) over Zp[Gal(k(µpn )/k)] because, as mentioned before,

logÊ is injective on Ê(k(µpn )).
The rest of the proof is a simple induction argument. Our argument also shows

that C+
n+1 + C−n+1 = Ê(k(µpn+1 )).

Next, we prove(
Ê±
(

k(µp∞)
)∆ ⊗Qp/Zp

)∨ def
= Hom

(
Ê±(k(µp∞)

)∆ ⊗Qp/Zp,Qp/Zp) ∼= Λd
cyc,

where

Λcyc = Zp[[Gal(k(µp∞)/k(µp))]](∼= Zp[[X]]), ∆ = Gal(k(µp)/k)

(there will be additional conditions in the case of the plus group).
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Theorem 2.7 Recall that d = [k : Qp]. We have(
Ê−(k(µp∞))∆ ⊗Qp/Zp

)∨ ∼= Λd
cyc.

Proof As in [5] (see also [3, Proposition 3.13] that explains the reason for the switch
from Λcyc to Λd

cyc), we construct

Col±n : H1
(

k(µpn+1

)
,TE)∆/H1

±(k(µpn+1 ),TE)∆ −→ (Λ±n )d,

where H1
±(k(µpn+1 ),TE)∆ is the exact annihilator of (C±n+1)∆ with respect to the local

Tate pairing, and Λ±n is Λcyc/(ω±n ). These maps are constructed in such a way that
the following diagram is commutative for any m ≥ n:

H1(k(µpm+1 ),TE)∆

��

// (Λ±m )d

��

H1(k(µpn+1 ),TE)∆ // (Λ±n )d

Thus, by taking them to the inverse limit, we obtain

Col± : H1
(

k(µp∞),TE

)∆ → Λd
cyc.

Thus, to prove that Col± is surjective, we only need to show Col±0 is surjective. (Once
we prove that, the rest follows immediately by Nakayama’s Lemma.) We can see that
Col±0 is given by

Col±0 : H1(k(µp),TE)∆ → Hom
(

(C±1 )∆,Zp

)
→ Zd

p.

This is surjective if (C±1 )∆ = Ê(k(µp))∆ = Ê(k).
We prove this statement for the minus group for now and the statement for the

plus group in Theorem 2.8.
It is not hard to see that C−1 = C−0 . Note that C−0 is generated by {c0,ζ i}i=0,...,d−1,

which satisfies

logÊ(c0,ζ i ) =
∞∑
j=1

(−1) j−1(ζ i)ϕ
−(n+2 j)

· p j ≡ (ζ i)ϕ
−2

· p (mod p2).

Thus, clearly {logÊ(c0,ζ i )}i=0,...,d−1 generates pOk. Since logÊ : Ê(k) → pOk is an

isomorphism, we can see that {c0,ζ i}i=0,...,d−1 generates Ê(k).

The referee suggested the following proof, for which the author is truly grateful.

Theorem 2.8 If p > 2 and 4 - d, then we also have(
Ê+(k(µp∞))∆ ⊗Qp/Zp

)∨ ∼= Λd
cyc.
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Proof As we saw in the proof of Theorem 2.7, we need to show

(C+
1 )∆ = Ê(k(µp))∆ = Ê(k).

Similar to the same theorem, it is sufficient to show that the images of{
logÊ(c1,ζ i ) =

( ∞∑
j=1

(−1) j−1(ζ i)ϕ
−1−2 j

· p j
)

+ (ζ i)ϕ
−1

· (ζp − 1)
}

i=0,...,d−1

under the trace Trk(µp)/k generate p · Ok (we use Trk(µp)/k because its image is always
invariant under the action of ∆). The trace of the term above can be explicitly com-
puted:

Trk(µp)/k(logÊ(c1,ζ i )) ≡ Trk(µp)/k

(
(ζ i)ϕ

−3

· p + (ζ i)ϕ
−1

· (ζp − 1)
)

(mod p2)

= (ζ i)ϕ
−3

· (p − 1)p − (ζ i)ϕ
−1

· p

≡ −
(

(ζ i)ϕ
−3

+ (ζ i)ϕ
−1)

p (mod p2).

Now the question comes down to showing that {(ζ i)ϕ
−3

+ (ζ i)ϕ
−1}i=0,...,d−1 gener-

ates Ok/pOk. Equivalently, we may ask whether {(ζ i)ϕ
−2

+ (ζ i)}i=0,...,d−1 generates
Ok/pOk linearly, and since {1, ζ, . . . , ζd−1} generates Ok/pOk by our assumption,
this question is equivalent to whether ϕ−2 + 1 is surjective on Ok/pOk. In turn, since
Ok/pOk is a finite field, ϕ−2 + 1 is surjective if and only if it is injective on Ok/pOk.

To find the kernel of ϕ−2 + 1, first we note that it is contained in the kernel of
ϕ4 − 1, which is Fp4 . We also note that the kernel of ϕ−2 + 1 does not contain any
element of Fp2 except 0 unless p = 2.

If 4 - d, then Ok/pOk ∩ Fp4 is Fp2 or Fp. In either case, the kernel of ϕ−2 + 1 only
contains 0.

The next statement repeats [3, Proposition 3.15]. Even though we do not add
anything substantial to it, we feel the need to restate it because the statement for the
plus group was missing in [3].

Theorem 2.9 ([3] Proposition 3.15) Suppose(
Ê±(k(µp∞))η ⊗Qp/Zp

)∨ ∼= Λd
cyc.

for every character η of ∆. Or, equivalently, suppose(
Ê±(k(µp∞))⊗Qp/Zp

)∨ ∼= Λcyc[∆]d.

Then, for every n,m ≥ 0,(
Ê±(k(µp∞))/pmÊ±(k(µp∞))

)Gal(k(µp∞ )/k(µpn+1 ))

is the exact annihilator of itself with respect to the local Tate pairing of

H1
(

k(µpn+1

)
, E[pm])×H1

(
k(µpn+1 ), E[pm]

)
−→ Z/pmZ.
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2.2 More on the Plus/Minus Norm Groups

We note that the local class field theory implies that an unramified extension over
a local field is totally determined by its degree. We let k be a (finite) unramified
extension of Qp, and for any m ≥ 0, we let km be the unique unramified extension
of k with Gal(km/k) ∼= Z/pmZ. As usual, we let µpn denote the set of pn-th roots of
unity, and µp∞ denote ∪∞n=0µpn .

First we give the following proposition.

Proposition 2.10 For each n, we have(
Ê(kn)⊗Qp/Zp

)Gal(kn/k)
= Ê(k)⊗Qp/Zp.

Proof First, we note that for any finite extension L of Qp, by the local Tate duality,

Ê(L) ⊗ Qp/Zp is the exact annihilator of Ê(L) with respect to the non-degenerate
pairing

( · , · )L : H1(L, E[p∞])×H1(L,Tp(E)) −→ Qp/Zp

induced from the Weil pairing (and H2(L, µp∞)
∼→ Qp/Zp).

We note that Nkn/k(Ê(kn)) = Ê(k). (It is not very difficult to prove, so we will say

only a few things about the proof. Since kn is unramified over Qp, Ê(kn) ∼= pOkn

through the logarithm map logÊ. Since kn/k is unramified, Trkn/k(Okn ) = Ok, and
our claim follows.)

Then we have the commutative diagram

H1
(

kn, E[p∞]
)
× H1

(
kn,Tp(E)

)
//

Cor
��

Qp/Zp

��
H1
(

k, E[p∞]
)Res

OO

× H1
(

k,Tp(E)
)

// Qp/Zp.

In other words, (Res x, y)kn = (x,Cor y)k.
Suppose x ∈ (Ê(kn) ⊗ Qp/Zp)Gal(kn/k). We can assume that x = Res(x ′) for some

x ′ ∈ H1(k, E[p∞]) by the Hochschild–Serre spectral sequence. Then

(x, y)kn = (x ′,Cor y)k.

It follows that we have(
x ′, Ê(k)

)
k

=
(

x ′,Nkn/kÊ(kn)
)

k
=
(

x ′,Cor(Ê(kn))
)

k
=
(

x, Ê(kn)
)

kn
= 0

(the last line is by the local Tate duality). Since x ′ is an annihilator of Ê(k), again
by the local Tate duality, x ∈ Ê(k) ⊗ Qp/Zp. Thus, (E(kn) ⊗ Qp/Zp)Gal(kn/k) ⊂
E(k)⊗Qp/Zp, and our claim follows, because it is clear that

E(k)⊗Qp/Zp ⊂
(

E(kn)⊗Qp/Zp

)Gal(kn/k)
.
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Let Γ denote Gal(k∞(µp∞)/k(µp)) ∼= Z2
p, and recall that ∆ denotes Gal(k(µp)/k).

We can obtain the following proposition.

Proposition 2.11 We have[
Ê−(k∞(µp∞))∆ ⊗Qp/Zp

]∨ ∼= Zp[[Γ]][k : Qp].

A similar statement holds for Ê+(k∞(µp∞))∆ if p is odd, and 4 - [k : Qp].

Proof We prove our claim for Ê− first.
By applying Theorem 2.7 and Proposition 2.10 repeatedly to every n, we have[

Ê−(k∞(µp∞))∆ ⊗Qp/Zp

]Γ
= Ê(k)⊗Qp/Zp.

Then, by Nakayama’s lemma, we know that [Ê−(k∞(µp∞))∆⊗Qp/Zp]∨ is generated

by [k : Qp] elements over Zp[[Γ]]. Indeed, considering that each Ê−(kn(µp∞))∆ ⊗
Qp/Zp is co-free over Zp[[Γ ′]] of rank [kn : Qp] where Γ ′ denotes

Gal
(

k∞(µp∞)/k∞(µp)
) ∼= Gal

(
kn(µp∞)/kn(µp)

) ∼= Zp,

we can see that Ê−(k∞(µp∞))∆ ⊗Qp/Zp is co-free over Zp[[Γ]] of rank [k : Qp].

The proof for Ê+ is similar except that we apply Theorem 2.8 instead of Theo-
rem 2.7.

2.3 ±/±-Selmer groups

Let K be an imaginary quadratic field over Q such that p splits completely (in other
words, pOK = pp for different prime ideals p and p). Let f be any integral ideal of K
prime to p. Let ∆1 denote the group Gal(K(fp)/K(f)).

Suppose E is an elliptic curve defined over K with good supersingular reduction
at p and p. We also suppose that ap = 1 + Np − #(Ẽp(OK/p)) = 0 and ap =
1 + Np − #(Ẽp(OK/p)) = 0 where Ẽp and Ẽp are the reduced curves modulo p and
p in the respective cases. Because p splits completely over K/Q , and E has good
supersingular reduction at p and p, ap and ap are 0 if p > 3 by Hasse’s Inequality.

We also let Γ = Gal(K(fp∞)/K(fp)) ∼= Z2
p, Γp = Gal(K(fp∞)/K(fp)) ∼= Zp, and

Γp = Gal(K(fp
∞)/K(fp)) ∼= Zp. Indeed, Γp,Γp can be considered subgroups of Γ,

and we have Γ ∼= Γp × Γp.
We can define Ê± in the direction of either p∞ or p

∞ as follows: First, suppose q

is a prime of K(fp∞p
∞) above p. We define

Ê+
(

K(fp
m+1

pn+1)q

)
=
{

x ∈ Ê
(

K(fp
m+1

pn+1)q

)
|

TrK(fpm+1pn+1)q/K(fpm+1pl+2)q
x ∈ Ê

(
K(fp

m+1
pl+1)q

)
where 0 ≤ l < n, 2 | l

}
,

Ê−
(

K(fp
m+1

pn+1)q

)
=
{

x ∈ Ê
(

K(fp
m+1

pn+1)q

)
|

TrK(fpm+1pn+1)q/K(fpm+1pl+2)q
x ∈ Ê

(
K(fp

m+1
pl+1)q

)
where − 1 ≤ l < n, 2 - l

}
.
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Similarly, where q̄ is a prime of K(fp∞p
∞) above p, we define Ê±(K(fpn+1p

m+1)q̄)
with the roles of p and p reversed as follows:

Ê+(K
(

fpn+1p
m+1)q̄

)
=
{

x ∈ Ê
(

K(fpn+1p
m+1)q̄

)
|

TrK(fpn+1pm+1)q̄/K(fpn+1pl+2)q̄
x ∈ Ê

(
K(fpn+1p

l+1)q̄

)
where 0 ≤ l < m, 2 | l

}
,

Ê−
(

K(fpn+1p
m+1)q̄

)
=
{

x ∈ Ê
(

K(fpn+1p
m+1)q̄

)
|

TrK(fpn+1pm+1)q̄/K(fpn+1pl+2)q̄
x ∈ Ê

(
K(fpn+1p

l+1)q̄

)
where 0 < l < m, 2 - l

}
.

Now we define the±/±-Selmer groups.

Definition 2.12 (±/±-Selmer groups) For a prime q of K(fp
∞

p∞) above p, we let

Ê±
(

K(fp
∞

p∞)q

)
= ∪m,nÊ±

(
K(fp

m+1
pn+1)q

)
,

where, by abuse of notation, q ⊂ K(fp
m+1

pn+1) also denotes the prime that q ⊂
K(fp

∞
p∞) lies above. Similarly, for a prime q̄ of K(fp

∞
p∞) above p, we let

Ê±
(

K(fp∞p
∞)q̄

)
= ∪n,mÊ±

(
K(fpn+1p

m+1)q̄

)
.

Then we define

sel±/±p (E/K(fp∞)) = ker(H1(K(fp∞), E[p∞])

→
∏
w-p

H1(K(fp∞)w, E[p∞])

E(K(fp∞)w)⊗Qp/Zp

×
∏
q|p

H1(K(fp
∞

p∞)q, E[p∞])

Ê±(K(fp
∞

p∞)q)⊗Qp/Zp

×
∏
q̄|p

H1(K(fp∞p
∞)q̄, E[p∞])

Ê±(K(fp∞p
∞)q̄)⊗Qp/Zp

).

From now on, we will study a “control theorem” of sel±/±p (E/K(fp∞))∆1 . (Except

for the sel−/−p group, we will assume 4 - [K(f)p : Qp], 4 - [K(f)p : Qp], and p > 2.)
First, we need to define some plus/minus groups that we will use only temporar-

ily. By abuse of notation, we let K(f)m̄,n denote the unique field satisfying K(f) ⊂
K(f)m̄,n ⊂ K(fp

m+1
pn+1), and

Gal(K(fp
m+1

pn+1)/K(f)m̄,n) ∼= ∆1

(n,m could be∞).
Recall the notation km from Section 2.2 that is defined as the unique unramified

extension of an unramified local field k such that Gal(km/k) ∼= Z/pmZ.
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Put k = K(f)q where q is a prime above p, then because q is unramified over
K(f)m̄,0/K(f) and the degree [K(f)m̄,0/K(f)] is equal to [km :k] = pm, we have

(K(f)m̄,0)q = km.

We let k(n)
m denote the field satisfying

km ⊂ k(n)
m ⊂ km(µn+1), and Gal(km(µn+1)/k(n)

m ) ∼= (Z/pZ)×.

(We may write k(n) for k(n)
0 , and K(f)n for K(f)0̄,n.)

Lemma 2.13 For any m ≥ n ≥ 0, (K(f)m̄,n)q = k(n)
m .

Proof Since Nk(µpn+1 )/k(ζpn+1 − 1) = p, by the local class field theory we have the

isomorphism
Gal(k(µpn+1 )/k) ∼= k×/〈p〉 · (1 + pn+1Ok),

where 〈p〉 is the multiplicative group pZ. Thus,

Gal(k(n)/k) ∼= k×/〈p〉 · µ(k×) · (1 + pn+1Ok),

where µ(k×) is the set of roots of unity of k×.
Similarly, there is an isomorphism

Gal
(

(K(f)0̄,n)q/k
) ∼= k×/〈π〉 · µ(k×) · (1 + pn+1Ok)

for some uniformizer π of k.
Considering k(n)

m is unramified over k(n) with degree pm, we have

Gal(k(n)
m /k) ∼= k×/〈ppm

〉 · µ(k×) · (1 + pn+1Ok),

and similarly we have

Gal(
(
K(f)m̄,n

)
q
/k) ∼= k×/〈πpm

〉 · µ(k×) · (1 + pn+1Ok).

Since (π/p)pm ∈ µ(k×) · (1 + pm+1Ok), our claim follows.

Now we define certain plus/minus groups that we use only temporarily. We let
Ê±(k(n)

m ) denote the plus/minus groups defined by

Ê+(k(n)
m )

def
= {x ∈ Ê(k(n)

m )|Trk(n)
m /k(l+1)

m
(x) ∈ Ê(k(l)

m ) for 0 ≤ l < n, 2|l},

Ê−(k(n)
m )

def
= {x ∈ Ê(k(n)

m )|Trk(n)
m /k(l+1)

m
(x) ∈ Ê(k(l)

m ) for − 1 ≤ l < n, 2 - l}.

(Notationwise, we let k(−1)
m = km.) It is not hard to see that Ê±(k(n)

m ) is the same as
Ê±(km(µpn+1 ))∆ from Definition 2.1.
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Similarly, we also define

Ê+
(

(K(f)m̄,n)q

) def
=
{

x ∈ Ê
(

(K(f)m̄,n)q

)
| Tr(K(f)m̄,n)q/(K(f)m̄,l+1)q

(x) ∈ Ê
(

(K(f)m̄,l)q

)
for 0 ≤ l < n, 2 | l

}
,

Ê−
(

(K(f)m̄,n)q

) def
=
{

x ∈ Ê
(

(K(f)m̄,n)q

)
| Tr(K(f)m̄,n)q/(K(f)m̄,l+1)q

(x) ∈ Ê
(

(K(f)m̄,l)q

)
for − 1 ≤ l < n, 2 - l

}
.

(Similarly, we assume that K(f)m̄,−1 = K(f)m̄,0.)
For the following, we will use the notation K(f)n,m̄ interchangeably with K(f)m̄,n.

In a way similar to the prior construction, we define Ê±((K(f)n,m̄)q̄) with the roles of
m̄ and n reversed as follows:

Ê+
(

(K(f)n,m̄)q̄

) def
=
{

x ∈ Ê
(

(K(f)n,m̄)q̄

)
| Tr

(K(f)n,m̄)q̄/
(

K(f)n,l+1

)
q̄

(x) ∈ Ê
(

(K(f)n,l̄)q̄

)
for 0 ≤ l < m, 2|l

}
.

Ê−
(

(K(f)n,m̄)q̄

) def
=
{

x ∈ Ê
(

(K(f)n,m̄)q̄

)
| Tr

(K(f)n,m̄)q̄/
(

K(f)n,l+1

)
q̄

(x) ∈ Ê
(

(K(f)n,l̄)q̄

)
for − 1 ≤ l < m, 2 - l

}
.

We concede that these are confusing notations. We consider it an unfortunate but
inevitable consequence of having two primes above p to deal with.

Nonetheless, we can relate the groups Ê±(k(n)
m ) (and this type of group was studied

in Section 2.2) with Ê±((K(f)m̄,n)q), since we have (K(f)m̄,n)q = k(n)
m if m ≥ n by

Lemma 2.13. Hence, we have the following lemma.

Lemma 2.14 If m ≥ n, then Ê±(k(n)
m ) = Ê±

(
(K(f)m̄,n)q

)
.

Proof As mentioned above, we have (K(f)m̄,n)q = k(n)
m if m ≥ n, thus those two

groups in the statement are defined the same way if m ≥ n.

Then we immediately obtain the following proposition.

Proposition 2.15 If m ≥ n, then

Ê
(

(K(f)m̄,n)q

)
= Ê+

(
(K(f)m̄,n)q

)
+ Ê−

(
(K(f)m̄,n)q

)
.

Proof This follows immediately from Proposition 2.6 and Lemma 2.14.

We do not have an immediate application of Proposition 2.15 at hand, but this
type of theorem has proven useful in the past, so we are hopeful that this proposition
may also be useful in the future.

We make the following (somewhat self-evident) definition.
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Definition 2.16 Ê±
(

K(fp
∞

p∞)q

) def
= ∪∞n,m=0Ê±

(
K(fp

m+1
pn+1)q

)
.

Proposition 2.17[
Ê−(K(fp

∞
p∞)q)∆1 ⊗Qp/Zp

]∨ ∼= Zp[[Γ]][K(f)q : Qp].

If 4 - [K(f)q : Qp] and p > 2, then we also have[
Ê+(K(fp

∞
p∞)q)∆1 ⊗Qp/Zp

]∨ ∼= Zp[[Γ]][K(f)q : Qp].

Proof Since Ê±((K(f)n̄,n)q) = Ê±(k(n)
n ), we have

Ê±
(

K(fp
∞

p∞)q

)∆1
= Ê±

(
(K(f)∞̄,∞)q

)
= Ê±

(
k(∞)
∞
)

by Lemma 2.14, and the rest follows from Proposition 2.11.

We use this versatile property to prove the following statement of the control the-
orem. Recall the notations ωn(X), ω+

n (X), ω−n (X) from Notation 2.3. Recall that we
have the decomposition Γ ∼= Γp × Γp, and choose topological generators γp and γp

of Γp and Γp. We identify Zp[[Γ]] with Zp[[S,T]] by γp = S + 1, γp = T + 1.

Proposition 2.18 For any integers m, n ≥ 0 and any polynomial fm(X) dividing
ωm(X), we have

[
Ê−(K(fp

∞
p∞)q)∆1 ⊗Qp/Zp

]
[ω−n (S)][ fm(T)] =[

Ê−(K(fp
m+1

pn+1)q)∆1 ⊗Qp/Zp

]
[ fm(T)].

If 4 - [K(f)q : Qp] and p > 2, then we also have

[
Ê+(K(fp

∞
p∞)q)∆1 ⊗Qp/Zp

]
[ω+

n (S)][ fm(T)] =[
Ê+(K(fp

m+1
pn+1)q)∆1 ⊗Qp/Zp

]
[ fm(T)].

Proof We only need to study the case where fm(T) = ωm(T).
From Proposition 2.17, we have

[
Ê±(K(fp

∞
p∞)q)∆1 ⊗Qp/Zp

]
[ω±n (S)][ωm(T)]∨ =(

Zp[S,T]/(ω±n (S), ωm(T))
) [K(f)q : Qp]

.

On the other hand, it follows immediately from the definition that[
Ê±(K(fp

∞
p∞)q)∆1 ⊗Qp/Zp

][
ω±n (S)

][
ωm(T)

]
should contain Ê±(K(fp

m+1
pn+1)q)∆1 ⊗Qp/Zp.

Note that both groups are divisible. The rest follows by comparing the coranks
(see Remark 2.4).
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We recall that the standard way to define a Selmer group over a number field L is

selp(E/L)
def
= ker

(
H1(L, E[p∞])→

∏
w

H1(Lw, E[p∞])

E(Lw)⊗Qp/Zp

)

where w runs over all the places of L. Also, we may define ±/±-Selmer group of
finite level as

sel±/±p

(
E/K(fpn+1p

m+1)
) def

= ker(H1(K(fpn+1p
m+1), E[p∞])

→
∏
w-p

H1(K(fpn+1p
m+1)w, E[p∞])

E(K(fpn+1p
m+1)w)⊗Qp/Zp

×
∏
q|p

H1(K(fp
m+1

pn+1)q, E[p∞])

Ê±(K(fp
m+1

pn+1)q)⊗Qp/Zp

×
∏
q̄|p

H1(K(fpn+1p
m+1)q̄, E[p∞])

Ê±(K(fpn+1p
m+1)q̄)⊗Qp/Zp

).

Proposition 2.19 (Control Theorem) In the following, we assume that p > 2, and
4 - [K(f)P : Qp] for every prime P above p except in the case of the sel−/−p group. For
any integers m, n ≥ 0, the natural homomorphism

sel±/±p

(
E/K(fpn+1p

m+1)
)∆1 −→ sel±/±p

(
E/K(fp∞p

∞)
)∆1[

ω±n (S)
][
ω±m (T)

]
has bounded kernel and cokernel as n and m vary.

Proof We apply the Snake Lemma to the commutative diagram (which is too large
to draw in this space) given by connecting the following two short exact sequences:

0→ sel±/±p (E/K(fpn+1p
m+1))∆1

→ H1(K(fpn+1p
m+1), E[p∞])∆1 [ω±n (S)][ω±m (T)]

→
∏
w-p

H1(K(fpn+1p
m+1)w, E[p∞])

E(K(fpn+1p
m+1)w)⊗Qp/Zp

×
∏
q|p

H1(K(fp
m+1

pn+1)q, E[p∞])(
Ê±(K(fp

m+1
pn+1)q)⊗Qp/Zp

)
×
∏
q̄|p

H1(K(fpn+1p
m+1)q̄, E[p∞])(

Ê±(K(fpn+1p
m+1)q̄)⊗Qp/Zp

)
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and

0→ selp(E/K(fp∞p
∞))∆1 [ω±n (S)][ω±m (T)]

→ H1(K(fp∞p
∞), E[p∞])∆1 [ω±n (S)][ω±m (T)]

→
∏
w-p

H1(K(fp∞p
∞)w, E[p∞])

E(K(fp∞p
∞)w)⊗Qp/Zp

×
∏
q|p

H1(K(fp
∞

p∞)q, E[p∞])(
Ê±(K(fp

∞
p∞)q)⊗Qp/Zp

)
[ω±n (S)]

×
∏
q̄|p

H1(K(fp∞p
∞)q̄, E[p∞])

(Ê±(K(fp∞p
∞)q̄)⊗Qp/Zp)[ω±m (T)]

.

The map

H1
(

K(fpn+1p
m+1), E[p∞]

)∆1[
ω±n (S)

][
ω±m (T)

]
−→ H1

(
K(fp∞p

∞), E[p∞]
)∆1[

ω±n (S)
][
ω±m (T)

]
is an isomorphism, because

H1
(

K(fpn+1p
m+1), E[p∞]

)∆1 → H1
(

K(fp∞p
∞), E[p∞]

)∆1[
ωn(S)

][
ωm(T)

]
is an isomorphism by the Hochschild–Serre spectral sequence.

The following statement about the local conditions at places not above p is a vari-
ation of a number of similar statements that can be found in many papers, and we
omit its proof. (Among the common references are a series of Greenberg’s papers.
Also, one can find a similar variation in [3].) If w - p, the kernel of the map

H1(K(fpn+1p
m+1)w, E[p∞])

E(K(fpn+1p
m+1)w)⊗Qp/Zp

−→ H1(K(fp∞p
∞)w, E[p∞])

E(K(fp∞p
∞)w)⊗Qp/Zp

is finite and bounded as n and m vary, and indeed, trivial if E has good reduction at
w.

It remains to show that the kernels of

H1(K(fp
m+1

pn+1)q, E[p∞])∆1

(Ê±(K(fp
m+1

pn+1)q)∆1 ⊗Qp/Zp)
−→ H1(K(fp

∞
p∞)q, E[p∞])∆1

(Ê±(K(fp
∞

p∞)q)∆1 ⊗Qp/Zp)[ω±n (S)]

H1(K(fpn+1p
m+1)q̄, E[p∞])∆1

(Ê±(K(fpn+1p
m+1)q̄)∆1 ⊗Qp/Zp)

−→ H1(K(fp∞p
∞)q̄, E[p∞])∆1

(Ê±(K(fp∞p
∞)q̄)∆1 ⊗Qp/Zp)[ω±n (T)]

are finite and bounded (indeed trivial) as n and m vary. This follows from Proposi-
tion 2.18.
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3 A Conjectural Link with Loeffler’s Two-variable ±/±-p-adic
L-functions

Recently, D. Loeffler told the author about his construction of ±/±-p-adic
L-functions. The importance and relevance of his work was obvious to the author,
especially in connection with the work of this paper. For an elliptic curve E/Q
with ap(E) = 0, he constructed four integral measures L±,±p on Gal(K(fp∞)/K)
interpolating the special values of the L-functions of the automorphic representa-
tion attached to an imaginary quadratic field K, and the elliptic curve E, twisted
by finite characters of Gal(K(fp∞)/K). By a well-known theorem of Iwasawa
Theory, such measures can be considered as elements of the Iwasawa algebra
Zp[[Gal(K(fp∞)/K)]], in other words, p-adic L-functions. Loeffler and S. Zerbes
predicted such p-adic L-functions would exist [11].

The philosophy of Iwasawa Theory suggests the following conjecture.

Conjecture 3.1
(L±,±p ) = char(X±/±)

where X±/± is the Pontryagin dual Hom(sel±/±p (E/K(fp∞)),Qp/Zp).

Note that in the statement, (L±,±p ) and char(X±/±) are considered principal ideals
of the Iwasawa algebra Zp[[Gal(K(fp∞)/K)]].

Before we finish the paper, we briefly explain Loeffler’s construction for readers.
First, we discuss S. Haran’s generalized Mazur-Tate elements [1].

Let K be a number field, and π an automorphic representation of GL2/K that is
cohomological in trivial weight, and whose central character is trivial.

For an integral ideal g of K, we let Gg denote the ray class group modulo g.
Then the universal Mazur–Tate element of conductor g is an element of the mod-
ule Z[Gg] ⊗ HBM

r1+r2
(Y,Z) where r1, r2 are the numbers of real and imaginary places

of K, Y is the locally symmetric space for GL2(AK ), and HBM is the Borel–Moore
homology. Then Haran’s generalized Mazur–Tate element Θg(π) ∈ Z[Gg] ⊗Z Λπ is
given by evaluating the universal Mazur–Tate element of conductor g against a class
of Hr1+r2

par (Y,C) arising from π. (Here, Λπ is some finitely generated abelian subgroup
of C. One needs to show that one can choose the class in such way that the resulting
Mazur–Tate elements have coefficients in a finite extension F/Q .)

When π is given by the base-change to K from the modular form attached to E/Q ,
we have Λπ = Z, thus we drop it from the notation. In the manner described above,
Haran constructs Θg(π) ∈ Z[Gg] for each g. If l is an integral ideal dividing g, these
elements satisfy the norm relation

Ngl
g Θgl(π) = al(π)Θg(π)−Θg/l(π).

Loeffler “p-stabilizes” these elements depending on the choice of a root αp of the
local Euler factor of π at p for every prime p of K above p (see [10, 4.2]). The result
is a unique distribution Lp,α(π) on the ray class group Gal(K(fp∞)/K) where α de-
notes the set of chosen roots {αp}p|p. (Though he works with Gal(K(p∞)/K), it is
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plausible that the same construction works for Gal(K(fp∞)/K) for any integral ideal
f prime to p.) The distribution has the interpolation property

(3.1) Lp,α(π)(ω) =
∏
p|p

α
− ordp fω
p

L(π, ω, 1)

τ (ω) · |fω|(4π)[K : Q]
,

where ω is a finite-order character of Gal(K(fp∞)/K) and fω is its conductor.
Now suppose that K is an imaginary quadratic field over which p splits completely,

so that pOK = pp. Also suppose that ap = ap = 0 and the weight of the automorphic
form is 2. Then there are two choices for both αp, and αp. They are the roots α, β of
X2 − apX + NK/Q p = X2 − apX + NK/Q p = X2 + p. Clearly, α = −β, which plays a
critical role in [10, Proposition 5.3]. Loeffler’s p-adic L-functions are given by

L+,+
p = (Lp,α,α + Lp,α,β + Lp,β,α + Lp,β,β)/ log+

p log+
p ,

L+,−
p = (Lp,α,α − Lp,α,β + Lp,β,α − Lp,β,β)/ log+

p log−
p
,

L−,+p = (Lp,α,α + Lp,α,β − Lp,β,α − Lp,β,β)/ log−p log+
p ,

L−,−p = (Lp,α,α − Lp,α,β − Lp,β,α + Lp,β,β)/ log−p log−
p
,

where log±p (X) are the half-logarithms defined in [14]. (See [10, Proposition 5.3] for

the reason why L±,±p are well defined.) Their interpolation properties follow from
(3.1).
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