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Debris flows are a growing natural hazard as a result of climate change and population
density. To effectively assess this hazard, simulating field-scale debris flows at a reasonable
computational cost is crucial. We enhance existing debris flow models by rigorously
deriving a series of depth-averaged shallow models with varying complexities describing
the behaviour of grain–fluid flows, considering granular mass dilatancy and pore fluid
pressure feedback. The most complete model includes a mixture layer with an upper fluid
layer, and solves for solid and fluid velocity in the mixture and for the upper fluid velocity.
Simpler models are obtained by assuming velocity equality in the mixture or single-layer
descriptions with a virtual thickness. Simulations in a uniform configuration mimicking
submarine landslides and debris flows reveal that these models are extremely sensitive to
the rheology, the permeability (grain diameter) and initial volume fraction, parameters that
are hard to measure in the field. Notably, velocity equality assumptions in the mixture hold
true only for low permeability (corresponding to grain diameter d = 10−3 m). The one-
layer models’ results can strongly differ from those of the complete model, for example,
the mass can stop much earlier. One-layer models, however, provide a rough estimate of
two-layer models when permeability is low, initial volume fraction is far from critical and
the upper fluid layer is very thin. Our work with uniform settings highlights the need of
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developing two-layer models accounting for dilatancy and for an upper layer made either
of fluid or grains.

Key words: wet granular material, shallow water flows, particle/fluid flows

1. Introduction
Landslides and debris flows play a key role in erosion processes at the Earth’s surface and
represent major natural hazards threatening life and property in mountainous, volcanic and
coastal areas. Recent examples include the debris flows that occurred in the Democratic
Republic of Congo in 2023, causing more than 400 deaths (https://blogs.agu.org/
landslideblog/). One of the ultimate goals of research involving the dynamic analysis of
landslides and debris flows is to produce tools for the detection of natural instabilities and
prediction of the velocity, dynamic impact and runout extent of the associated landslides
and debris flows. Such tools will then be used to design hazard maps, early warning
systems and land-use planning.

In recent years, significant progress in the mathematical, physical and numerical
modelling of these gravitational flows has made it possible to develop and use numerical
models to investigate geomorphological processes and assess risks related to such
natural hazards. Solving the complete three-dimensional (3-D) equations of field-scale
granular mass motion with sufficient resolution to describe the real topography involves
prohibitive computational costs. For this reason, a class of efficient techniques developed
and successfully employed to reproduce a large range of experimental and geological
observations makes use of a depth-averaged continuum description based on the shallow
layer approximation (i.e. the thickness of the flowing mass is assumed to be small
compared with its downslope extension), e.g. (Savage & Hutter 1989; Mangeney-
Castelnau et al. 2003; Mangeney et al. 2007; Hungr & McDougall 2009; Moretti et al.
2012; Lucas, Mangeney & Ampuero 2014; Peruzzetto et al. 2021). However, most of these
models do not take into account the co-existence and interaction of a fluid (water and
mud) and solid (grains) phase within the flowing mass, which play a key role in the flow
dynamics. This limitation prevents accurate hazard assessment (Peruzzetto et al. 2019,
2022) and full interpretation of field measurements, in particular, seismic data which could
be used to detect such events (Moretti et al. 2015; Allstadt et al. 2018). Accounting for
these effects, however, significantly complexifies the model, introducing parameters that
are hard to measure in the field and that may change during the flow such as permeability
or coefficients in the rheological laws. It is essential to develop such models to quantify the
errors made in more parsimonious models, and make it easier to calibrate and to use them
for hazard assessment or emergency situations. These errors can indeed be huge, leading
to completely different behaviours depending, in particular, on the initial volume fraction,
a property impossible to describe with simpler models.

Iverson (1997) first addressed the need to include interstitial fluid effects in the
constitutive behaviour of the mass flow and developed a shallow layer model for a solid–
fluid mixture, under the simplifying assumptions of constant solid volume fraction, and
equality of the fluid and solid velocity. The flow is described by a single set of equations for
the density and momentum of the mixture, which formally appears as a single-phase model
with a stress term accounting for contributions from the two constituents. A pore pressure
advection–diffusion equation was added based on experimental measurements. Various
versions and applications of this grain–fluid mixture model have since been presented
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(Pudasaini, Wang & Hutter 2005). In parallel, Pitman & Le (2005) have proposed a depth-
averaged two-fluid model for debris flows that contains mass and momentum equations
for both the fluid and solid phase, thus providing equations for the velocities of the two
phases and for the solid volume fraction, without any additional equation for the pore
fluid pressure. Pelanti, Bouchut & Mangeney (2008); Pelanti, Bouchut & Mangeney (2011)
proposed numerical schemes to solve these equations. Bouchut et al. (2015) showed that a
closure relation was missing in these previous models. Indeed, this closure was implicitly
(artificially) replaced by the assumption that the upper surfaces of the solid and fluid
phases coincide with the free surface. This is however not the case in real flows due
to dilatancy of the granular mass that expel or incorporate the fluid at its surface as it
contracts or dilates, respectively.

The challenge is thus to derive a closure relation describing the dilation/contraction
of the solid phase that decrease/increase the pore fluid pressure with strong feedback on
the friction experienced by the granular phase (Roux & Radjai 1998; Pailha, Nicolas &
Pouliquen 2008; Iverson et al. 2010; Bouchut et al. 2016). Such effects have been shown
to dramatically change the dynamics of the grain–fluid mixture (Rondon, Pouliquen &
Aussillous 2011; Bouchut et al. 2016, 2021), possibly leading to its complete liquefaction.
Dilatancy laws can be formulated in the framework of the critical state theory based on the
existence of a well-defined steady shear state depending only on the nature of the granular
material and used as reference state. Deviations from the critical state are formulated as
state variables to describe transient deformations (Dafalias & Manzari 2004).

Iverson & George (2014) proposed a shallow depth-averaged mixture model to describe
these dilatancy effects, assuming equal downslope velocity for the solid and fluid phases.
They introduced a so-called virtual surface, eliminating the need to describe whether the
layer on top of the mixture is a solid or a fluid. Following a different approach, Bouchut
et al. (2016) proposed a two-phase model with an upper fluid layer capable of collecting or
providing water during contraction or dilation of the mixture. However, this model does not
describe the situation where the upper layer is made only of grains. Such a configuration
has been studied by Meng et al. (2022, 2024), where a depth-averaged model for debris
flows is proposed dealing with transitions from pure fluid/solid configurations to under-
saturated or over-saturated mixtures and then compared with laboratory experiments for
wet granular flows. However, this model does not account for dilatancy or mass exchange.
Meng & Wang (2018) combined the idea of the virtual surface introduced by Iverson
and George and the dilatancy approach developed by Bouchut et al. (2016), keeping two
different velocities in the mixture for the solid and fluid phases. The exchange of mass
between the mixture and the upper fluid layer, introduced by Bouchut et al. (2016), was
also adopted using a particular interpretation in which the model does not account for a
layer above to collect or provide water. The mass is instead said to pass through a virtual
surface. Luca et al. (2012) developed a depth-averaged two-layer model for over-saturated
flows that considers bottom curvature and accounts for two velocities in the mixture and
one independent velocity for the upper-fluid layer, similar to the approach of Bouchut
et al. (2016) although dilatancy effects are not considered. More recently, Sun et al. (2023)
investigated submarine avalanches, presenting a model that accounts for dilatancy and
mass exchange, akin to Bouchut et al. (2016). This model features one velocity for the
mixture and an independent velocity for the upper fluid layer, making it an immersed
version of the model proposed by Drach (2023).

Another difference between the Bouchut et al. (2016) and Iverson & George (2014)
models lies in the calculation of the pore fluid pressure. In the Iverson and George
model, a differential equation is proposed to solve basal fluid pressure. This equation
comes from the assumption of elastic deformation of the granular skeleton under pressure
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(Baumgarten & Kamrin 2019; Lee 2021; Montellà et al. 2021), which is assumed to be
negligible by Bouchut et al. (2016).

We lack a clear understanding and quantification of the hypotheses of the models as
well as of the pressure calculation and the assumption of a virtual free surface. This results
from the complexity of the derivation of shallow depth-averaged equations with dilatancy
and of the strong coupling between the different terms. Numerical resolution of these
systems is very challenging (Bouchut et al. 2021; Garres-Díaz et al. 2020) and sometimes
models are only partially solved using key simplifications. For example, the modelof Meng
& Wang (2018) is solved for a uniform configuration as done by Bouchut et al. (2016).
Meng, Johnson & Gray (2022) solved the proposed model for a steady-state configuration
and a specified velocity profile. This last simplification is also assumed by Meng et al.
(2024) together with a constant profile of the solid volume fraction. A model for submarine
avalanches with the same fluid and solid velocity in the mixture is considered by Sun et al.
(2023) and is solved only for the immersed configuration, avoiding the difficulty of the
upper-layer thickness that may become negative.

This paper aims to clarify these points by deriving a series of models including
dilatancy, from complex two-phase two-layer models to simple one-layer one-velocity
mixture models, clearly highlighting the assumptions made in each. A main objective is
to show precisely how they compare with one another and with two relevant models in
the literature, namely those presented by Iverson & George (2014) and by Meng & Wang
(2018), in an attempt to identify and quantify the terms neglected in simple models. Owing
to the challenge of numerically solving all these equations, we perform here a series of
simple numerical simulations of uniform grain–fluid flows on inclined planes to quantify
how the differences between the models and their strong sensitivity to the rheology and
flow parameters impact the flow behaviour. This study is a rough approach to quantitative
model comparison. Indeed, to assess the full predictive power of these models for real
debris flows and landslides would require further investigation of non-uniform flows and
comparison with laboratory experiments and field data.

2. Full two-layer model with three velocities
We present here the equations of the two-layer model for grain–fluid flows with dilatancy
effects derived by Bouchut et al. (2016), with slight modifications related to the boundary
conditions between the two layers and the updated rheological laws proposed in the
literature. This model solves the depth-averaged mass and momentum conservation
equations for both a grain–fluid layer and an upper fluid layer as well as the exchange
of mass and momentum between these layers (see figure 1). The key idea in this model
is to allow the fluid to be expelled from the mixture during contraction and to be sucked
into the mixture during dilation thanks to the presence of a thin fluid layer on top of the
mixture (grain–fluid) layer. In the model derived by Bouchut et al. (2016), the thickness
h f (t, x, y) of this layer cannot be negative (figure 1). As a result, the pure fluid phase is
always present at the free surface as long as h f > 0. In the limit case where h f = 0, the
upper free surface coincides with the surface of the mixture. The opposite configuration
with a thin layer of dry granular material on top of the mixture also occurs in reality, as
suggested in rotating drum experiments (Ouriemi, Aussillous & Guazzelli 2009; Leonardi
et al. 2015; Meng et al. 2022), but will be dealt with in a forthcoming study. The depth-
averaged model of Bouchut et al. (2016) was obtained from the 3-D Jackson equations
for a grain–fluid mixture (Jackson 2000) with appropriate boundary conditions. We used
classical no-penetration and friction boundary conditions at the bottom, and kinematic and
stress-free conditions at the free surface. The challenge in deriving depth-averaged models
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Figure 1. Flow configuration and notation for the full two-layer model with three velocities (A1) from Bouchut
et al. (2016). The velocity vectors u, v, u f are in the x, y plane. Even though the velocities uz and vz in the
direction perpendicular to the slope do not appear explicitly in the model, the difference between them controls
the excess pore fluid pressure. The dilatancy law specifying div V makes it possible to replace uz − vz by an
expression involving only the downslope velocities (see § 2.4).

Physical variables Physical parameters

Mixture density ρ Solid density ρs
Thickness of the upper fluid layer h f Fluid density ρ f
Thickness of the mixture layer hm Dynamic fluid viscosity η f
3-D solid vel. V Mean grain diameter d
Depth-averaged slope-aligned mixture-solid vel. v Hydraulic permeability k
Depth-averaged slope-aligned mixture-fluid vel. u Material friction angle δ

Depth-averaged slope-aligned upper fluid vel. u f Dilatancy angle ψ

Depth-averaged slope-aligned mixture vel. vm Dilatancy law coefficient K
Depth-averaged solid volume fraction ϕ Inertial number I
Critical-state solid volume fraction ϕeq Viscous number J
Friction coefficient μ Inertial-viscous number for ϕeq Jϕ = αϕ I 2 + J
Critical-state friction coefficient μeq Inertial-viscous number for μeq Jμ = αμ I 2 + J
Fluid transfer rate V f Rheological parameters ϕc, μc, �μ, I0,

Solid pressure ps b, αϕ, αμ
Fluid pressure in the mixture p fm

Excess pore fluid pressure in the mixture pe
fm

Fluid pressure in the upper layer p f
Effective viscosity ηe

Table 1. Notation for the physical variables and parameters in the depth-averaged two-phase (grain–fluid)
model with an upper fluid layer.

lies in the choice of the conditions imposed at the interface between the mixture and fluid
layers. Indeed, even if the boundary separating these layers appears as an interface in
two-layer depth-averaged models, the real fluid phase is continuous across this interface.
However, conditions at the interface must be imposed to relate depth-averaged quantities
that are discontinuous, even though their non-averaged values are continuous. For the
sake of clarity, we review the different choices for the conditions at this interface in
the supplementary material, § S.A.3, available at https://doi.org/10.1017/jfm.2025.131, and
only present here the main closure relations.

2.1. Notation and main variables
The notation for our complete model is sketched in figure 1 and detailed in table 1
(for the sake of simplicity, the superscript x and the ‘bar’ notation used by Bouchut
et al. (2016) have been removed). We denote the base vector in the (x, y) plane as
ex = (1, 0)t . The systems that will be presented here correspond to depth-averaged
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Dilation

hf

hm

hf hf

(b)(a)

hm hm
Compaction

H H H

hf – ΔH
ΔH

Figure 2. (a) Schematic view showing the virtual thickness H defined by (2.3), for our complete upper-fluid
model, as well as the behaviour of the system experiencing dilation or compaction. (b) Virtual thickness H and
associated thickness ΔH in (2.4).

models; therefore, the quantities only depend on the slope coordinates x and y, with no
dependency on the normal coordinate z. The slope-aligned (i.e. along the inclined plane
of angle θ ) depth-averaged two-dimensional (2-D) velocities of the solid and fluid phases
in the mixture, and of the upper fluid phase, are denoted by v(t, x, y), u(t, x, y) and
u f (t, x, y), respectively. The 3-D solid and fluid velocities in the mixture are denoted by
V (t, x, y, z)= (v(t, x, y), vz(t, x, y, z)) and U(t, x, y, z)= (u(t, x, y), uz(t, x, y, z)),
respectively. The thickness of the mixture layer is hm(t, x, y). The depth-averaged solid
volume fraction is denoted by ϕ(t, x, y), often referred to as the compacity or the packing
fraction. The fixed bottom variation b(x, y) is measured in the direction normal to a fixed
reference plane inclined at an angle θ (our convention is that θ < 0 in the situation of left
to right inclination as in figure 1), and we denote b̃(x)= x tan θ . The gradient notation is
∇ f = (∂x f, ∂y f ) for any function f (t, x, y).

The bulk density of the mixture is defined as

ρ = ϕρs + (1 − ϕ)ρ f , (2.1)

where ρs and ρ f are the constant densities for grains and fluid, respectively. The average
mixture velocity, related to the centre of mass, is defined as

vm = ρsϕv + ρ f (1 − ϕ)u

ρ
. (2.2)

Finally, we call V f the fluid transfer rate between the mixture and upper fluid layers
(figure 1), ρ f V f thus being the fluid mass flux through the interface.

To further compare with the Iverson–George model and the Meng–Wang model, we
introduce the so-called virtual thickness (see figure 2 for a schematic representation) as

H = ρhm + ρ f h f

ρ
= hm + ρ f

ρ
h f . (2.3)

Then, ρH represents the total mass that is conserved (see (3.2a)). Since ρ ≥ ρ f according
to (2.1), we have hm ≤ H ≤ hm + h f . Figure 2(a) shows schematically the virtual
thickness and how it changes in the case of dilation and compaction. As the granular
phase dilates, the solid volume fraction ϕ decreases, and thus the bulk density ρ decreases
owing to (2.1). Hence, H increases as long as the mass is conserved. However, during
compaction, ρ increases with ϕ and then H decreases. As mentioned before, our system
does not allow h f < 0 and therefore there is always a small layer of water above the
mixture, or in the limit case where h f = 0, we obtain H = hm . We additionally introduce

ΔH = H − hm . (2.4)
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Thus, ΔH represents the distance from the virtual surface (b + H) to the mixture
surface b + hm , and h f −ΔH represents the difference between the real free surface
(b + hm + h f ) and the virtual surface (b + H). This is also illustrated in figure 2(b).
Note that ΔH = ρ f

ρ
h f , so that for typical values of 0.3<ϕ < 0.6, we obtain

0.5h f <ΔH < 0.7h f .
Our definition of H above approaches the ‘virtual surface’ concept introduced by

Iverson & George (2014) when an upper-fluid layer exists. As we will see later, we are able
to recover the Iverson–George model as a particular case of our model under the assump-
tion of neglecting ΔH , or equivalently considering H ∼ hm , thus ignoring the upper-fluid
layer. Note that in a complementary case of an upper-solid layer, this assumption would
give the same result, making it also possible to recover the Iverson–George model.

2.2. Rheological laws in viscous–inertial regimes
As in most depth-averaged models for debris flows, the rheology appears in our model in
the basal shear stress of the solid phase τs|b through a Coulomb-type friction law

τs|b =μ ps |b, (2.5)

where μ is the friction coefficient and ps |b the basal pressure of the solid phase. In such
models, the challenge is to specify the friction coefficient μ and, if dilatancy is accounted
for, the solid volume fraction ϕ. In the framework of the critical state theory, two steps
are necessary to describe the rheological behaviour (i.e. constitutive laws) of a grain–
fluid system. First, we must specify constitutive laws describing the (steady) critical state
reached at the equilibrium, i.e. (i) the critical-state solid volume fraction ϕeq and (ii) the
critical-state friction coefficient μeq (§ 2.2.1). These empirical laws are deduced from lab-
scale experiments or discrete element simulations of steady and uniform shear flows (flows
in the critical state). Once the critical-state solid volume fraction and friction coefficient
have been defined, the model should describe how transient deformation depends on the
deviation from this critical state. This is done in the dilatancy law that relates ϕ and μ to
the dilatancy angle ψ (§ 2.2.2).

2.2.1. Rheology describing the critical state
As in recent studies, constitutive laws describing steady uniform flows (i.e. at the critical
state) are written in terms of a combination of two dimensionless numbers, based on the
assumption of additivity of inertial and viscous stresses (Cassar, Nicolas & Pouliquen
2005; Boyer, Guazzelli & Pouliquen 2011; Trulsson, Andreotti & Claudin 2012; Amarsid
et al. 2017; Tapia et al. 2022). These two independent numbers I and J characterise inertial
and viscous regimes, respectively:

I = d γ̇√
ps |b/ρs

, J = η f γ̇

ps |b
, (2.6)

where ps |b represents the solid pressure at the bottom. At imposed pressure, the shear
stress is proportional to I 2 in the inertial regime and to J in the viscous regime. The
transition between these regimes is given by the Stokes number, defined by the ratio
between the inertial and viscous stress scales (see Tapia et al. 2022)

St = I 2/J = ρs γ̇ d2

η f
. (2.7)
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To describe all possible regimes from inertial to viscous flows, different combinations of
I and J have been proposed in the literature (see table 2). These inertial–viscous numbers
may all be written as

J = αi I 2 + αv J, (2.8)

where αi and αv are two constant coefficients that define the relative importance of inertial
and viscous numbers, and depend on the material involved. Tapia et al. (2022) showed that
αi and αv are not the same in the rheological laws defining ϕeq and μeq, respectively. Note
that inertial–viscous numbers can also be written in terms of the Stokes number:

J = I 2
(
αi + αv

1
St

)
= J (αi St + αv) . (2.9)

The inertial regime corresponds to large Stokes numbers and thus to J � αi I 2, and
the viscous regime to small Stokes numbers and thus to J � αv J . We choose here a
rheological law as done by Tapia et al. (2022), even though we use nonlinear functions
to define ϕeq and μeq, to bound their value for infinite J numbers. We define two inertial–
viscous numbers involved in the critical-state solid volume fraction ϕeq and friction
coefficient μeq, respectively,

Jϕ = αϕ I 2 + J and Jμ = αμ I 2 + J, (2.10a)

where αϕ and αμ are two constant coefficients. The critical-state solid volume fraction is
then defined as

ϕeq(Jϕ)= ϕc

1 + bϕJ 1/2
ϕ

, (2.10b)

where bϕ is a calibration constant and ϕc the static value of the critical-state solid volume
fraction. Finally, the critical friction coefficient is defined as

μeq(Jμ)=μc + �μ

1 + I0

J 1/2
μ

, (2.10c)

where μc = tan δ is the static value of the critical-state friction coefficient, with δ the
granular friction angle; �μ and I0 are constant parameters (see table 2 for their values in
the literature). Numerical simulations will be performed in § 5 to show how strongly these
coefficients impact the flow behaviour.

2.2.2. Dilatancy law
Following Roux & Radjai (1998); Pailha et al. (2008), the dilatancy law is given by

div V =Φ = γ̇ tanψ, (2.11)

with ψ the dilatancy angle related to the deviation from critical state, defined by

tanψ = K
(
ϕ − ϕeq(Jϕ)

)
, (2.12)

and the shear rate approximated by

γ̇ = 5
2

|V |
hm
. (2.13)
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Reference Regime Non-dim. numbers μeq ϕeq Coefficients

Cassar et al. (2005) inertial,
viscous Ic =

{
I inertial
J
α

viscous μc + (�μ)/(1 + (I0/Ic)) – μc = 0.43, �μ= 0.39,
I0 = 0.27, α = 0.01

Pailha & Pouliquen (2009) Viscous J μc + K1 J ϕc − k2 J
ϕc = 0.582, μc = 0.415,
K1 = 90.5, K2 = 25

Boyer et al. (2011) Viscous J μc + (�μ)/(1 + ((I0)/(J ))+ J + (5/2)ϕc J 1/2 ϕc/(1 + J 1/2)
ϕc = 0.585, μc = 0.32,
�μ= 0.38, I0 = 0.005

Trulsson et al. (2012) inertial,
viscous J = αi I 2 + J μc + (�μ)/(1 + (I0/J 1/2)) ϕc − bJ 1/2

ϕc = 0.814, μc = 0.277,
�μ= 0.573, I0 = 0.29,
αi = 0.635, b = 0.42

Iverson & George (2014) inertial,
viscous N = (J )/(1 + I 2) μc ϕc/(1 + √

N )
ϕc = 0.56,
μc = 0.55

Amarsid et al. (2017) inertial,
viscous J= (αi I 2+ αv J )1/2 μc + (�μ)/(1 + (b/J )) ϕc/(1 + bJ )

ϕc = 0.8123, μc = 0.28,
�μ= 0.783, b = 0.246,
αi = 1, αv = 2

Bouchut et al. (2021) Inertial I μc + (�μ)/(1 + (I0/I )) ϕc/(1+ (K̃/ϕc)I )
ϕc = 0.582, μc = 0.48,
�μ= 0.25, I0 = 0.279,
K̃ = 0.2

Montellà et al. (2021) Viscous J μc + (�μ)/(1 + (I0/J )) ϕc/(1 + J 1/2)
ϕc = 0.585, μc = 0.425,
�μ= 0.34, I0 = 0.004

Athani et al. (2022) Viscous J μc ϕc − K Jβ
ϕc = 0.58, μc = 0.5,
K = 0.67, β = 0.44

Tapia et al. (2022) inertial,
viscous

Jμ = αμ I 2 + J,
Jϕ = αϕ I 2 + J

μc(1 + aμJ 1/2) ϕc(1 − aϕJ 1/2)

ϕc = 0.615, μc = 0.31,
αμ = 0.0088, αϕ = 0.1
aμ = 11.29, aϕ = 0.66

Table 2. Rheological laws in the literature.1008
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Note that this value is obtained by Cassar et al. (2005) for the inertial regime of submarine
granular flows described by the μ(I )-rheology. In our case, the equivalent calculation for
our μ(Jμ)-rheology also gives a Bagnold-like profile, namely,

V (z)= 1
2αμd2ρs

(
−η f z − 2

3A

(
(η2

f + A(hm − z))3/2 − (η2
f + Ahm)

3/2
))

, (2.14)

where A = 4αμd2ρsϕc(ρs − ρ f )g cos θJμ. The approximated value of γ̇ is then
calculated from the related averaged velocity that leads to a fifth-order polynomial in Jμ,
not easy to solve. To find an approximation, we neglect terms in η2

f and we find that
γ̇ ∼ 2.517(|V |/hm). As a result, the coefficient 5/2 also gives a good approximation of
γ̇ for the μ(Jμ)-rheology. The limit αμ → 0 reduces the number Jμ to the pure viscous
number J . In (2.14) for V (z), this limit gives indeed the purely viscous parabolic profile as
in (12) of Cassar et al. (2005), V (z)= (1/2)(J/η f )ϕc(ρs − ρ f )g cos θ(h2

m − (hm − z)2).
When the flow is denser than the flow in the critical state (ϕ > ϕeq), the dilatancy angle

ψ is positive and the solid phase dilates, and vice versa. The friction coefficient in the
transient regime involves the dilatancy angle as

μ= (
μeq(Jμ)+ tanψ

)
+ . (2.15)

Note that the dilatancy rules (2.11), (2.15) for ϕ and μ use the most simple linear
expansions involving the dilatancy factor (2.12) expressed linearly in terms of the deviation
from critical state. A positive part has been put in (2.15) as a minimal correction to ensure
that μ is non-negative.

REMARK 1. The μ(I )-rheology is ill-posed in the incompressible regime (Barker et al.
2015), but it is well-posed in the compressible regime (Schaeffer et al. 2019; Barker
et al. 2023). According to these two papers, the compressible regime is characterised
by a dilatancy law and a friction law as we have in (2.11) and (2.15). The context is
thus suitable for ensuring well-posedness, though stability conditions must be analysed
further. However, this is beyond the scope of this article. Depth-averaged models are
generally hyperbolic under reasonable conditions, such as limited velocity differences for
models with several unknown velocities. Viscous terms, as noted by Baker (2016), can
eventually relax this condition. Hyperbolicity implies well-posedness as long as source
terms do not contain derivatives of unknowns (question mark). This is the case here since
γ̇ is approximated by (2.13) that avoids any derivative, and this is a main difference with
non-averaged models.

2.3. Two-layer model with three velocities (model A1)
Let us present here the full model derived by Bouchut et al. (2016) with the rheology
defined above. This model describes the behaviour of a mixture with different velocities for
the solid and fluid phases u, v, respectively, as well as an upper fluid layer of velocity u f
(see figure 1). Only slight modifications have been made in the model derivation compared
with Bouchut et al. (2016), owing to the different choice of conditions at the bottom and
at the mixture/upper fluid interface, as well as to the description of viscous dissipation
for the fluid phase (see supplementary material, §§ S.A.2 and S.A.3, for details). The free
surface, interfacial and basal boundary conditions are summarised in the supplementary
material, § S.A.1.
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2.3.1. Conservation equations and closure relations
The mass conservation equations for the solid and fluid phases in the mixture and for the
fluid phase in the upper-layer read, respectively,

∂t (ρsϕhm)+ ∇ · (ρsϕhmv)= 0, (2.16a)

∂t (ρ f (1 − ϕ)hm)+ ∇ · (ρ f (1 − ϕ)hm u)= −ρ f V f , (2.16b)

∂t (ρ f h f )+ ∇ · (ρ f h f u f )= ρ f V f . (2.16c)

The corresponding momentum conservation equations are

∂t (ρsϕhmv)+ ∇ · (ρsϕhmv ⊗ v)= Sv, (2.17a)

∂t (ρ f (1 − ϕ)hm u)+ ∇ · (ρ f (1 − ϕ)hm u ⊗ u)= Su, (2.17b)

∂t (ρ f h f u f )+ ∇ · (ρ f h f u f ⊗ u f )= S f . (2.17c)

The source terms are given, respectively, by

Sv = −g cos θϕhm(ρs∇(b + hm)+ ρ f ∇h f )− g cos θ(ρs − ρ f )
h2

m

2
∇ϕ︸ ︷︷ ︸

hydrostatic pressure

+ (1 − ϕ)hm∇ pe
fm︸ ︷︷ ︸

excess pore pressure

+ βhm(u − v)︸ ︷︷ ︸
drag in mixture

+ k f
ρsϕ

ρ
(u f − vm)︸ ︷︷ ︸

drag with upper-fluid

−μ sgn(v)
(
ϕ(ρs − ρ f )g cos θhm − (pe

fm
)|b
)

︸ ︷︷ ︸
solid bottom friction

− ϕhmρs gsinθex︸ ︷︷ ︸
gravity

, (2.18a)

Su = − (1 − ϕ)hmρ f g cos θ∇(b + hm + h f )︸ ︷︷ ︸
hydrostatic pressure

− (1 − ϕ)hm∇ pe
fm︸ ︷︷ ︸

excess pore pressure

− ((1 − λ f )u + λ f u f )ρ f V f︸ ︷︷ ︸
fluid transfer

− βhm(u − v)︸ ︷︷ ︸
drag in mixture

+ k f
ρ f (1 − ϕ)

ρ
(u f − vm)︸ ︷︷ ︸

drag with upper-fluid

− 5
2
ηe(1 − ϕ)

hm
u︸ ︷︷ ︸

fluid bottom friction

− (1 − ϕ)hmρ f gsinθex︸ ︷︷ ︸
gravity

, (2.18b)

S f = − ρ f h f g cos θ∇(b + hm + h f )︸ ︷︷ ︸
hydrostatic pressure

+ ((1 − λ f )u + λ f u f )ρ f V f︸ ︷︷ ︸
fluid transfer

− k f (u f − vm)︸ ︷︷ ︸
drag with upper-fluid

− ρ f h f gsinθex︸ ︷︷ ︸
gravity

, (2.18c)

where the coefficient k f and the effective viscosity ηe are

k f = m f
ρhmρ f h f

ρhm + ρ f h f
|u f − vm | and ηe = η f

(
1 + 5

2
ϕ

)
, (2.19)
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with m f a constant coefficient (Poulain et al. 2022). (The effective shear viscosity ηe is
approximated using Einstein’s formula (Einstein 1906) to take into account the presence
of granular material (see for example (Chauchat & Médale 2010; Boyer et al. 2011;
Baumgarten & Kamrin 2019)), see also supplementary material, § S.A.2.) The excess pore
pressure pe

fm
appears in the depth-averaged value of ∇ pe

fm
:

∇ pe
fm

= 1
hm
(∇(hm pe

fm
)+ (pe

fm
)|b∇b), (2.20a)

with pe
fm

at the bottom and the depth-averaged value of pe
fm

given by

(pe
fm
)|b = − β

(1 − ϕ)2
h2

m

2
Φ, pe

fm
= − β

(1 − ϕ)2
h2

m

3
Φ, (2.20b)

with the drag coefficient β defined by Pailha & Pouliquen (2009),

β = (1 − ϕ)2
η f

k
with k = (1 − ϕ)3d2

150ϕ2 , (2.21)

where d is the grain diameter, η f the dynamic viscosity of the fluid and k the hydraulic
permeability of the granular aggregate. Similar parameters are used by Baumgarten
& Kamrin (2019) (see supplementary material, § S.A.4.3). The dilatancy function is
defined by

Φ = K γ̇ (ϕ − ϕeq), (2.22)

and the rheological laws give

ϕeq = ϕc

1 + bϕJ 1/2
ϕ

with Jϕ = αϕ I 2 + J,

μeq =μc + �μ

1 + I0/J 1/2
μ

with Jμ = αμ I 2 + J,

where

I = d γ̇√
ps |b/ρs

, J = η f γ̇

ps |b
, γ̇ = 5

2
|v|
hm

ps |b = ϕ(ρs − ρ f )g cos θhm − (pe
fm
)|b.

(2.23)

Owing to dilatancy, the friction coefficient is defined as

μ= (
μeq + K (ϕ − ϕeq)

)
+ . (2.24)

The fluid transfer rate reads

V f = −hmΦ − ∇ · (hm(1 − ϕ)(u − v)). (2.25)

The transfer of fluid momentum between the mixture and the upper fluid layer ends up
in the term ((1 − λ f )u + λ f u f )ρ f V f in the fluid momentum equations (2.18b), (2.18c),
where λ f is a parameter describing the stress distribution between the fluid and solid
phases at the interface between the layers (see supplementary material, § S.A.3, for
details). We define two possible choices for this arbitrary parameter:

λ f = 1
2

− 1
2

sgn(V f )δ f , δ f =
{

0 centered distribution,
1 upwind distribution. (2.26)

As a result, if we choose δ f = 0, the fluid velocity at the interface defined by (1 − λ f )u +
λ f u f reduces to (u + u f )/2, while if we choose δ f = 1, this velocity depends on the sign
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of V f . In this case, if the fluid is expelled from the mixture, V f > 0 and λ f = 0, so that
the velocity is u. However, if the fluid is sucked into the mixture, V f < 0 and λ f = 1, and
the velocity is u f .

Note that, as exposed by Bouchut et al. (2016), the expression (2.25) of the fluid transfer
rate V f is obtained from the mass equations together with the transport of the solid volume
fraction

∂tϕ + v · ∇ϕ = −ϕΦ (2.27)

that constitutes an alternative scalar equation to be considered instead of (2.25).

2.3.2. Computation of the basal solid pressure
A first approach to compute the solid pressure at the bottom ps |b appearing in the granular
friction term is to combine the above relations that implicitly define ps |b. Indeed, ps |b
depends on pe

fm |b (see (2.23)) that can be expressed as a function of Φ (see (2.20b)),
that is a function of ϕeq (see (2.22)) that itself can be expressed as a function of ps |b
(see (2.23)). Combining these expressions, we find that √ps |b is the positive root of the
third-order polynomial,

(
√

ps |b)3 + A2(
√

ps |b)2
−(ϕ(ρs − ρ f )g cos θhm + A1(ϕ − ϕc))(

√
ps |b)− A2(ϕ(ρs − ρ f )g cos θhm + ϕA1)= 0,

(2.28)

with coefficients A1 = (β/(1 − ϕ)2)(h2
m/2)γ̇ K , A2 = bϕ (αϕd2γ̇ 2ρs + η f γ̇ )

1/2. It can
be shown that this equation has a unique positive root ps |b > 0. Note that the polynomial
and therefore its root are not the same when changing the rheological laws. Even if solving
this equation is simple in depth-averaged models, it becomes problematic when solving
multilayer models with dilatancy (Garres-Díaz et al. 2020). An alternative approach is to
solve an evolution equation for the solid pressure as done by Iverson & George (2014)
instead of specifying the 3-D dilatancy closure Φ = γ̇ tanψ (see (2.11)). This equation
may be deduced from the 3-D solid stress tensor equation proposed by Baumgarten &
Kamrin (2019), where a thermodynamic analysis of a two-phase mixture for elastic–
plastic granular solid in a viscous fluid is performed to close the Jackson system.
Under certain assumptions, mainly neglecting pure plastic behaviour (see supplementary
material, § S.A.6, for details), we find the following equation for the solid pressure ps :

1
B
(∂t ps + V · ∇ ps)= −∇ · V + γ̇ tanψ, (2.29)

where B = E/(3(1 − 2ν)) is the elastic bulk modulus of the solid (here, the grains), and
E and ν are the Young modulus and the Poisson ratio, respectively. Typical values for
glass beads are E = 70 × 109 Pa and ν = 0.2, corresponding to a solid bulk modulus
B = 38.9 × 109 Pa, and for sand are E = 100 × 106 Pa and ν = 0.4, corresponding to a
solid bulk modulus B = 16.6 × 107 Pa (Holtzman, Silin & Patzek 2009; Montellà et al.
2023). Note that (2.29) reduces to the 3-D dilatancy closure Φ = γ̇ tanψ when B tends to
infinity. Using classical asymptotic assumptions and the depth-averaging process detailed
in the supplementary material, § S.A.6, we obtain the following equation for the solid
pressure at the bottom ps |b:

∂t ps |b + v · ∇ ps |b = 1
4(ρs − ρ f )g cos θϕhm∇ · v − 3

2 B(Φ − γ̇ tanψ). (2.30)

We still need to define Φ, which can be easily obtained by using the expression of the
excess pore pressure in (2.20b) and ps |b in (2.23) as follows:
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Φ = −2(1 − ϕ)2

βh2
m

(pe
fm
)|b, with (pe

fm
)|b = −(ps |b − hmϕ(ρs − ρ f )g cos θ). (2.31)

See § S.A.6.1 of the supplementary material for a numerical comparison of these two
approaches.

2.4. Origin and impact of dilatancy in mixture models
How dilatancy is accounted for in depth-averaged mixture models is somewhat hidden
since it involves a motion in the z-direction perpendicular to the slope, which is
assumed to be small in these shallow models. The dilatancy law Φ clearly appears in
the mass equations describing mass exchange in the systems (2.16), (2.27), taking into
account (2.25).

2.4.1. Dilatancy and pore fluid pressure
Dilatancy is also present in the momentum equation through the excess pore pressure at
the bottom (pe

fm
)|b (see (2.20b)), which represents the non-hydrostatic part of the pore

fluid pressure p fm in our model. It is very sensitive to contraction/dilation of the granular
phase and impacts in turn the rheology of the fluidised granular material. Indeed, (pe

fm
)|b

appears in the solid pressure at the bottom ps |b together with a hydrostatic term including
buoyancy,

ps |b = ϕ(ρs − ρ f )g cos θhm − (pe
fm
)|b, (2.32)

ps |b being directly involved in the friction law on the right-hand side of (2.18a). The
excess pore pressure pe

fm
is generated by the normal displacement produced by the

dilation–contraction of the granular material saturated by the fluid and is originally
defined as

pe
fm

= β

1 − ϕ

∫ b+hm

z
(uz − vz)(z′)dz′, (2.33)

where uz and vz represent the fluid and solid velocities respectively, in the direction
normal to the inclined reference plane (see figure 1). (See (3.45) of Bouchut et al. (2016)
and § 3.5 in that paper for more details.)It appears as a non-hydrostatic contribution in the
solid and fluid pressures in the mixture (see § 3.4 of Bouchut et al. (2016) for details). From
this definition, we see that the excess pore pressure is negative if the granular material
goes up with respect to the fluid (vz > uz) in the case of dilation (Φ > 0), and is positive
(vz < uz) in the opposite case of contraction (Φ < 0). As only downslope velocities
are considered in our shallow depth-averaged model, we replace the normal velocities
(uz , vz) by the downslope velocities (u, v) using the dilatancy closure equation div V =Φ,
leading to

uz − vz = − z − b

1 − ϕ
(Φ + ∇ · ((1 − ϕ)(u − v)))+ (u − v) · ∇b + O(ε3), (2.34)

with ε the ratio between the characteristic thickness and downslope extension of the flow,
which is assumed to be small in shallow models. The pore pressure at the bottom thus
becomes (

pe
fm

)
|b = β

1 − ϕ

(
−1

2
h2

m

1 − ϕ
Φ − 1

2
h2

m

1 − ϕ
∇ · ((1 − ϕ)(u − v))

+ hm(u − v) · ∇b + O(ε4)
)
. (2.35)
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As proposed by Bouchut et al. (2016), a high drag coefficient, β ∼ ε−1, implies a small
velocity difference, u − v ∼ ε, so that, at order ε2, we obtain the values of (pe

fm
)|b and

pe
fm

used in our model (2.20b). Using (2.22), the excess pore fluid pressure at the bottom
thus reads

(pe
fm
)|b = −75

η f

d2
ϕ2

(1 − ϕ)3

(
ϕ − ϕeq) K

5
2

hm |v|. (2.36)

As a result, the excess pore fluid pressure at the bottom directly depends on the deviation
from the critical state (ϕ − ϕeq) and, in particular, on its sign. If ϕ > ϕeq, the granular
phase dilates and the excess pore pressure is negative and vice versa. In particular, the
excess pore pressure is equal to zero in steady flows where ϕ = ϕeq, i.e. in the critical state.
The absolute value of the excess pore fluid pressure increases as the viscosity of the fluid
and the downslope solid flux increase and it decreases with increasing grain diameter as a
result of higher permeability. To illustrate this, figure S13 (supplementary material) shows
(pe

fm
)|b/(ϕ − ϕeq) as a function of ϕ for values of the parameters taken from Bouchut

et al. (2016).

2.4.2. Dilatancy and fluid transfer rate
Another key quantity in debris flow models with dilatancy is the fluid transfer rate V f
between the mixture and upper fluid layers. The fluid mass transfer appears in the mass
conservation equation (2.16). When V f > 0, the fluid is expelled from the mixture region
towards the fluid-only layer as depicted in figure 1, and vice versa. This fluid transfer rate is
directly related to the dilatancy of the granular phase by (2.25) that leads, owing to (2.11)
and (2.12), to

V f = −hm γ̇ K
(
ϕ − ϕeq)− ∇ · (hm(1 − ϕ)(u − v)). (2.37)

When ϕ > ϕeq, the granular phase dilates and the first term in the fluid transfer rate is
negative, which means that the fluid is sucked from the upper fluid layer into the mixture
(figure 1), and vice versa. Note that the second term in (2.37) shows that, in principle, the
fluid can still be transferred from one layer to the other when ϕ = ϕeq, as long as u − v �= 0.
However, this situation is hardly ever achieved since the time scale for u and v to be equal
due to drag is much shorter than the time scale to reach the critical state (see (Bouchut
et al. 2016)).

2.4.3. Relation between the key variables
It is worth pointing out that the key variables describing the deviation to the critical state
(compaction/dilation) in the model are all related to dilation angle tanψ since

tanψ = −(pe
fm
)|b

2(1 − ϕ)2

γ̇ βh2
m

=μ−μeq = K
(
ϕ − ϕeq)= div V

γ̇
. (2.38)

3. Simplest one-velocity models
We are going to introduce several simplified models, sketched in figure 3. They are derived
from the full two-layer and three-velocity model A1 described in § 2.3. We will present
here only the two simplest models that involve only one velocity: (i) the two-layer model
B2; (ii) the one-layer model with a virtual thickness (model C2). The two-layer model with
a different velocity for the mixture and the upper fluid layer (model A2) was presented by
Drach (2023) and is given in supplementary material, § S.C.2.2.
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Group A

(A1) Two layers, two velocities in the mixture,

upper fluid velocity uf, [2L: (u,υ) | uf]
(A2) Two layers, one velocity in the mixture

(u = υ), upper fluid velocity uf [2L: (υ) | uf]

Group B

(B1) Two layers, two velocities in the mixture,

upper fluid velocity υm =
ρs ϕυ + pf (1–ϕ)u

ρ
[2L: (u,υ) |υm]

(B2) Two layers, one velocity (u = υ = uf)
[2L: (υ) | υ]

Group C

(C1) One layer, two velocities in the mixture

[1L: (u,υ)]

(C2) One layer , one velocity in the mixture

(u = υ) [1L: (υ)]

x

(u,υ)

(u,υ)

υm

uf

hf

hm

z

x

(υ)

uf

hf

hm

z

x

(υ)
hf

hm

z

x
hf

hm

z

x

z

x

z

H H

(υ)(u,υ)

υ

Figure 3. Model A1, flow configuration and notation for the full two-layer model with three velocities: the fluid
and solid velocities in the mixture u and v and the velocity of the upper fluid layer u f (Bouchut et al. 2016).
The derived simplified models are model A2, the same as model A1 except that the solid and fluid velocities
in the mixture are assumed to be the same (u = v); model B1, the same as model A1 except that the velocity
of the upper fluid layer is assumed to be the mean velocity of the mixture (u f = vm ); model B2, the same as
model A1 except that all the velocities are assumed to be the same (u = v = u f ); model C1, a one-layer model
with a virtual thickness H , a solid velocity v and a fluid velocity u; model C2, the same as model C1 but with
identical velocities for the solid and fluid phases (u = v).

3.1. Two-layer model with one velocity (model B2)

3.1.1. System of equations
The procedure to obtain this simplified model is as follows. A key assumption is that we
consider a high friction coefficient β between the solid and fluid phases in the mixture,
and a high friction coefficient k f between the layers. This results in a single downslope
velocity for the whole system

u = v = u f . (3.1)
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We keep the notation v for the single velocity (figure 3d). In this two-layer model, the
system has four unknowns hm, h f , ϕ and v, and is described by the following equations
(remember that ρ = ρsϕ + ρ f (1 − ϕ)): the total and upper fluid layer mass conservation
equations

∂t (ρhm + ρ f h f )+ ∇ · ((ρhm + ρ f h f )v)= 0, (3.2a)

∂t (ρ f h f )+ ∇ · (ρ f h f v)= ρ f V f , (3.2b)

the volume fraction equation

∂tϕ + v · ∇ϕ = −ϕΦ, (3.2c)

and the total momentum conservation equation

∂t ((ρhm + ρ f h f )v)+ ∇ · ((ρhm + ρ f h f )v⊗ v)+ g cos θ∇
(
ρ

h2
m

2
+ ρ f

h2
f

2
+ ρ f hmh f

)

= −g cos θ(ρhm + ρ f h f )∇b − gsin(ρhm + ρ f h f )ex

−μ sgn(v)
(
(ρ − ρ f )g cos θhm − (pe

fm
)|b
)

− 5
2
ηe(1 − ϕ)

hm
v. (3.2d)

The closures for this model are adapted from (2.20)–(2.26), giving

(pe
fm
)|b = − β

(1 − ϕ)2
h2

m

2
Φ, β = 150η f ϕ

2

(1 − ϕ)d2 , (3.3a)

and the dilatancy relations

μ= (
μeq + K (ϕ − ϕeq)

)
+ , V f = −hmΦ, Φ = γ̇ K (ϕ − ϕeq), (3.3b)

with rheological laws

ϕeq = ϕc

1 + bϕJ 1/2
ϕ

with Jϕ = αϕ I 2 + J,

μeq =μc + �μ

I0 +J 1/2
μ

J 1/2
μ with Jμ = αμ I 2 + J,

where I = d γ̇√
ps |b/ρs

, J = η f γ̇

ps |b
and γ̇ = 5

2
|v|
hm
, ps |b = (ρ − ρ f )g cos θhm − (pe

fm
)|b.

(3.3c)

This model preserves the total mass (see (3.2a)), the total volume, and the mass and volume
of each phase, as we will briefly prove now. Equations (2.1) and (2.27) give the evolution
equation for the bulk density,

∂tρ + v · ∇ρ = −(ρ − ρ f )Φ. (3.4)

We subtract (3.2b) from (3.2a) and use V f = −hmΦ, then further subtract hm times (3.4).
We obtain the equation for the mixture volume,

∂t hm + ∇ · (hmv)= hmΦ. (3.5)

Now combining this last equation with (3.2b), we obtain the total volume conservation
equation

∂t (hm + h f )+ ∇ · ((hm + h f )v)= 0. (3.6)

1008 A43-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.131


F. Bouchut, E. Drach, E.D. Fernández-Nieto, A. Mangeney and G. Narbona-Reina

The solid and fluid volumes are calculated straightforwardly as a combination of (3.2b)
and (3.4) with (3.5),

∂t (ϕhm)+ ∇ · (ϕhmv)= 0, ∂t ((1 − ϕ)hm + h f )+ ∇ · (((1 − ϕ)hm + h f )v)= 0.
(3.7)

Since the phase densities ρs, ρ f are constant, we equivalently obtain mass conservation
for each phase by multiplying these two equations by ρs and ρ f , respectively. The sum of
these two gives (3.2a), whereas the sum of (3.7) gives (3.6).

To perform the comparison with the Iverson–George model, it is relevant to write
the model in terms of the virtual thickness introduced in § 2.1. Taking into account
these definitions, the mixture model (3.2)–(3.3) is equivalently written for unknowns
H, ΔH , ϕ, v as

∂t (ρH)+ ∇ · (ρHv)= 0, (3.8a)

∂t (ρΔH )+ ∇ · (ρΔHv)= ρ f V f , (3.8b)

∂tϕ + v · ∇ϕ = −ϕΦ, (3.8c)

∂t (ρHv)+ ∇ · (ρHv ⊗ v)+ g cos θ∇
(

1
2
ρ(H2 + ρ − ρ f

ρ f
Δ2

H )

)
= −ρHg cos θ∇b

− ρHgsinθex −μ sgn(v)
(
(ρ − ρ f )g cos θ(H −ΔH )− (pe

fm
)|b
)

+ − 5
2
ηe(1 − ϕ)

H −ΔH
v,

(3.8d)

with

(pe
fm
)|b = − β

(1 − ϕ)2
(H −ΔH )

2

2
Φ, β = 150η f ϕ

2

(1 − ϕ)d2 , (3.9a)

the dilatancy laws

μ= (
μeq + K (ϕ − ϕeq)

)
+ , V f = −(H −ΔH )Φ, Φ = γ̇ K (ϕ − ϕeq), (3.9b)

and the rheological laws

ϕeq = ϕc

1 + bϕJ 1/2
ϕ

with Jϕ = αϕ I 2 + J,

μeq =μc + �μ

I0 +J 1/2
μ

J 1/2
μ with Jμ = αμ I 2 + J,

where I = d γ̇√
ps |b/ρs

, J = η f γ̇

ps |b
and γ̇ = 5

2
|v|

H −ΔH
, ps |b = (ρ − ρ f )g cos θ(H −ΔH )− (pe

fm
)|b.

(3.9c)

With the aim to compare our model with the Iverson–George model (Iverson & George
2014; George & Iverson 2014), we write the pressure appearing in the Coulomb friction
term as

ps |b = (ρ − ρ f )g cos θ(H −ΔH )− (pe
fm
)|b = ρg cos θH − (p fm )|b, (3.10)

with the pore fluid pressure at the bottom (see (3.44) and (4.31) in Bouchut et al. (2016))

(p fm )|b = ρ f g cos θ
(

H + ρ − ρ f

ρ f
ΔH

)
+ (pe

fm
)|b. (3.11)
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3.2. One-layer model with one velocity (model C2)
To derive a simplified model with only one thickness and one velocity, as in the Iverson–
George model (Iverson & George 2014; George & Iverson 2014), we keep the virtual
thickness H as the only thickness in the model. We thus neglect the terms involving ΔH
in the system (3.8) by assuming

ΔH = H − hm � H. (3.12)

According to (2.3), this means that h f is small and that the virtual thickness H is very
close to the mixture thickness hm (figure 2). This assumption is appropriate to describe
debris flows, where the upper fluid layer is expected to be thin, but not at all to describe
submarine landslides, where the thickness of the fluid layer is large compared with the
landslide mass. Furthermore, with assumption (3.12), (3.8b) for h f tells us that the
dilatancy Φ must be small too, since V f = −hmΦ. In spite of this, we keep it in the
system to conserve the dilatancy effect (explicitly appearing in the equation for ϕ and in
the excess pore pressure pe

fm
). As a result, the oversimplified system (3.13) below is only

valid when dilatancy is small |Φ| � 1.
Our single-layer mixture model thus reads

∂t (ρH)+ ∇ · (ρHv)= 0, (3.13a)
∂tϕ + v · ∇ϕ = −ϕΦ∗, (3.13b)

∂t (ρHv)+ ∇ · (ρHv ⊗ v)+ g cos θ∇
(
ρ

H2

2

)
= −ρHg cos θ∇b − ρHgsinθex

−μ∗ sgn(v)
(
ρg cos θH − (p fm )

∗|b
)

+ − 5
2
ηe(1 − ϕ)

H
v. (3.13c)

The critical-state solid volume fraction and friction coefficient, the shear rate, and the
excess pore pressure depend on the mixture thickness hm = H −ΔH . Condition (3.12)
implies that hm can be replaced by H . To point out this modification, we will add a
‘star’ notation when hm is replaced by H in the expressions. These simplifications induce
significant differences with the previous model (3.2)–(3.3), which will be quantified in the
numerical tests (see § 3.3 below for a deeper analysis). The pore fluid pressure at the base
becomes

(p fm )
∗|b = ρ f g cos θH + (pe

fm
)∗|b, with (pe

fm
)∗|b = − β

(1 − ϕ)2
H2

2
Φ∗, β = 150η f ϕ

2

(1 − ϕ)d2 .

(3.14a)
The dilatancy and rheological laws involve

μ∗ = (
μeq∗ + K (ϕ − ϕ

eq∗
c )

)
+ , Φ∗ = γ̇ ∗K (ϕ − ϕ

eq∗
c ), (3.14b)

and

ϕeq∗ = ϕc

1 + bϕ(J ∗
ϕ )

1/2 with J ∗
ϕ = αϕ(I

∗)2 + J ∗,

μeq∗ =μc + �μ

I0 + (J ∗
μ)

1/2 (J ∗
μ)

1/2 with J ∗
μ = αμ(I

∗)2 + J ∗,

where

I ∗ = d γ̇ ∗√
ps

∗|b/ρs

, J ∗ = η f γ̇
∗

ps
∗|b
, γ̇ ∗ = 5

2
|v|
H
, ps

∗|b = (ρ − ρ f )g cos θH − (pe
fm
)∗|b.

(3.14c)
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3.3. Impact of considering a virtual thickness
Let us analyse how the assumption of a virtual thickness H (condition (3.12)), instead of
considering two layers, impacts the pressure at the bottom that appears in the Coulomb-
type friction. The solid pressure at the bottom ps |b in the original two-layer one-velocity
model involves the mixture thickness hm , while its approximate value ps

∗|b involves H and
thus part of the upper fluid layer (see figure 2). We can explicitly estimate the difference
between the original and approximate solid basal pressure terms (assuming Φ∗ �Φ)

ps
∗|b = ρg cos θH − (p fm )

∗|b = (ρ − ρ f )g cos θH − (pe
fm
)∗|b

= ps |b + (ρ − ρ f )g cos θΔH + β

(1 − ϕ)2
H2 − h2

m

2
Φ

= ps |b +ΔH

(
(ρ − ρ f )g cos θ + β

(1 − ϕ)2
H + hm

2
Φ

)
. (3.15)

This last term, negligible under assumption (3.12), is positive since ΔH > 0, thus ps
∗|b >

ps |b. The difference between the original shear rate γ̇ = 5
2

|v|
hm

and its approximation can
also be written in terms of ΔH as

γ̇ ∗ = γ̇ + 5
2
|v|
(

1
H

− 1
hm

)
= γ̇ − 5

2
|v| ΔH

hm H
. (3.16)

The additional term – the last one in the previous expression– is small under (3.12) and
negative, leading to smaller inertial numbers I ∗ and J ∗ in (3.14c) and μ∗ ≤μ (with equal-
ity if v = 0). As a result, the increase of ps |b and the decrease of μ in the one-layer one-
velocity model C2 compared with the two-layer one-velocity model B2 have opposite ef-
fects on the granular friction. This will be analysed in the numerical tests presented in § 5.

3.4. Comparison with the Iverson–George model
In this section, we compare our oversimplified mixture model C2 with the Iverson–George
model presented in two companion papers Iverson & George (2014) and George & Iverson
(2014).

3.4.1. Iverson–George model
The two main characteristics of the Iverson–George model are (i) the basal pore fluid
pressure called pb calculated by solving an advection–diffusion equation (3.17d) involving
the elasticity of the grains and (ii) the idea of a virtual surface called h in their papers, in
such a way that ρh represents the total mass, meaning that part of the solid or fluid may
pass through this virtual surface during dilation or contraction.

Let us use the Iverson–George model (Iverson & George 2014; George & Iverson
2014) with our notation, except for h and pb (see the equivalence of notation in the
supplementary material, § S.E.2). We use the subscript IG to denote particular coefficients
for the Iverson–George model. The unknowns h, ρ, v, pb obey the following equations:

∂t h + ∇ · (hv)= ρ − ρ f

ρ
D, (3.17a)

∂t (ρh)+ ∇ · (ρhv)= 0, (3.17b)
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∂t (hv)+ ∇ · (hv ⊗ v)+ κh2g cos θ∇ρ + κ∇
(

g cos θ
h2

2

)
+ h(1 − κ)

ρ
∇ pb

= −hg cos θ∇b − hgsinθex + ρ − ρ f

ρ
Dv − τs + τ f

ρ
, (3.17c)

∂t pb + v · ∇ pb + 1
4

g cos θ(ρ f + 3ρ)h∇ · v − ρ f
ρ − ρ f

ρ
D= 3

2α
D

h
− γ̇IG tanψIG.

(3.17d)

The terms τs and τ f in the momentum equation are the solid and fluid basal shear stresses,
respectively, given by

τ f = (1 − ϕ)ηe
2v

h
, τs =μIG

v

|v|σe, μIG = tan(δ +ψIG), σe = ρg cos θh − pb,

(3.18a)
with δ the basal constant-volume friction angle of the material and σe the basal solid
pressure. The bottom pore fluid pressure pb is solved in the last equation of the system. It
is composed of the hydrostatic contribution and the excess pore fluid pressure pe, giving

pb = ρ f g cos θh + pe, (3.18b)

where pe is an unknown related to D by

D = −2kIG

hηe
pe, with kIG = k0e

0.6−ϕ
0.04 , (3.18c)

the hydraulic permeability of the granular aggregate and k0 a reference permeability (k0 ∼
10−13−10−10 m2, (see Iverson & George (2014))). The coefficient α > 0 in the pressure
equation is the elastic compressibility and κ is a lateral pressure coefficient that equals 1
when isotropy of normal stresses is assumed. The shear rate γ̇ is approximated by Iverson
and George as (see (4.24) of Iverson & George (2014) or (2.14) of George & Iverson
(2014))

γ̇IG = 2|v|
h
. (3.18d)

The closures for the dilatancy law are given as

tanψIG = ϕ − ϕ
eq
IG, ϕ

eq
IG = ϕc

1 + √
N
, N = J

1 + J St
= J

1 + I 2 , (3.18e)

where the inertial, viscous and Stokes numbers I, J and St are defined in (2.6),(2.7). Note
that the basal solid pressure is denoted here by σe instead of ps |b. Equation (3.17d) is a
relaxation equation for the dilatancy law (right-hand side term). This relaxation depends in
particular on the parameter α. As a result, the excess pore pressure does not immediately
vanish when ϕ = ϕ

eq
IG in this model, in contrast to the Bouchut et al. (2016) model.

Note also that in George & Iverson (2014), where the model is numerically solved,
the authors neglect the term κh2g cos θ∇ρ in the momentum equation (3.17c) under the
assumption of a small longitudinal gradient of ρ (see (A.2) of George & Iverson (2014)).
In fact, this term does not appear in our system, as will be seen later. It is worth mentioning
that the Iverson–George model does not give any information on the conservation of the
solid and the fluid mass or volume since h is not a real surface. Even if the total mass ρh
is conserved, the solid or the fluid may pass through the virtual surface h during dilation
or contraction (see Iverson & George 2014), as in our one-layer one-velocity model C2. It
follows that the quantities ρsϕh and ρ f (1 − ϕ)h do not represent the total solid and fluid
mass, respectively, and are not conserved in the Iverson–George model. Therefore, from
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(3.17a), (3.17b), we obtain (see (4.7) and (4.8) of Iverson & George (2014))

∂t (ρsϕh)+ ∇ · (ρsϕhv)= −ρsρ f

ρ
ϕD,

∂t (ρ f (1 − ϕ)h)+ ∇ · (ρ f (1 − ϕ)hv)= ρsρ f

ρ
ϕD. (3.19)

However, our two-layer one-velocity model B2 in (3.2) naturally accounts for the liquid
mass flux expelled from or sucked by the mixture through the quantity V f = −hmΦ, and
conserves the total solid and fluid masses.

3.4.2. Comparison with our one-layer one-velocity model (model C2)
We obtain our oversimplified mixture model C2 in (3.13) from the Iverson–George model
(3.17) with small differences detailed below, under the following assumptions (see details
of the calculation in supplementary material, § S.B.1.1):

(i) κ = 1 (isotropy of normal stresses);
(ii) α→ 0 (granular elasticity is neglected);

(iii) h = H ;
(iv) ∇ρ� 1 that leads to neglecting κh2g cos θ∇ρ in the momentum equation, as done

by Iverson and George (George & Iverson 2014).

When the elasticity of the granular skeleton α is neglected (α→ 0), we obtain from (3.17d)
that

D

h
= γ̇IG tanψIG = 2|v|

h
(ϕ − ϕ

eq
IG), (3.20)

where we used (3.18d) and (3.18e). Our dilatancy law (2.11), (2.12) gives

Φ = γ̇ tanψ = 5
2

|v|
hm

K (ϕ − ϕeq). (3.21)

When hm � H = h and if ϕeq would have been equal to ϕeq
IG, we would have

D ≡ hΦ (3.22)

for the particular value K = 4
5 . In this case, the excess pore pressure pe of Iverson

and George in (3.18c) and our value pe
fm

in (2.20b) would be the same if we further
assume η f = ηe, as done in their numerical application, and the same permeability k = kIG
(see § 5.3.1 for comparison). Note that as a consequence, if elasticity is neglected,
the excess pore-pressure automatically vanishes when the volume fraction reaches the
equilibrium ϕeq for the Iverson–George model – since D is proportional to pe from
equation (3.18c)– as in the case in our model. In the Iverson–George model, the viscous
basal shear stress for the fluid τ f in (3.18a) would be the same as in our model (see last term
of (3.13c)) if we would have approximated the shear strain rate in the same way (compare
(3.18d) with (3.3c)). A similar term τ f is considered by Pailha & Pouliquen (2009) (see
their (3.16)) and in our work on numerical simulation of immersed granular collapses (see
(5.4) of Bouchut et al. (2016)).

Other important differences between our model and the Iverson–George model are
related to the rheology, as detailed in the supplementary material, § S.B.1.1). For our
model, the rheology is given in (2.10), (2.12), and for Iverson–George in (3.18e). If we
linearise the tangent in the friction coefficient given by (3.18a), it reads

μIG = tan(δ +ψIG)� tan δ + tanψIG. (3.23)
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Iverson–George model Our mixture model

Effective fric. coeff. μ
eq
IG =μc = tan δ (const.) μeq =μc + ((�μ)/(I0 +J 1/2

μ ))J 1/2
μ ,

Jμ = αμ I 2 + J
tanψIG = ϕ − ϕ

eq
IG tanψ = K (ϕ − ϕeq)

Dilatancy fric. coeff. ϕ
eq
IG = ϕc/(1 + √

N ),
N = J/(1 + I 2)

ϕeq = ϕc/(1 + a
√Jϕ), Jϕ = αϕ I 2 + J

Table 3. Comparison between the dilatancy and rheological laws in the Iverson–George model ((3.18a),
(3.18e)) and in our models ((2.10), (2.12)).

10–3
0.75

0.80

ϕIG/ϕc
eq

ϕeq/ϕc

0.85

J = 10–1 J = 10–2 J = 10–30.90

0.95

1.00

10–2 10–1

I
10–0

Figure 4. Comparison of the effective volume fractions proposed here ϕeq in (2.10) and by Iverson and George
ϕ

eq
IG in (3.18e) as a function of the inertial number I for fixed J = 10−1, 10−2, 10−3 and with values αϕ =

0.1, aϕ = 0.66 for ϕeq in (2.10).

The friction coefficient in the critical state μc = tan δ is thus constant while it depends on
the inertial and viscous numbers in our model (μeq(Jμ)) (see (2.10) and (2.15)). Regarding
the dilatancy, we obtain tanψIG in (3.18e) if we set K = 1 in (2.12). Furthermore, the
expression of the effective volume fraction ϕeq

IG is similar to that proposed here in (2.10),
but the dimensionless number differs: N here and Jϕ = αϕ I 2 + J in our model (see
table 3). The dependence on J is linear in both Jϕ and N , whereas the dependence on
I 2 is completely different. In figure 4, we show the behaviour of ϕeq

IG and ϕeq for different
values of J . Differences of more than 10 % are observed, in particular, for high values of I
and J , as will be further analysed in the numerical tests. Finally, concerning the pressure
equation (3.17d), we can obtain it by depth-averaging equation (2.29), for α= 1/B under
several assumptions detailed in the supplementary material, § S.B.1.2. Among them, the
most relevant are the specification of a linear profile for the vertical velocity and a quadratic
profile for the pore pressure.

4. Models with two velocities in the mixture

4.1. Two-layer model with two velocities in the mixture (model B1)
The model B1 (see figure 3) is a simplification of the original full model A1 (§ 2.3) that
is obtained by assuming that the upper fluid layer is no longer free but moves with the
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velocity of the mixture vm :

u f = vm ≡ ρsϕv + ρ f (1 − ϕ)u

ρ
, (4.1)

with ρ given by (2.1). This makes it possible to remove one velocity from the unknowns
by assuming an infinite friction coefficient between the layers (k f → ∞) in the original
model (2.16)–(2.25). To eliminate k f (u f − vm) in the momentum equations, we combine
the fluid equations as follows: (2.18b)+(ρ f (1 − ϕ))/ρ× (2.18c). We then write the system
in a conservative form to obtain the two-velocity system for unknowns hm, h f , ϕ, u, v (see
supplementary material, § S.C.1). As for the full model A1, model B1 preserves the total
mass and volume and the masses and volumes for each phase (see Bouchut et al. 2016).

As we did in § 3.1.1 and to compare our model with the Meng–Wang model (Meng &
Wang 2018), we rewrite the above system (model B1) in terms of the virtual thickness H
and ΔH introduced in (2.3) and (2.4), respectively. For easy tracking in this section, we
point out once again that

hm = H −ΔH , hm + h f = H + (h f −ΔH ), ρ f h f = ρ(H − hm)= ρΔH . (4.2)

From the mass equations in (S.C.1) (supplementary material), we obtain the total mass
conservation equation

∂t (ρH)+ ∇ · (ρHvm)= 0. (4.3)

Each of the mass equations can also be written in terms of H as follows (see supplementary
material, § S.C.1 for details):

∂t (ρsϕH)+ ∇ · (ρsϕHv)= −ϕρ f ρs

ρ
(HΦ + ∇ · (H(1 − ϕ)(u − v))), (4.4a)

∂t (ρ f (1 − ϕ)H)+ ∇ · (ρ f (1 − ϕ)H u)= ϕ
ρ f ρs

ρ
(HΦ + ∇ · (H(1 − ϕ)(u − v))),

(4.4b)
∂t (ρΔH )+ ∇ · (ρΔHvm)= ρ f V f . (4.4c)

The momentum equations given in (S.C.4a), (S.C.4b) (supplementary material) become

∂t (ρsϕ(Hv +ΔH (vm − v)))+ ∇ · (ρsϕ (Hv ⊗ v +ΔH (vm ⊗ vm − v ⊗ v)) ) (4.4d)

= −g cos θ∇
(
(ρs − ρ f )ϕ

(H −ΔH )
2

2
+ ρ f

(H + (h f −ΔH ))
2

2

)

+ ρ f (1 − ϕ)g cos θH∇(H + (h f −ΔH ))− ρsϕHg cos θ∇b + (1 − ϕ)(H −ΔH )∇ pe
fm

+ β(H −ΔH )(u − v)−μ sgn(v)
(
ϕ(ρs − ρ f )g cos θ(H −ΔH )− (pe

fm
)|b
)

+
+ ρsϕ

ρ
((1 − λ f )u + λ f vm)ρ f V f − ρsϕHg sin θ ex −ΔH

ρ f ρs

ρ
vm(ϕΦ + (v − vm) · ∇ϕ),

∂t (ρ f (1 − ϕ)(H u +ΔH (vm − u)))+ ∇· (ρ f (1 − ϕ)(H u ⊗ u +ΔH (vm ⊗ vm − u ⊗ u)))

= −ρ f (1 − ϕ)Hg cos θ∇(b + H + (h f −ΔH ))− (1 − ϕ)(H −ΔH )∇ pe
fm

− β(H −ΔH )(u − v)− ρsϕ

ρ
((1 − λ f )u + λ f vm)ρ f V f − 5

2
ηe(1 − ϕ)

H −ΔH
u

− ρ f (1 − ϕ)Hg sin θ ex +ΔH
ρ f ρs

ρ
vm(ϕΦ + (v − vm) · ∇ϕ), (4.4e)
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with

V f = −(H −ΔH )Φ − ∇ · ((H −ΔH )(1 − ϕ)(u − v)). (4.4f )

In these equations, we can also use the following equivalence that relates the velocity
differences:

ρ f (1 − ϕ)(u − vm)= ρsϕ(vm − v)= ρ f (1 − ϕ)ρsϕ

ρ
(u − v). (4.5)

4.2. One-layer model with two velocities (model C1)
As we did for the one-velocity model C2, an oversimplified version (model C1)
(see figure 3) of the two-layer model B1 may be obtained by using the virtual thickness H
as the only thickness. We thus assume the same condition as in (3.12),

ΔH = H − hm � H, (4.6)

and obtain the following system for the unknowns H, ϕ, u, v:

∂t (ρsϕH)+ ∇ · (ρsϕHv)= ϕ
ρ f ρs

ρ
V∗

f , (4.7a)

∂t (ρ f (1 − ϕ)H)+ ∇ · (ρ f (1 − ϕ)H u)= −ϕρ f ρs

ρ
V∗

f , (4.7b)

∂t (ρsϕHv)+ ∇ · (ρsϕHv ⊗ v)= −g cos θ∇
(
ρsϕ

H2

2

)
+ g cos θρ f

H2

2
∇ϕ

− ρsϕHg cos θ∇b + (1 − ϕ)H(∇ pe
fm
)∗ + βH(u − v)

− sgn(v)μ
(
ϕ(ρs − ρ f )g cos θH − (pe

fm
)∗|b
)

+
+ ρsϕ

ρ
((1 − λ∗f )u + λ∗f vm)ρ f V∗

f − ρsϕHgsinθex ,

(4.7c)
∂t (ρ f (1 − ϕ)H u)+ ∇ · (ρ f (1 − ϕ)H u ⊗ u)= −ρ f (1 − ϕ)Hg cos θ∇(b + H)

− (1 − ϕ)H(∇ pe
fm
)∗ − βH(u − v)

− ρsϕ

ρ
((1 − λ∗f )u + λ∗f vm)ρ f V∗

f

− 5
2
ηe(1 − ϕ)

H
u − ρ f (1 − ϕ)Hgsinθex .

(4.7d)

The rheological and dilatancy laws are modified in exactly the same way as for the one-
layer model given by (3.14). The pressure term in the above momentum equations reads

(∇ pe
fm
)∗ = 1

H
(∇(H(pe

fm
)∗)+ (pe

fm
)∗|b∇b) with (pe

fm
)∗ = − β

(1 − ϕ)2
H2

3
Φ∗.
(4.8)

Note that this term does not appear in the one-layer model. Finally, the approximation the
exchange term in (4.4f ) becomes

V∗
f = −HΦ∗ − ∇ · (H(1 − ϕ)(u − v)), (4.9)
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and the distribution coefficient λ∗f is defined as in (2.26) but with V∗
f :

λ∗f = 1
2

− 1
2

sgn(V∗
f )δ f , δ f =

{
0 centered distribution,
1 upwind distribution. (4.10)

4.3. Comparison with the Meng –Wang model
In this section, we compare our previous one-layer two-velocity model C1 with the model
proposed by Meng & Wang (2018). It comes from a combination of our previous work
(Bouchut et al. 2016) and of the Iverson and George model (Iverson & George 2014;
George & Iverson 2014). Indeed, they use the rheological and dilatancy laws from Bouchut
et al. (2016), as well as different fluid and solid velocities in the mixture, and they used
our way of calculating the basal solid pressure. However, they use the virtual thickness
concept of Iverson & George (2014). As a result, as in the Iverson–George model, only the
total mass ρh is conserved in the Meng–Wang model and there is no information on the
conservation of the solid and the fluid mass or volume.

4.3.1. Meng–Wang model
We express here the Meng–Wang model using our notation for the densities ρ, ρs, ρ f ,
velocities v, u and volume fraction ϕ, while we keep the notation h for the virtual
surface and pe for the averaged excess pore pressure, as in the Iverson–George model
(see equivalence of notation in the supplementary material, § S.E.2). We use the sub-index
MW to denote particular coefficients for the Meng–Wang model. We have also recombined
some terms in the equations for an easier comparison.

The Meng–Wang model for unknowns h, ϕ, v, u is stated as

∂t (ρsϕh)+ ∇(ρsϕhv)= J, (4.11a)

∂t (ρ f (1 − ϕ)h)+ ∇(ρ f (1 − ϕ)hu)= −J, (4.11b)

∂t (ρsϕhv)+ ∇ · (ρsϕhv ⊗ v)= −∇
(
ρsϕg cos θ

h2

2

)
+ g cos θρ f

h2

2
∇ϕ

+ (1 − ϕ)∇(hpe)− sgn(v)μMW(ϕ(ρs − ρ f )hg cos θ − (pe)|b)
+ hβMW(u − v)− ρsϕhg sin θex + ((1 − λ)u + λv)J− αsϕv, (4.11c)

∂t (ρ f (1 − ϕ)hu)+ ∇ · (ρ f (1 − ϕ)hu ⊗ u) = −(1 − ϕ)∇
(
ρ f g cos θ

h2

2

)
, (4.11d)

− (1 − ϕ)∇(hpe)− α f (1 − ϕ)u − hβMW(u − v)

− ρ f (1 − ϕ)hg sin θex − ((1 − λ)u + λv)J
+ h(1 − ϕ)∇ · (2η f D(u)). (4.11e)

The granular mass flux J through the virtual surface is given by

J= −ϕρ f ρs

ρ
(hΦMW + ∇ · (h (1 − ϕ) (u − v))), (4.11f )

and the value forΦMW considered by Meng & Wang (2018) coincides with the one defined
in (5.8) and (5.9) of Bouchut et al. (2016), that is,

ΦMW = γ̇MW tanψMW, tanψMW = K1(ϕ − ϕ
eq
MW), ϕ

eq
MW = ϕc − K2

η f γ̇MW

ps |b
,

γ̇MW = 3
|v|
h
, μMW = tan(δ +ψMW), (4.11g)
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for η f the dynamic viscosity of the fluid. The friction coefficient between phases is

βMW = (1 − ϕ)2
η f

kMW
, (4.11h)

where the hydraulic permeability kMW is considered as a constant. The terms related to the
pressure are

pe = 2
3
(pe)|b, (pe)|b = −1

2
βMW

(1 − ϕ)2
h2(ΦMW + ∇ · ((1 − ϕ)(u − v))). (4.11i)

The viscous term, the last term in (4.11d), involves the strain rate D(u)= (∇u + ∇ t u)/2
for u the averaged fluid velocity. The coefficient λ in the momentum equations arbitrarily
determines the distribution of the granular mass flux between the phases at the virtual
interface. It is given by Meng & Wang (2018) as

λ= 1 − ϕ. (4.11j)

The friction coefficients αs and α f are for the solid and fluid at the bottom, respectively.
Strangely, two friction forces are considered for the solid at the bottom: the Coulomb
friction and a Navier drag with coefficient αs .

4.3.2. Obtaining our model (model C1)
The Meng–Wang model (4.11) becomes our one-layer two-velocity model C1 (i.e. (4.7))
with b = 0 under the following assumptions:

(i) h = H ;
(ii) ∇ · (2η f D(u)) is negligible;

(iii) α f = (5/2)(ηe/hm);
(iv) αs = 0 (no additional Navier friction at the bottom for the solid phase).

Let us discuss the second and third assumptions related to the viscous and bottom
friction stresses in the fluid. In the Meng–Wang model, the authors only kept the
downslope gradient of the viscous stress tensor ∇ · (2η f D(u)) and removed the slope
perpendicular gradient that leads, when depth-averaged, to the viscous stress at the
bottom (5/2)(ηeu/hm). This last term is however dominant in the asymptotics related
to the shallow flow approximation. Furthermore, if the term ∇ · (2η f D(u)) is kept,
other small terms of the same order should have been kept in the slope-perpendicular
momentum equations. Instead of keeping the viscous stress at the bottom, they used the
Navier friction law from Bouchut et al. (2016). Replacing the constant value of α f by
the expression above results in replacing the Navier friction law by the basal viscous
term (see supplementary material, § S.A.2). There are other differences coming from
the considered closure relations. Details of calculations are given in the supplementary
material, § S.B.2.1. The rheology in the Meng–Wang model is taken from Pailha &
Pouliquen (2009) and Bouchut et al. (2016), while we used updated rheology in the present
work. The friction coefficient β between the solid and fluid phases in the mixture is
also different since the hydraulic permeability kMW is a constant, while our permeability
depends on the grain diameter and on the solid volume fraction (see (2.21)). This is a key
difference, as will be shown in the numerical tests. Another difference comes from the
approximation of the basal pore pressure (compare (4.11i) for the Meng–Wang model and
(3.14) in the present work). Indeed, they took the higher order approximation given by
Bouchut et al. (2016) corresponding to values of β ∼ O(1), while we only kept here the

1008 A43-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.131


F. Bouchut, E. Drach, E.D. Fernández-Nieto, A. Mangeney and G. Narbona-Reina

term corresponding to β ∼ O(ε−1). Since β values are very high, we do not require an
approximation of the basal pore pressure higher than β ∼ O(ε−1).

Regarding the additional Navier solid friction, Meng et al. (2017) assert that in the
absence of such an additional friction term, the granular mass would be continuously
accelerated. However, in the numerical comparison performed here (see § 5.3.1), this
additional friction term has no significant effect. This lack of impact stems from the fact
that Coulomb friction is proportional to the pressure, making it four orders of magnitude
larger than this linear term.

To identify other differences between the Meng–Wang model and model C1, note that

J= ϕ
ρ f ρs

ρ
V∗

f and λ= ϕρs

ρ
λ∗f . (4.12)

Note also that if we assume u = v in the Meng–Wang model, we do not obtain the Iverson–
George model since the closures for pressure, dilatancy and rheology are instead inspired
by our previous work (Bouchut et al. 2016). Instead, we obtain a model similar to our
oversimplified model C2 with the equivalence h = H (see (3.13)).

5. Numerical illustrations in uniform regime
In this section, we perform a series of simulations of granular flows on sloping beds in
uniform regimes to compare the series of models derived here between one another and
with the Iverson–George and Meng–Wang models. We first consider, in § 5.1, immersed
granular flows that mimic submarine avalanches to compare with the lab-experiments
presented by Pailha & Pouliquen (2009). Then, in §§ 5.2, 5.3, we focus on grain–fluid
flows with a small layer of fluid on top of them, which are a proxy for natural debris
flows. For the sake of clarity, the equations describing these uniform configurations for
the different models (figure 3) are given in the supplementary material (§ S.D.1). Notice
that since simulations are made in the 1-D configuration, the bold format is removed for
velocity notations that now read v, u, u f , vm .

5.1. Immersed flows – effect of rheology
In this test, we compare the present rheology (2.10) to that used by Bouchut et al. (2016)
and discuss the sensitivity of the results to the rheological parameters by comparing
with lab-experiments (Pailha & Pouliquen 2009). These experiments correspond to the
immersed configuration (see figure 2 of Bouchut et al. (2016)), described by the following
equations:

∂t hm = hmΦ, (5.1a)

∂tϕ = −ϕΦ, (5.1b)

∂tv= −μ sgn(v)
ps |b
ρsϕhm

+ β

ρsϕ
(u − v)− g(1 − ρ f /ρs) sin θex , (5.1c)

∂t u = −1
2
Φ

u

1 − ϕ
− β

ρ f (1 − ϕ)
(u − v)− kb

ρ f (1 − ϕ)hm
u, (5.1d)

with kb = (5/2)ηe(1 − ϕ)/hm , which is a very small term in all the simulations. To be
consistent with Bouchut et al. (2016), we neglect the friction between the mixture and the
upper-fluid layer by setting k f = 0 in (2.19) and we consider the centred distribution in
(2.26), λ f = 1/2. Note that in this test, we do not study the effect of the upper-fluid layer
since the free surface is fixed to be horizontal and only hm is solved.
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5.1.1. Physical and rheological parameters
Following Pailha & Pouliquen (2009) and Bouchut et al. (2016), four cases are analysed,
corresponding to loose and dense initial packing volume fraction, both for high and low
fluid viscosity. For all of them, we use

ρs = 2500 kg m−3, ρ f = 1041 kg m−3, d = 1.6 × 10−4 m. (5.2)

The high viscosity case corresponds to η f = 0.96 × 10−1 Pa s, a slope angle θ = 25o and

h0
m = 4.9 × 10−3 m, ϕ0 =

{
0.562 loose,
0.588 dense, u0 = v0 = 0 m s−1. (5.3)

The low viscosity case corresponds to η f = 0.98 × 10−2 Pa s, a slope angle θ = 28o with

h0
m = 6.1 × 10−3 m, ϕ0 =

{
0.576 loose,
0.592 dense, u0 = v0 = 0 m s−1, (5.4)

where u0 and v0 are the initial fluid and solid velocities within the mixture. Finally, the
parameters defining the rheological laws, see (2.10), are αϕ , αμ, ϕc, μc, I0, bϕ and �μ.
For the first two parameters involved in the definition of Jϕ and Jμ, respectively, we use
the values of Tapia et al. (2022)

αϕ = 0.1, αμ = 0.0088 (5.5)

since such parameters did not appear in the rheology chosen by Pailha & Pouliquen (2009)
where the lab-experiments were presented. As in Pailha & Pouliquen (2009), we set

ϕc = 0.582, μc = 0.415 and I0 = 0.279. (5.6)

Finally, we must specify the values of bϕ and�μ. To be as close as possible to the rheology
of Tapia et al. (2022) (table 2), that is,

ϕ
eq
Tapia = ϕc(1 − aϕJ 1/2

ϕ ), μ
eq
Tapia =μc(1 + aμJ 1/2

μ ), (5.7)

we linearise our expressions (2.10) as follows:

ϕ
eq
lin = ϕc − ϕcbϕJ 1/2

ϕ , μ
eq
lins =μc + �μ

I0
J 1/2
μ . (5.8)

By comparing (5.7) and (5.8), we obtain the following equivalence of parameters:

bϕ ≡ aϕ, �μ≡μc I0aμ. (5.9)

Tapia et al. (2022) proposed the values aϕ = 0.66, aμ = 11.29 to fit their laboratory
experiments, thus leading to

bϕ = aϕ = 0.66, �μ=μc I0aμ, with aμ = 11.29. (5.10)

Finally, we perform a sensitivity analysis around these values to identify the set of
parameters making it possible to obtain the steady states with our present rheology that
are as close as possible to that used by Bouchut et al. (2016) (see supplementary material,
§ S.D.3). Based on this analysis, we set

�μ= 0.653, bϕ = 0.99, (5.11)

corresponding to aμ = 5.645.
We focus here on the analysis of the effect of using different rheologies since the

characteristics of the flow behaviour in loose and dense cases have been already studied
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by Bouchut et al. (2016). In any case, we refer the reader to the supplementary material,
§ S.D.2 for a brief description of this behaviour.

5.1.2. Influence of the rheology
Figure 5 also makes it possible to compare the variables calculated with the rheology
proposed here, the rheology used by Bouchut et al. (2016) and the experimental data
(Pailha & Pouliquen 2009). At low viscosity, the present rheology better fits the
experiments for the solid velocity and the basal excess pore pressure, in both the so-
called loose and dense cases (figure 5b,d). At high viscosity, the solid velocity with the
present rheology is also closer to observations in the loose case (figure 5a). The maximum
velocity with the proposed rheology is two times higher than with the rheology of Bouchut
et al. (2016). In the dense case, the excess pore pressure is closer to the measurements
with the rheology of Bouchut et al. (2016) at the beginning, but its overall shape is better
captured by the present rheology (figure 5c). The greatest difference between the values
of (pe

fm
)|b and ϕ calculated with the two rheologies is observed in the dense case, while

they are very close in the loose case. Concerning the friction coefficient, the critical-state
friction coefficient μeq is constant for Bouchut et al. (2016), i.e. it does not depend on the
viscous–inertial number (this dependency was replaced by a viscous term that depends
on γ̇ ). In the dense case, the time tstart at which the granular layer starts to move is better
reproduced by the rheology used by Bouchut et al. (2016) but, afterwards, its evolution
seems to be better captured with the present rheology.

In figure 6, we investigate the influence of the rheological parameters �μ and bϕ on
the flow variables for the two viscosities. For all cases, we observe that �μ controls the
long-term steady-state velocity even though the long-term values of ϕ are also controlled
by bϕ . In the dense and loose cases, the initial value of the velocity is also significantly
affected by bϕ . This would be expected since the compression/dilation mainly occurs
during the first stage of the flow until approximately 300 s for high viscosity and 20 s for
low viscosity. However, this tendency is not observed for the other variables. For example,
in the dense case, it is rather �μ that controls the first stage of variation of the excess
pore fluid pressure and the absolute value of its maximum, the solid volume fraction ϕ,
and the friction coefficient μ. This is also the case for μeq, hm and div v but not for tanψ
and γ̇ , not represented here. In the loose case, the variables are significantly different for
the different values of �μ and bϕ , right from the start.

After this first transient regime (>300 s for high viscosity and >20 s for low viscosity),
the long-term values of the quantities are different for the different values of �μ and
bϕ for both the loose and dense cases. As observed above, the behaviour of the friction
coefficient μ is very similar to that of the excess pore fluid pressure, as these quantities are
related (see § 2.4.3). In the dense case, the time needed for the mass to start moving tstart
increases with increasing �μ as the friction increases. For the same �μ, tstart increases
with increasing bϕ .

As a result, the dependency of the variables on the rheological parameters is significant
and very complex, showing the high sensitivity of the model to the rheological parameters,
which are often difficult to constrain on the field scale.

5.2. Debris flow configuration
For the following tests, we consider grain–fluid flows with a free surface in the
configuration shown in figure 1, mimicking the experiment developed by Iverson et al.
(2000) and simulated by George & Iverson (2014). In this set-up, we compare the
results from the series of models presented above, schematically represented in figure 3.
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Figure 5. Solid velocity v, basal excess pore pressure (pe
fm
)|b, solid volume fraction ϕ, friction coefficient μ

and tangent of the dilation angle ψ in the (a,c,e,g) high viscosity and (b,d,f,h) low viscosity case, for both the
dense (full lines) and the loose (dashed lines) cases. The results for the proposed rheology are in black/grey and
for the rheology of Bouchut et al. (2016) in blue. The lab-experiments from Pailha et al. (2008) are in green.
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For two-layer models, we define the thickness of the initial fluid-only layer at the top as a
fraction Ch of the mixture thickness h0

f = Chh0
m .

We set the following initial data:

h0
m =

{
0.7169 m loose,
0.65 m dense, ϕ

0 =
{

0.48 loose,
0.59 dense, h0

f = Chh0
m m; u0 = v0 = u0

f = 0 ms−1,

(5.12)

with the slope angle of the bottom at θ = 13◦ for the so-called loose and θ = 20◦ for
the dense cases. We consider the same mass for the mixture in the loose and dense
cases so that (ρ0h0

m)loose = (ρ0h0
m)dense. For one-layer models, the virtual thickness is

H0 = h0
m + ρ f h0

f /ρ
0, where ρ0 = ϕ0ρs + (1 − ϕ0)ρ f (see (2.1)). When the relaxation

equation is used to solve the basal pressure, we assume that the excess pore pressure is
zero at the beginning. As a result, the initial basal solid pressure is the hydrostatic pressure
p0

sb
= ϕ0(ρs − ρ f )g cos θh0

m for two-layer models and p0
sb

= ϕ0(ρs − ρ f )g cos θH0 for
one-layer models and for the Iverson–George model. In this last case, the relaxation
coefficient is α = 10−9.

The material properties are

ρ f = 1000 kg m−3, ρs = 2700 kg m−3, d = 10−3 m, η f = 10−3 Pa s, (5.13)

and the rheological parameters

αϕ = 0.1, αμ = 0.0088, bϕ = 0.99, I0 = 0.279,

μc = tan 29◦, ϕc = 0.56, aμ = 5.645, �μ=μcaμ I0. (5.14)

Finally, we set m f = 1 for the friction between the mixture and upper-fluid layer (see
(2.19)).

5.3. Comparison among all the proposed models for debris flows
We will focus here on the differences between the models of various levels of complexity
for both loose and dense cases. The configuration and parameters are the same as those
described in § 5.2. To provide deeper insight into the flow behaviour, we compute the
forces involved in the model, given by the different terms in the equations. These forces
are specified in table S1 of the supplementary material, § S.D.5, for models written in
conservative form. Note that for the two-phase models, the forces are plotted for the
mixture layer by summing up the momentum equations for the solid and fluid phases.

5.3.1. One-layer models compared with Iverson–George and Meng–Wang models
Let us compare, in the uniform regime, our one-layer model C2, presented in § 3.2,
and model C1, presented in § 4.2 with the Iverson–George and Meng–Wang models,
respectively. All these models are defined in terms of a virtual thickness. The equations
of these models in the uniform regime are given in the supplementary material, § S.D.1:
(S.D.12) for model C2, (S.D.16) for Iverson–George, (S.D.11) for model C1 and (S.D.18)
for Meng–Wang. We choose the loose case with data given in § 5.2 and Ch = 0.15. The
values of the constants involved in the Meng–Wang model are those given in their paper
(Meng & Wang 2018),

K1 = 1.1, K2 = 3, αs = 10 Ns m−3, α f = 35 Ns m−3. (5.15)

For these models, the main difference lies in the rheological laws and in the definition
of the permeability, which plays a key role, in particular, in the dilatancy function Φ in
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Figure 7. Comparison between our one-layer models C1 = [1L: (u, v)] and C2 = [1L: (v)] (lines are
superimposed) and with the Iverson–George (IG) and Meng–Wang (MW) models. (a) Permeability for each
model with two values of k0 in the Iverson–George model and of kMW in the Meng–Wang model; (b) velocity.

our model, ΦMW in the Meng–Wang model and D in the Iverson–George model. It has a
strong impact on the excess pore pressure and therefore on the basal solid pressure. In our
model, the permeability k is a function of ϕ and d the mean grain diameter. In the Iverson–
George model, kIG is a function of ϕ, and in the Meng–Wang model, kMW is assumed to
be constant:

k = (1 − ϕ)3d2

150ϕ2 , kIG = k0e
0.6−ϕ
0.04 , kMW = 10−9 m2, (5.16)

with k0 ∈ 10−13 − 10−10m2 a reference permeability. In figure S14 in the supplementary
material, we reproduce figure 5 of Iverson & George (2014) for a value of the grain
diameter d that makes it possible to fit experimental data. Note also that the range of values
of the permeability k is smaller than that for the permeability defined by kIG. Depending
on the value of the constants d, k0 and kMW, very different solutions are obtained, the
models being highly sensitive to the permeability, as also discussed by Iverson & George
(2014). To illustrate this sensitivity, we test two values of k0 (k0 = 2.6 × 10−11 considered
by George & Iverson (2014) and k0 = 5 × 10−10) and two values of kMW (kMW = 10−9 and
3 × 10−9m2). Figure 7(a) shows that the permeability obtained with the original values
proposed for the Iverson–George model and the Meng–Wang model are quite far from
the permeability k, especially kIG that is one order of magnitude smaller. This induces
strong differences between the calculated mixture velocity vm and basal solid pressure
(figure 7b). Our models C1 and C2 give almost the same results (the blue and the green
lines are superimposed) because the solid and fluid velocities in the mixture become very
close from the very beginning (figure 7b). With the proposed models C1 and C2, the
maximum velocity is approximately 5 m s–1, while it reaches 80 m s–1 in the Iverson–
George model and 15 m s-1 in the Meng–Wang model. The mass stops much later given
that the maximum velocity increases. The velocity increases in the same way in all
models, but its decrease is controlled by the basal frictional shear stress, and thus the
basal solid pressure and the friction coefficient. Indeed, the velocity increases when ps|b
is almost zero, because of the high excess pore pressure, and decreases when ps|b returns
to hydrostatic pressure. For example, ps|b stays very low for a very long time in the
Iverson–George model leading to this huge velocity.
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Figure 8. Comparison between our one layer models C1 = [1L: (u, v)] and C2 = [1L: (v)] (lines are
superimposed) and with the Iverson–George (IG) and Meng–Wang (MW) models for the same permeability
k = (1 − ϕ)3d2/150ϕ2 obtained with d = 10−3m. (a) Basal solid pressure and velocity; (b) friction coefficient
and dilatancy angle.

In view of these results, we compare the models under the same value of the
permeability, choosing k = ((1 − ϕ)3d2)/(150ϕ2) obtained with d = 10−3m. Results are
shown in figure 8. Same permeability leads to very similar velocities and basal solid
pressure (figure 8a) for all models. Interestingly the Iverson–George model leads to a
higher basal solid pressure than in our model but to a lower friction coefficient so that
the velocities of the two models are very similar. The variation of the friction coefficient
can only be observed at the very first instants (<3 s), as shown in figure 8(b). Even if the
velocities are similar, the friction coefficient μ and the dilatancy tanψ are not so close,
because of the differences in the rheology.

Note that for the same permeability and rheology, the results obtained for the Iverson–
George and C2 model pair, and the the Meng–Wang and C1 model pair are equivalent.
For this reason, in the following, we perform the comparison only between the proposed
models A, B and C.

5.3.2. Influence of grain diameter and drag force between the layers
We impose here Ch = 0.15 and compare the results for two values of the mean grain
diameter d = 10−3 m (figure 9a,c,e,g) and d = 10−2 m (figure 9b,d,f,h), for which the
permeability is 100 times bigger (see (2.21)). Our first objective is to compare the models,
denoted 1, that account for different solid and fluid velocities v and u in the mixture, and
models, denoted 2, where u = v. For this, we plot both the mixture velocity vm for the six
models (figure 9a,b) and all the velocities involved in the models (figure 9c,d).

We observe that the mixture velocities are 10 times higher for d = 10−3 m than for
d = 10−2 m. For d = 10−3 m, the mixture velocities are the same for the two models
of each group A, B, C. Indeed, the calculated solid and fluid velocities in models 1
are almost identical. This is not the case for d = 10−2 m, where the drag coefficient β
between the solid and fluid phases in the mixture is 100 times lower. In this case, we
indeed observe very different solid and fluid velocities in the two-phase models A1, B1
and C1 (figure 9d). For example, the fluid velocity u is approximately three times higher
than the solid velocity v for models A1 and B1. As a result, these two-phase models give
very different mixture velocities than the one-velocity models A2, B2 and C2 (figure 9b).
Furthermore, the behaviour of models from groups A, B and C is much more different than
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Figure 9. Loose case with slope angle θ = 13◦ and for Ch = 0.15. Comparison between all the models: those
accounting for two velocities u, v in the mixture (models A1, B1 and C1) and those assuming u = v (models A2,
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(pe

fm
)|b; (g,h) friction coefficient μ with dilatancy tanψ .
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for lower permeability (d = 10−3 m). Note that the velocity of the fluid-only upper layer
is quite similar for the two-phase model A1 and for A2. As a result, for high permeability
(here, approximately 10−6 m2), we cannot assume u = v in the mixture as done in the
models of group 2 and in the Iverson–George model.

The behaviour of the two-layer models (groups A and B) is similar but with velocity
differences which are small for d = 10−3 m but can reach 25 % for d = 10−2 m
(figure 9a,b). The one-layer models (group C) have a significantly different behaviour
even for d = 10−3 m since the mixture velocity decreases whereas it stays approximately
constant for models of groups A and B. The difference between models C1 and C2 is
greater than between models 1 and 2 of groups A and B (figure 9b). Furthermore, for
d = 10−2 m, model C2 stops, as does the solid phase in model C1 too, whereas in all other
models, the mixture velocity only slightly decreases with time (figure 9b,d). As a result, for
high permeability, one-layer models with a virtual thickness, such as the Iverson–George
model or the Meng–Wang model, may lead to significant errors in the prediction of flow
dynamics and deposits.

Figure 9(e) shows that for d = 10−3 m, the excess pore pressure nearly compensates the
solid hydrostatic pressure at the beginning, so that ps |b approaches zero. While the models
from groups A and B give almost identical values of the basal solid pressure and friction
coefficient, the models of group C predict a basal solid pressure that is close to zero for
a longer time and then increases. This explains why the mixture velocity of models in
group C increases for a longer time and thus decreases more rapidly. Models in groups A
and B give also almost identical friction coefficients whereas models in group C give a
higher friction coefficient. For d = 10−2 m, the excess pore pressure (maximum 200 Pa)
is much smaller than for d = 10−3 m (maximum 6000 Pa) for all models so that the basal
solid pressure only decreases by approximately 4–10 %. Slight differences are observed
between models 1 and 2 of the three groups although they are much smaller than for the
velocities. Again, models A and B are much closer than model C.

For the dense case represented in figure 10, the differences between the model
behaviours are qualitatively the same as in the loose case. However, more differences
between models of group A and group B are observed for the basal solid pressure and for
the friction coefficient for d = 10−3. For d = 10−2 m, we also observe greater differences
between all the models for ps|b and μ (figure 10e–h). Interestingly, for d = 10−3 m, the
velocity of the upper fluid-only layer increases rapidly, whereas the solid phase takes
time to start because of the high friction coefficient and basal solid pressure (figure 10e).
For higher permeability (d = 10−2 m), the solid phase takes less times to start moving
(figure 10d). During the time window shown here, the velocity increases but, as the friction
increases, the velocity subsequently stabilises at approximately 300 s for d = 10−2 m for
two-layer models (groups A and B), but continuously increases and reaches unrealistic
high values for one-layer models with a virtual thickness (group C and the Iverson–George
and Meng–Wang models).

In the following subsections, we set d = 10−3 m. As shown above, the models
denoted 1, with two velocities u and v in the mixture, and the models denoted 2, where
u = v, give almost identical results. Therefore, from now on, we only present the results
from the simpler models A2, B2 and C2.

5.3.3. Influence of the thickness of the upper fluid layer
We investigate here the influence of the initial thickness of the fluid-only upper-layer
h0

f = Chh0
m , by testing two values of Ch , 10−3 (very small fluid layer) and 0.5 (thick

fluid layer). Indeed, the one-layer models with a virtual thickness (models C1, C2, and
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Figure 10. Dense case with slope angle θ = 20◦ and for Ch = 0.15. Comparison between all the models: those
accounting for two velocities u, v in the mixture (models A1, B1 and C1) and those assuming u = v (models
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)|b; (g,h) friction coefficient μ with dilatancy tanψ .
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coefficient μ with dilatancy tanψ .
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Iverson–George and Meng–Wang models) are only valid if h f is small (i.e. Ch is small),
as demonstrated above.

In figure 11, the results corresponding to the loose case are represented for Ch = 10−3

and Ch = 0.5. Figure 11(a,b) shows that the virtual thickness H computed by all the
models are almost the same. This is the only thickness in the one-layer model C2. For
the two-layer models A2 and B2, the total thickness hm + h f is the same as well as
the mixture thickness hm . However, the velocities calculated by the different models are
significant. Models A2 and B2 are quite close whereas the velocity of the one-layer model
C2 decreases more rapidly in the case Ch = 10−3. Even worse, in the case Ch = 0.5, the
velocity of model C2 decreases while that in the other models increases. The excess pore
pressure in model C2 is higher and lasts longer, especially for Ch = 0.5, leading to a longer
time where the basal solid pressure is almost zero and, afterwards, the basal solid pressure
is much higher for model C2, leading to higher basal frictional stress (see figure 13),
causing the mass velocity to decrease much faster than in the two-layer models. The solid
volume fraction and friction coefficient are similar for all models with Ch = 10−3, while
with Ch = 0.5, ϕ is slightly lower and μ slightly larger in model C2 than in models A2 and
B2.

The same qualitative observations are observed in the dense case, with slightly larger
differences between the one-layer model C2 and the two-layer models A2 and B2
(figure 12). In particular, the time tstart at which the mass starts to move is much larger
for model C2, especially for Ch = 0.5 where tstart is approximately four times bigger
(8 s instead of 2 s). Indeed, the friction coefficient is much higher which increases the
basal frictional stress (see figure 13) even if the solid basal pressure is smaller than in
models A2 and B2 at the beginning (figure 12e–h). The fact that the basal solid pressure
and the friction coefficient stay large for a longer time in model C2 explains why tstart is
larger.

The behaviour described above is well illustrated when looking at the forces at play
(figure 13). We clearly see bigger differences between the forces in the one-layer model C2
and the two-layer models A2 and B2 for Ch = 0.5. We also see the mass acceleration ftot
that is high at the beginning for the loose case and then decreases and becomes negative,
while it is almost zero in the dense case at the beginning and then increases to reach an
almost constant value later on. In the dense case, we observe a much bigger basal frictional
force with the model C2 until approximately 10 s explaining the decrease of velocity
described above. Note that the force associated with the fluid exchange at the mixture
surface ftransf, calculated in model A2, is small in all cases. The drag force between the
mixture and the upper fluid is significant and the basal fluid friction is negligible.

5.3.4. Influence of ϕ0 and η f

The value ϕ0 = 0.48 that we used in the previous tests is quite far from the critical state
volume fraction ϕc = 0.56. Let us investigate what happens for closer values ϕ0 = 0.54
or ϕ0 = 0.545 (figure 14) in the loose case. The difference between the one-layer model
C2 and the two-layer models A2 and B2 is even greater. For example, for ϕ0 = 0.545,
the mass does not start to move with model C2 as opposed to the other models. Indeed,
the basal excess pore pressure is almost equal to zero which is not the case for the other
models. For ϕ0 = 0.54, the behaviour of the models is closer, but the higher basal frictional
stress makes the mass in model C2 stop earlier. Note that the shift between the basal solid
pressure is large between models A2 and B2, ϕ0 = 0.545 (figure 14d).

In the tests in the debris flow configuration, we only considered the fluid viscosity
η f = 10−3 Pa s. We also tested a larger value η f = 10−2 Pa s. The qualitative behaviour
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fluid upper-layer u f ; (e,f ) basal solid pressure ps |b with basal excess pore pressure (pe
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)|b and (g,h) friction

coefficient μ with dilatancy tanψ .
1008 A43-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.131


F. Bouchut, E. Drach, E.D. Fernández-Nieto, A. Mangeney and G. Narbona-Reina

Loose

–6

–4

–2

0
(A2) (B2) (C2)

2

4

–6

–4

–2

0

2

4

Dense

Cℎ = 0.15 Cℎ = 0.5

Cℎ = 10–3 Cℎ = 0.5

–6

–4

–2

0

2

4

6
× 103 × 103

0 5 10 15
–6

–4

–2

0

2

4

6

t (s)

F
o

rc
es

 (
k

g
 m

 s
–
2
)

F
o
rc

es
 (

k
g
 m

 s
–
2
)

F
o

rc
es

 (
k

g
 m

 s
–
2
)

F
o
rc

es
 (

k
g
 m

 s
–
2
)

0 5 10 15
t (s)

t (s) t (s)
0 5 10 15 0 5 10 15

× 103 × 103

ffricsb ffricsb
ffricfb ffricfb

ffricsb
ffricfb

fdragf
ftransf
fgrav fgrav fgrav
ftot

(a) (b)

(c) (d )

Figure 13. Forces involved in the model (a,b) in the loose case with slope angle θ = 13◦ and (c,d) in the dense
case with slope angle θ = 20◦ for (a,c) Ch = 10−3 and (b,d) Ch = 0.5. The forces are the basal solid friction
ffricsb, the basal fluid friction ffricfb, the drag of the mixture with the upper fluid layer fdragf, the force associated
with the fluid transfer ftransf, the force of gravity fgrav and the sum of all these forces ftot representing the mass
acceleration (see table S1 in supplementary material).

of the results remains the same. However, the time evolution is longer for higher viscosity.
For example, in the loose case, the excess pore pressure vanishes in 2 s for η f = 10−3 Pa s,
whereas it does not vanish until 20 s for η f = 10−2 Pa s. As a result, the velocity reaches
its maximum at ∼ 5 ms–1 for η f = 10−3 Pa s and ∼ 35 ms–1 for high viscosity.

6. Conclusion
We propose here a depth-averaged shallow model with a mixture layer and a fluid-only
upper layer that solves the solid (granular) and fluid velocities in the mixture as well as the
upper layer velocity. This model, derived from Bouchut et al. (2016), is supplemented by
an improved rheology coming from the recent work of Tapia et al. (2022) and more general
boundary conditions. It accounts for dilatancy in the granular mass (compression/dilation),
for its impact on the excess pore fluid pressure and the retro-action on the basal frictional
stress experienced by the grains. Dilatancy is accounted for based on the concepts of
critical state mechanics that describes the flow behaviour as a function of its deviation from
the critical state which is reached at the equilibrium. Dilatancy may drastically change the
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Figure 14. Loose case with slope angle θ = 13◦ for (a,c) ϕ0 = 0.54 and (b,d) ϕ0 = 0.545. Comparison between
the models for which u = v in the mixture: the two-layer models A2, B2 and the one-layer model with virtual
thickness, model C2. (a,b) Mixture velocity vm = v and, for model A1, velocity of the fluid upper-layer u f ;
(c,d) basal solid pressure ps |b with basal excess pore pressure (pe

fm
)|b.

flow dynamics and deposits, as widely known, leading to very different behaviours for
an initially loose (solid volume fraction lower than in the critical state) or an initially
dense granular layer, as illustrated in our simulations. We also observed that, in some
cases, dilatancy generates a friction weakening effect at the beginning of the flow that
would not otherwise exist. Based on this complete two-layer three-velocity model, we
rigorously derive simpler models with different levels of complexity. We either reduce
the two-layer model to one-layer models through the introduction of a virtual thickness,
as in the Iverson & George (2014) or Meng & Wang (2018) models, or we assume that
the solid and fluid velocities in the mixture are the same, as also done for example in the
Iverson–George model. We clearly describe the assumptions made to obtain the resulting
six models and give the details of the calculation in the supplementary material so that the
reader can follow the derivation steps. We also discuss two different ways of calculating
the excess pore fluid pressure, which is a key parameter in these models. We show that
one-layer models, such as the Iverson–George model, do not give any information on the
conservation of the solid and fluid mass or volume since the virtual interface is not a real
surface. Even if the total mass is conserved, the solid or the fluid may pass through the
virtual surface during dilation or contraction (Iverson & George 2014). It follows that we
cannot be sure that the total solid and fluid masses are conserved in the Iverson–George
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model and we do not know the real position of the free surface. In contrast, our two-
layer models with either one or two velocities in the mixture naturally account for the
fluid mass expelled by or sucked from the mixture, and conserves the total solid and fluid
masses. However, these two-layer models are not valid when the water level is under the
granular material upper surface (under-saturated case) while one-layer models with their
virtual surface may, in principle, deal with this situation, as claimed by Iverson & George
(2014). Furthermore, the equations of the one-layer model with equal solid and fluid
velocity in the mixture are much simpler, which represents a strong advantage for their
numerical implementation and for field applications. We performed a series of simulations
to compare all these models in a uniform configuration by varying the rheology and
parameter sets in two cases with the objective of identifying the performance and limits of
the simpler models. First, we simulated immersed granular flows, mimicking submarine
landslides with an upper horizontal water surface, and then idealised debris flows with a
fluid layer parallel to the mixture layer. A key conclusion of our work is that the models
are extremely sensitive to the rheology and associated parameters, to the permeability
(grain diameter and viscosity), and to the initial volume fraction. As a result, the flow
behaviour and, in particular, the velocities strongly depend on parameters that are very hard
to measure in the field, showing that sensitivity analysis should be necessarily associated
with field-scale simulations. Comparison of two-layer models solving for the fluid and
solid velocities in the mixture with models assuming equality of these velocities shows
that such an assumption is only valid for low permeability (grain diameter d = 10−3 m
leading to permeability k = 1.8 × 10−9 m2). However, when the permeability is increased
(d = 10−2 m leading to 1.1 × 10−7 m2), we show that it is necessary to account for
different solid and fluid velocities. For one-layer models, we observe far greater differences
between the models with different or equal solid and fluid velocities in the mixture, even
for low permeability. Assuming that the velocity in the upper fluid layer is related to the
mixture velocity instead of calculating this velocity leads to comparable behaviour when
the permeability is low (d = 10−3 m), but can lead to a 25 % difference in the calculated
velocities for d = 10−2 m, for example. Another key point concerns the validity of one-
layer models involving a virtual thickness, such as the Iverson–George and Meng–Wang
models. We show here that the results can strongly differ from those of the complete
model. For example, in some simulated cases, the friction in the one-layer one-velocity
model is larger than in the two-layer one-velocity model, causing the mass to stop much
earlier in the one-layer one-velocity model. The one-layer models, however, provide a
rough approximation of the two-layer models when the permeability is low, the initial
volume fraction is not to close to the critical volume fraction and the upper fluid layer is
very thin (for example, 10−3 times the thickness of the mixture layer). As a result, for high
permeability and/or when the upper layer is thick (for example, 0.5 times the thickness of
the mixture layer), one-layer models with a virtual thickness may lead to huge errors in the
prediction of flow dynamics and deposits. In such cases, it is crucial to derive two-layer
models that account for an upper layer made either of fluid or grains. Natural flows are,
however, strongly non-uniform, in particular, due to the underlying complex topography.
Although it is hard to extrapolate the results obtained here in simple uniform settings
to non-uniform flows, we expect the differences between the models to be qualitatively
similar. However, the quantitative sensitivity of the models to the parameters involved and
their relative differences may be smaller in real cases since the mass will stop before a
steady regime is reached due, for example, to decreasing slope angles. For this reason, the
differences will probably have less time to develop. Nonetheless, only simulations in non-
uniform configurations and comparison of the models with laboratory experiments and
real data will make it possible to assess the ability of these models to reproduce real flows
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and to quantify the effects of the terms neglected in simple models. These terms include
the topography and the spatial variation of the volume fraction that are common to all
models. Nevertheless the spatial variation of the excess pore pressure is only considered
in models with two velocities in the mixture (models A1,B1,C1) and the coupling term
containing the variation of the upper-fluid thickness (term hm∇h f ) only appears in two-
layer models (models A and B). These terms could also cause additional differences
between the models in the non-uniform case. Furthermore, it could be worthwhile in the
future to develop a probabilistic analysis, as performed by Patra et al. (2020), to evaluate
more precisely the modelling assumptions and their relative importance.

Our results demonstrate the huge challenge remaining before field-scale debris flows or
submarine landslides can be simulated at a reasonable computational cost with validated
depth-averaged models applicable at the field scale.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.131.
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